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ABSTRACT

In this research article, we delimitate the definition of mild
solution for abstract fractional differential equations with
state-dependent delay (AFDEw/SDD) of order α ∈ (1, 2)

with impulsive effects and compare the solution to the
second-order impulsive differential equations. Further, we
obtain sufficient conditions of the existence of mild solu-
tion for instantaneous and non-instantaneous impulsive frac-
tional functional differential inclusions with state-dependent
delay (IFDIw/SDD) using the multi-valued fixed point theory
and operator techniques. Furthermore, we study the trajec-
tory controllability (T −controllability) of the AFDEw/SDD.
At last, we present some examples to illustrate the sufficient
conditions involving partial and ordinary derivatives.

RESUMEN

En este artículo de investigación, delimitamos la definición de
solución mild para ecuaciones diferenciales fraccionarias con
retardo dependiente del estado (AFDEw/SDD) de orden α ∈
(1, 2) con efectos impulsivos y comparamos la solución con
aquellas de ecuaciones diferenciales impulsivas de segundo
orden. Además obtenemos condiciones suficientes para la
existencia de soluciones mild de inclusiones funcionales difer-
enciales fraccionales instantánea y no-instantáneamente im-
pulsivas con retardo dependiente del estado (IFDIw/SDD) us-
ando la teoría de punto fijo multivaluados y técnicas de ope-
radores. Más aún, estudiamos la controlabilidad por trayec-
toria (T −controlabilidad) de los AFDEw/SDD. Finalmente,
presentamos algunos ejemplos para ilustrar las condiciones
suficientes que involucran derivadas parciales y ordinarias.
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1 Introduction

In the last few decades, many researchers paid attention on impulsive differential equations, because

the models subject to abrupt changes are not described by classical models, so such type equations

simulated in term of impulsive models. In the nature, there are lots of systems in which the

time evolution of the state variable depends on the past history in some arbitrary way subject to

abrupt changes are modeled in impulsive functional differential equations, see [12–14,16,19,41,43]

for update. These equations arise in several fields of science and engineering which describe the

evolution processes. The impulsive effects may be instantaneous or non-instantaneous (more details

[2, 25, 37]) which is shown in many biological phenomena involving thresholds, optimal control

models in economics, etc.

The reason of receiving great attention of fractional calculus is that it describes the memory and

hereditary property. Due to this property fractional mathematical models give the more realistic

and practical results than the ordinary models. For the fractional calculus and its applications

see the monographs and papers [7, 30, 31, 34, 38–40] and references therein. Further, more specific

type of functional differential equations are state dependent delay equations which arise in applied

model when traditional simplifications are abandoned. For recent development theory of functional

differential equations with state dependent delay reader can see the papers [1, 6, 8, 17, 18, 21] and

references therein.

In additional, fractional differential inclusion is the generalization of fractional differential equa-

tion; therefore, all problems which contain the property of solution such as existence, uniqueness,

stability, periodicity and controllability are presented in the theory of inclusion. A differential

inclusion usually has many solutions which start from a given point and pass through others. It is

recently seen that new issue appear in the differential inclusion for the investigation of topological

properties of the set of solution, and selection of solutions. One can see the articles [9, 10, 15] for

more info about this hot topic.

In this appraise, we describe the existence of solution for fractional order case. Feckan et al. [19]

gave the suitable definition of solution for impulsive nonlinear fractional differential equation of

order α ∈ (0, 1), and Wang [43] extended the problem considered in [19] for the order α ∈ (1, 2).

Wang et al. [41] defined the mild solution using the probability density function for impulsive

fractional evolution equations of order α ∈ (0, 1), and motivated by [41] authors [16] extended the

definition of mild solution for neutral impulsive fractional functional differential equation with order

α ∈ (0, 1) using analytic operator theory. Shu et al. [40] determined the definition of mild solution

for fractional differential equations with nonlocal conditions to order α ∈ (1, 2) without impulse.

The existence results of mild solution for impulsive fractional differential inclusions with nonlocal

conditions investigated by Wang et al. [42] when the linear part is a fractional sectorial operator

for convex and nonconvex of nonlinear term. Liu and Ahmad [32] analyzed an impulsive multi-
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term fractional differential equations with single and multiple base points for Caputo’s fractional

derivative. Recently, Feckan et al. [20] proposed two type Caputo’s fractional derivative named as

generalized Caputo’s derivative for single base point with the lower bound at zero and classical

Caputo’s derivative for multiple base points with lower bounded at non-zero.

Controllability is one of the contemplated properties of fractional dynamical systems (FDSs) that

confirm the steering of a FDS from an arbitrary initial state to a desired arbitrary final state via a

set of certain admissible control. In 1963, Kalman [28], first time gave the notion of controllability.

Based on the available literature, we found that there are various concepts of controllability, some

like

• approximate controllability (any state vector may be steered arbitrarily close to another state

vector)

• exact controllability (any pair of state vectors may be connected by a trajectory)

• the null controllability (any state vector may be steered to 0)

• T −controllability (we look for a control which steers the system along a prescribed trajectory

rather than a control steering a given initial state to desired final state.)

It is obvious that T −controllability is a stronger notion than other controllability notions. For

example: To launch a rocket in space sometimes it may be desirable a precise path along with

desired destination for cost effectiveness and so on, which is based on T −controllability notation.

For more details on T −controllability one can see the papers [11,23,27,35] and reference therein.

We found that there is no literature available on existence of mild solution for instantaneous and

non-instantaneous impulsive fractional differential inclusion of order α ∈ (1, 2). By inspiration of

works [11, 16, 19, 23, 27, 29, 33, 35, 36, 40, 41, 43–45], we consider the following fractional functional

differential inclusion with instantaneous and non-instantaneous impulsive effects.

First, we obtain the sufficient conditions of existence of mild solution for the following problem

with instantaneous impulse

C
0 D

α
t u(t) ∈ Au(t) + f(t, uρ(t,ut)), 0 < t ≤ T, t ̸= tk, k = 1, 2, . . . ,m, (1.1)

u(t) = ϕ(t), t ∈ (−∞, 0]; u′(0) = u0 ∈ X, (1.2)

∆u(tk) = Ik(u(t
−
k )); ∆u′(tk) = Jk(u(t

−
k )), (1.3)

where C
0 D

α
t denotes the generalized Caputo’s fractional derivative of order α ∈ (1, 2) for the state

u(t) belong to complex Banach spaceX and A : D(A) ⊂ X → X is the closed linear densely defined

operator of sectorial type defined on X. The functions f : [0, T ]×Be → F(X); ρ : [0, T ]×Be →
(−∞, T ]; ϕ(t) : (−∞, 0] → X satisfy some assumptions, and ϕ(t) in to a abstract phase space Be.
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The notation (0, T ] denotes operational interval such that 0 ≤ t0 < t1 < · · · < tm < tm+1 ≤ T <∞.

The history function ut : (−∞, 0] → X defined by ut(θ) = u(t+θ), θ ∈ (−∞, 0] belongs to Be and

u′(t) denotes the ordinary derivative of u(t). The jump functions Ik, Jk ∈ C(X,X), k = 1, 2, . . . ,m,

are bounded and △u(tk) = u(t+k )−u(t
−
k ) where u(t+k ) and u(t−k ) represent the right-hand and left-

hand limits of u(t) at t = tk with u(t−k ) = u(tk). Also, we have △u′(tk) = u′(t+k ) − u′(t−k ) where

u′(t+k ) and u′(t−k ) represent the right-hand and left-hand limits of u′(t) at t = tk, also we take

u′(t−k ) = u′(tk) respectively.

Second, we give the sufficient conditions for problem with non-instantaneous impulsive fractional

functional differential equation

C
0 D

α
t u(t) = Au(t) + f(t, uρ(t,ut), Buρ(t,ut)), t ∈ (si, ti+1] ⊆ (0, T ], i = 0, 1, . . . , N, (1.4)

u(t) = gi(t, u(t)), u′(t) = qi(t, u(t)), t ∈ (ti, si], i = 1, 2, . . . , N, (1.5)

u(t) +G(u) = ϕ(t), t ∈ (−∞, 0] u′(0) = u1 ∈ X, (1.6)

where C
0 D

α
t is classical Caputo’s fractional derivative. f : [0, T ] × Be × Be → X,G : X → X

are given functions and satisfy some assumptions and the term Buρ(t,ut) is given by Buρ(t,ut) =∫ t

0
K(t, s)(uρ(s,us)) ds where K ∈ C(D,R+) is the set of all positive functions which are continuous

on D = {(t, s) ∈ R2 : 0 ≤ s ≤ t < T} and B∗ = supt∈[0,t]

∫ t

0
K(t, s) ds < ∞. Here 0 = t0 = s0 <

t1 ≤ s1 ≤ t2 < · · · < tN ≤ sN ≤ tN+1 = T are pre-fixed numbers, and gi, qi ∈ C((ti, si]×X;X) for

all i = 1, 2, . . . , N. The nonlocal condition G(u) defined as G(u) =
∑r

k=1 cku(tk), where ck, k =

1, . . . , r, are given constants and 0 < t1 < t2 < · · · < tr < T respectively.

Finally, we consider nonlinear fractional delay differential equation with non-local condition and

provide some sufficient conditions for T −controllability for the equation of the form:

C
0 D

α
t u(t) = Au(t) + B̧ϖ(t) + f(t, uρ(t,ut), Buρ(t,ut)), t ∈ (si, ti+1] ⊆ (0, T ], i = 0, 1, . . . , N,(1.7)

u(t) = gi(t, u(t)), u′(t) = qi(t, u(t)), t ∈ (ti, si], i = 1, 2, . . . , N, (1.8)

u(t) +G(u) = ϕ(t), t ∈ (−∞, 0] u′(0) = u1 ∈ X, (1.9)

The linear operator B̧ : U(Banach space) → X is a bounded operator and ϖ(t) ∈ L2(J,U) is a

control function of the system.

Moreover, a strong motivation to study the model problem (1.1), (1.4) and, (1.7) with aftereffect

and subject to impulsive conditions (1.3), (1.5) and (1.9) comes from physics because this model

represents the inverse heat condition problem. In this paper, we have used the standard fixed point

technique taking generalized and classical Caputo’s fractional derivative in abstract phase space

to established the results.

Further, motivation is that in dynamical models, generally we assume that the linear or non-linear
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terms are smooth or continuous functions. However, in many modern models, the underlying

dynamical models are not necessarily even continuous. For examples, models of friction and Low

dimensional climate models do not belong to above models so to remove the restriction or for non-

smooth systems with the discontinuous terms are frequently remodeled as a differential inclusion.

This is the advantage to study the qualitative analysis of this paper.

A strong motivation to prove the existence results that the knowledge of existence does not prove

the uniqueness of solutions also. For example, we have some fractional differential equation model

like C
0 D

1/2
t x(t) = x1/2(t) with initial condition x(0) = 0 for t ∈ [0, T ] has a trivial solution x ≡ 0

and non trivial solution x(t) = π
4 t. This shows that the solution obviously exists and is not unique

because it fails to satisfy the Lipschitz continuity condition. Hence, in a differential equation,

solution can exist and can be not unique. In other words, the knowledge of existence does not

ensure the uniqueness of the solution.

Further information about this work, it has five sections. Section 2 provides some basic definitions,

theorems, notations and lemmas. Section 3 is equipped with existence results of the mild solution

for the considered problems (1.1)-(1.6). Section 4 contributes to the Trajectory controllability

results for the considered fractional delay differential equation. In Section 5 examples are provided

to illustrate our results.

2 Preliminaries

Let X be a arbitrary complex Banach space with norm ∥ · ∥X and L(X) denotes the Banach space

of bounded linear operators from X into X with norm ∥ · ∥L(X) and both are equipped with its

natural topology. Let C([0, T ], X) be the space of all real valued (or complex valued) continuous

functions from [0, T ] into X with the sup norm

∥u∥C([0,T ],X) = sup
t∈[0,T ]

{∥u(t)∥X : u ∈ C([0, T ], X)}.

is a Banach space.

For the general setting of abstract phase space Be,B
′
e with impulse effects we refer the work [16,24]

and for further notations like C
aD

α
t (Caputo’s derivative), aJ α

t (Riemann-Liouville integral) and

Eα,β(·) (Mittag-Leffler function) we refer [34, 38]. For A : D(A) ⊆ X → X (Sectorial operator)

see [40], and for Sα(t), Tα(t) (Operators) [40] particular case of Wα,β(t) (Operator functions) we

refer [22] respectively.

Let T be the set of all functions ϑ(·) ∈ B′
e defined on J = [0, T ] such that ϑ(0) = ϕ(0), ϑ′(0) = u1

and ϑ(T ) = ϕT , ϑ
′(T ) = uT for all t ∈ J and the fractional derivative CDα

t ϑ(t) exist almost

everywhere. The set T is called the set of all feasible trajectories for the fractional dynamical
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system.

Lemma 2.1 ([24]). Let u : (−∞, T ] → X be a function such that u0 = ϕ, u |(tk,tk+1]∈ C2((tk, tk+1], X),

then for all t ∈ (tk, tk+1], the following conditions hold:

(C1) ut ∈ Be.

(C2) ∥u(t)∥X ≤ H∥ut∥Be
.

(C3) ∥ut∥Be
≤ K(t) sup {∥u(s)∥ : 0 ≤ s ≤ t} + M(t)∥ϕ∥Be

, where H > 0 is constant; K,M :

[0,∞) → [0,∞), K(·) is continuous, M(·) is locally bounded and K,M are independent of

u(t).

(C4) The function t→ ϕt is well defined and continuous from the set

ℜ(ρ−) = {ρ(s, ψ) : (s, ψ) ∈ [0, T ]×Be}

into Be and there exists a continuous and bounded function Jϕ : ℜ(ρ−) → (0,∞) such that

∥ϕt∥Be ≤ Jϕ(t)∥ϕ∥Be for every t ∈ ℜ(ρ−).

Lemma 2.2 ([8]). Let u : (−∞, T ] → X be function such that u0 = ϕ, u |(tk,tk+1]∈ C2((tk, tk+1], X)

and if (C4) hold, then

∥us∥Be
≤ (Me + Jϕ)∥ϕ∥Be

+Ke sup {∥u(θ)∥; θ ∈ [0,max{0, s}]} , s ∈ ℜ(ρ−) ∪ (tk, tk+1],

where Jϕ = supt∈ℜ(ρ−) J
ϕ(t), Me = sups∈[0,T ]M(s) and Ke = sups∈[0,T ]K(s).

To use the multi-valued analysis that is discussed in reference [9], we have some properties which

are required to prove our main result. Denote by F(X) = {Y ⊂ X : Y ̸= ∅},Fcl(X) =

{Y ⊂ F(X) : Y is closed},Fb(X) = {Y ⊂ F(X) : Y is bounded},Fcv(X) = {Y ⊂ F(X) :

Y is convex},Fcp(X) = {Y ⊂ F(X) : Y is compact}.

A multi-valued map G : X → F(X) is convex (closed) valued if G(x) is convex (closed) for all

x ∈ X. G is bounded on bounded sets if G(B) = ∪x∈BG(x) is bounded in X for any bounded set

B of F(X) (i.e. supx∈B{sup{∥y∥ : y ∈ G(x)}} <∞).

A multi-valued map G : [0, T ] → Pcl(X) is said to be measurable if for each y ∈ X the function

Y : [0, T ] → R defined by

Y (t) = d(y,G(t)) = inf{|y − z| : z ∈ G(t)},

belongs to L1([0, T ],R).
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Definition 2.3 ([9]). A multi-valued map F : [0, T ]×X → F(X) is Caratheódory if

(i) t→ F (t, u) is measurable for each u ∈ X, and

(ii) u→ F (t, u) is upper semi continuous (u.s.c.) for almost all t ∈ [0, T ].

For each y ∈ C([0, T ], X), define the set of selections for F by

SFy = {v ∈ L1([0, T ], X) : v(t) ∈ F (t, y(t)) for a.e. t ∈ [0, T ]}.

Let (X, d) be a metric space induced by the norm space (X, ∥·∥X). Consider Hd : F(X)×F(X) →
R+ ∪∞ given by

Hd(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(A, b)

}
,

where d(A, b) = infa∈A d(a, b) and d(a,B) = infb∈B d(a, b). Then (Fb,cl(X), Hd) is a metric space

and (Fcl(X), Hd) is a generalized metric space.

Definition 2.4 ([9]). A multi-valued operator N : X → Fcl(X) is called:

(i) γ−Lipschitz if there exists γ > 0 such that

Hd(N (x),N (y)) ≤ γd(x, y) for all x, y ∈ X;

(ii) a contraction if it is γ-Lipschitz with γ < 1.

Lemma 2.5 ([9]). Let (X, d) be a complete metric space. If N : X → Fcl(X) is a contraction,

then Fix N ̸= ∅.

Lemma 2.6 ([9]). Let f satisfy the uniform Holder condition with exponent β ∈ (0, 1] and A is

a sectorial operator of the type (M, θ, α, µ). Consider differential equation of order α ∈ (1, 2) with

instantaneous impulse

C
0 D

α
t u(t) = Ay(t) + f(t), t ∈ [0, T ], t ̸= tk, (2.1)

u(0) = u0 ∈ X; u′(0) = u1 ∈ X, (2.2)

∆u(tk) = Ik(u(t
−
k )); ∆u′(tk) = Jk(u(t

−
k )), t ̸= tk, k = 1, 2, . . . ,m. (2.3)

and with non-instantaneous impulse

C
aD

α
t u(t) = Au(t) + f(t), t ∈ (si, ti+1] ⊂ J = (a, T ], a ≥ 0, i = 0, 1, . . . , N, (2.4)

u(a) = u0 ∈ X; u′(a) = u1 ∈ X, (2.5)

u(t) = gi(t, u(t)); u′(t) = qi(t, u(t)), t ∈ (ti, si], i = 1, 2, . . . , N. (2.6)
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Then a function u(t) ∈ PC([0, T ], X) is a solution of the system (2.1)-(2.3) if it satisfies following

integral equation

u(t) =


Sα(t)u0 + u1

∫ t

0
Sα(s)ds+

∫ t

0
Tα(t− s)f(s)ds, t ∈ (0, t1]

Sα(t)u0 + u1
∫ t

0
Sα(s)ds+

∑k
i=1 Sα(t− ti)Ii(u(t

−
i ))

+
∑k

i=1 Ji(u(t
−
i ))

∫ t

ti
Sα(s− ti)ds+

∫ t

0
Tα(t− s)f(s)ds, t ∈ (tk, tk+1],

(2.7)

and a function u(t) ∈ PC([a, T ], X) is a solution of system (2.4)-(2.6) if it satisfies the following

integral equation

u(t) =

Sα(t− a)u0 + u1
∫ t

a
Sα(s− a)ds+

∫ t

a
Tα(t− s)f(s)ds t ∈ (a, t1],

Sα(t− si)gi(si, u(si)) + qi(si, u(si))
∫ t

ti
Sα(s− ti)ds+

∫ t

si
Tα(t− s)f(s)ds t ∈ (si, ti+1]

(2.8)

Remark 2.7. The α-resolvent family Tα(t) associated with solution operator Sα(t) can be defined

as ∫ t

0

Sα(θ)x dθ = 0J 1
tSα(θ)x dθ; Tα(t)x = 0J α−1

t Sα(θ)x dθ, x ∈ X, t ∈ [0, T ].

For the special case when α→ 2, we get following results

(1) Tα(t) is the cosine function C(t) and Sα(t) is the sine function S(t) defined as

S(t)x =

∫ t

0

C(θ)x dθ, x ∈ X, t ∈ [0, T ]

(2) Solution of system (2.1)-(2.3) for t ∈ (0, T ] can be reduced as

u(t) =


C(t)u0 + S(t)u1 +

∫ t

0
S(t− s)f(s)ds t ∈ (0, t1]

C(t)u0 + S(t)u1 +
∑k

i=1 C(t− ti)Ii(u(t
−
i ))

+
∑k

i=1 S(t− ti)Ji(u(t
−
i )) +

∫ t

0
S(t− s)f(s)ds t ∈ (tk, tk+1],

which is the same as Definition 2.1 in [26].

(3) Solution of system (2.4)-(2.6) for t ∈ (a, T ] can be reduced as

u(t) =

C(t− a)u0 + u1
∫ t

a
S(s− a)ds+

∫ t

a
S(t− s)f(s)ds t ∈ (a, t1],

C(t− si)gi(si, u(si)) + qi(si, u(si))
∫ t

ti
S(s− ti)ds+

∫ t

si
S(t− s)f(s)ds t ∈ (si, ti+1]

which is the same as Definition 2.1 in [25].
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Definition 2.8. A function u : (−∞, T ] → X such that u ∈ B′
e, is called a mild solution of

problem (1.1)-(1.3) if u(0) = ϕ(0) and it satisfies the following integral equation

u(t) =


Sα(t)ϕ(0) + u0

∫ t

0
Sα(s)ds+

∫ t

0
Tα(t− s)f(s, uρ(s,us))ds, t ∈ (0, t1]

Sα(t)ϕ(0) + u0
∫ t

0
Sα(s)ds+

∑k
i=1 Sα(t− ti)Ii(u(t

−
i ))

+
∑k

i=1 Ji(u(t
−
i ))

∫ t

ti
Sα(s− ti)ds+

∫ t

0
Tα(t− s)f(s, uρ(s,us))ds, t ∈ (tk, tk+1].

Definition 2.9. A function u : (−∞, T ] → X such that u ∈ B′
e is called a mild solution of the

problem (1.4)-(1.6) if u(0) = ϕ(0)−G(u) and satisfies the following integral equation

u(t) =


(ϕ(0)−G(u))Sα(t) + u1

∫ t

0
Sα(s)ds

+
∫ t

0
Tα(t)f(s, uρ(s,us), Buρ(s,us))ds, t ∈ (0, t1],

gi(si, u(si))Sα(t− si) + qi(si, u(si))
∫ t

ti
Sα(s− ti)ds

+
∫ t

si
Tα(t− s)f(s, uρ(s,us), Buρ(s,us))ds, t ∈ (si, ti+1],

for i = 1, 2, . . . , N.

Definition 2.10. The system (1.1) is said to be T −controllable if for any u(·) ∈ T there exists

a control function ϖ(t) ∈ L2(J,U) such that the corresponding solution u(·) of Eq. (1.1) satisfies

u(t) = ϑ(t) almost everywhere.

Definition 2.11. A function u : (−∞, T ] → X such that u ∈ B′
e is called a mild solution of the

problem (1.7)-(1.9) if u(0) = ϕ(0)−G(u) and satisfies the following integral equation

u(t) =


(ϕ(0)−G(u))Sα(t) + u1

∫ t

0
Sα(s)ds

+
∫ t

0
Tα(t− s)[B̧ϖ(s) + f(s, uρ(s,us), Buρ(s,us))]ds, t ∈ (0, t1],

gi(si, u(si))Sα(t− si) + qi(si, u(si))
∫ t

ti
Sα(s− ti)ds

+
∫ t

si
Tα(t− s)[B̧ϖ(s) + f(s, uρ(s,us), Buρ(s,us))]ds, t ∈ (si, ti+1],

for i = 1, 2, . . . , N.

3 Existence result of mild solution

In this section, we shall establish the existence result of solution for the problems (1.1)-(1.6) for

the both case of impulsive effects and also prove the continuous dependent of solution on initial

conditions. Further, if A is a sectorial operator then strongly continuous functions are bounded -

i.e.,

∥Sα(t)∥L(X) ≤M ; ∥Tα(t)∥L(X) ≤M.
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3.1 Instantaneous case

In this case, we prove the existence of mild solution for problem (1.1)-(1.3) with a non-convex

valued right-hand side. Due to this analysis we can make the following assumptions:

(H1) f : [0, T ]×Be → Fcp(X) is Caratheódory and has the property that f(·, ψ) : [0, T ] → Fcp(X)

is measurable, for each ψ ∈ Be.

(H2) There exists l ∈ L1([0, T ],R+) such that

Hd(f(t, ψ), f(t, ξ)) ≤ l(t)∥ψ − ξ∥Be
for every ψ, ξ ∈ Be

and

d(0, f(t, 0)) ≤ l(t) a.e. t ∈ [0, T ].

Our result is based on contraction multi-valued fixed point theorem given by Covitz and Nadler [15].

Theorem 3.1. Let the assumptions (H1) and (H2) hold. Then problem (1.1)-(1.3) has at least

one mild solution u(t) on [0, T ].

Proof. Consider the space B′′
e = {u ∈ B′

e : u(0) = ϕ(0)} and y(t) = ϕ(t) for t ∈ (−∞, 0] endowed

with the uniform convergence topology. We shall show that P has fixed points, where the multi-

valued operator P : B′′
e → F(B′′

e ) defined as P(u) = {ē ∈ B′′
e} with

ē(t) =


Sα(t)ϕ(0) + u0

∫ t

0
Sα(s)ds+

∫ t

0
Tα(t− s)v(s)ds, t ∈ (0, t1],

Sα(t)ϕ(0) + u0
∫ t

0
Sα(s)ds+

∑k
i=1 Sα(t− ti)Ii(u(t

−
i ))

+
∑k

i=1 Ji(u(t
−
i ))

∫ t

ti
Sα(s− ti)ds+

∫ t

0
Tα(t− s)v(s)ds, t ∈ (tk, tk+1],

where v(s) ∈ Sf,ūρ(s,ūs)
for t ∈ [0, T ] and ū : (−∞, T ] → X is such that ū(0) = ϕ(0) and ū = u

on [0, T ]. We shall show that P has fixed points. Let P(u) ∈ Fcl(B
′′
e ) for all u ∈ B′′

e . Let

{un}n≥0 ∈ P(u) be such that un → u ∈ B′′′
e . Then there exists vn ∈ Sf,ūρ(s,ūs)

such that, for each

t ∈ (tk, tk+1],

un(t) =

Sα(t)ϕ(0) + u0
∫ t

0
Sα(s)ds+

∑k
i=1 Sα(t− ti)Ii(un(t

−
i ))

+
∑k

i=1 Ji(un(t
−
i ))

∫ t

ti
Sα(s− ti)ds+

∫ t

0
Tα(t− s)vn(s)ds.

Using the fact that f has compact values, we may pass to a subsequence if necessary to obtain

that vn converges to v in L1([0, T ], X) and hence v ∈ Sf,ūρ(s,ūs)
. Thus, for each t ∈ (tk, tk+1]

un(t) → u(t) =

Sα(t)ϕ(0) + u0
∫ t

0
Sα(s)ds+

∑k
i=1 Sα(t− ti)Ii(u(t

−
i ))

+
∑k

i=1 Ji(u(t
−
i ))

∫ t

ti
Sα(s− ti)ds+

∫ t

0
Tα(t− s)v(s)ds,
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which implies that u ∈ P(u).

There exist γ < 1 such that

Hd(f(u1), f(u2)) ≤ γ∥u1 − u2∥B′′′
e

for all u1, u2 ∈ B′′
e .

Let u1, u2 ∈ B′′
e and ē ∈ P(u). Then there exists v(t) ∈ f(t, ūρ(t,ūt)) such that, for each t ∈

(tk, tk+1],

ē(t) =

Sα(t)ϕ(0) + u0
∫ t

0
Sα(s)ds+

∑k
i=1 Sα(t− ti)Ii(u(t

−
i ))

+
∑k

i=1 Ji(u(t
−
i ))

∫ t

ti
Sα(s− ti)ds+

∫ t

0
Tα(t− s)v(s)ds.

From (H2) it follows that

Hd(f(t, ū1ρ(t,ū1t)
), f(t, ū2ρ(t,ū2t)

)) ≤ l(t)∥u1 − u2∥B′′
e
.

Hence, there exists w ∈ f(t, ūρ(t,ūt)) such that

∥v − w∥B′′
e
≤ l(t)∥u1 − u2∥B′′

e
.

Consider U : [0, T ] → F(X) given by

U(t) = {w ∈ X : ∥v − w∥ ≤ l(t)∥u1 − u2∥B′′
e
}.

Since the multi-valued operator V (t) = U(t) ∩ f(t, ū2ρ(t,ū2t)
) is measurable [10], there exists a

function v2(t) which is a measurable selection for V. Thus, v̄(t) ∈ f(t, ū2ρ(t,ū2t)
) and for each

t ∈ (tk, tk+1],

v(t)− v̄(t) ≤ l(t)∥u1 − u2∥B′′
e
.

For each t ∈ (tk, tk+1] we define

ē(t) =

Sα(t)ϕ(0) + u0
∫ t

0
Sα(s)ds+

∑k
i=1 Sα(t− ti)Ii(u(t

−
i ))

+
∑k

i=1 Ji(u(t
−
i ))

∫ t

ti
Sα(s− ti)ds+

∫ t

0
Tα(t− s)v̄(s)ds.

Then, we have

∥e(t)− ē(t)∥B′′
e

≤
∫ t

0

∥Tα(t− s)∥L(X)∥v(s)− v̄(s)∥ds ≤M

∫ t

0

l(s)∥u1 − u2∥ds

≤
∫ t

0

l̄(s)∥u1 − u2∥ds ≤
1

τ
eτL(t)∥u1 − u2∥B′′

e
,
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where τ > 1, L(t) =
∫ t

0
Ml(s)ds and ∥ · ∥B′′

e
is the Bielecki-type norm on B′′

e defined by

∥u∥B′′
e
= sup{e−τL(t)∥u(t)∥ : t ∈ [0, T ]}.

Therefore

∥e(t)− ē(t)∥B′′
e
≤ 1

τ
∥u1 − u2∥B′′

e
.

Obtained by interchanging of u1 and u2, and by an analogous relation, it follows that

Hd(P(u1),P(u2)) ≤
1

τ
∥u1 − u2∥B′′

e
,

which implies that P is a contraction, and thus, by Lemma 2.5 there exists a fixed point u(t) ∈ B′′
e ,

which is a mild solution to the problem (1.1)-(1.3). This completes the proof.

3.2 Non-instantaneous Case

In this case, we shall establish the existence result of solution for the problem (1.4)-(1.6). Now,

we introduce the following assumption.

(H3) The function f is jointly continuous and there exist positive constants Lf1, Lf2 such that

∥f(t, ψ, µ)− f(t, ξ, ν)∥X ≤ Lf1∥ψ − ξ∥Be
+ Lf2∥µ− ν∥Be

, ∀ ψ, ξ, µ, ν ∈ Be.

(H4) The functions gi, qi and G are continuous and there exist positive constants Lgi , Lqi and LG

such that

∥gi(t, x)− gi(t, y)∥X ≤ Lgi∥x− y∥X ; ∥qi(t, x)− qi(t, y)∥X ≤ Lqi∥x− y∥X ;

∥G(x)−G(y)∥X ≤ LG∥x− y∥X ,

for all x, y ∈ X, t ∈ (ti, si] and each i = 1, 2, . . . , N.

Theorem 3.2. If the assumptions (H3) and (H4) hold and constant

∆ = (δ + TMKe(Lf1 +B∗Lf2)) < 1,

where δ = max{LGM,LgiM + LqiMT} for i = 1, . . . , N. Then there exists a unique mild solution

u(t) of the problem (1.4)-(1.6) on [0, T ].
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Proof. Consider the space B′′
e as given in Theorem 3.1 and we define an operator P : B′′

e → B′′
e as

Pu(t) =


(ϕ(0)−G(ū))Sα(t) + u1

∫ t

0
Sα(s)ds

+
∫ t

0
Tα(t− s)f(s, ūρ(s,ūs), Būρ(s,ūs))ds, t ∈ (0, t1],

gi(si, ū(si))Sα(t− si) + qi(si, ū(si))
∫ t

ti
Sα(s− ti)ds

+
∫ t

si
Tα(t− s)f(s, ūρ(s,ūs), Būρ(s,ūs))ds, t ∈ (si, ti+1],

(3.1)

where ū : (−∞, T ] → X is such that ¯u(0) = ϕ(0)−G(ū), ¯u′(0) = u1 and ū = u on [0, T ]. We shall

show that the operator P has a fixed point. So let u(t), u∗(t) ∈ B′
e for t ∈ (0, t1], we get

∥Pu− Pu∗∥B′
e

≤ ∥G(ū)−G(ū∗)∥∥Sα(t)∥L(X) +

∫ t

0

∥Tα(t− s)∥L(X)

×∥f(s, ūρ(s,ūs), Būρ(s,ūs))− f(s, ū∗ρ(s,ū∗
s)
, Bū∗ρ(s,ū∗

s)
)∥Xds,

∥Pu− Pu∗∥X ≤ {LGM + TMKe(Lf1 +B∗Lf2)}∥u− u∗∥X .

For t ∈ (si, ti+1], we have

∥Pu− Pu∗∥B′
e

≤ ∥gi(si, ū(si))− gi(si, ū
∗(si))∥X∥Sα(t− s)∥L(X)

+∥qi(si, ū(si))− qi(si, ū
∗(si))∥X

∫ t

0

∥Sα(t− s)∥L(X)ds

+

∫ t

si

∥Tα(t− s)∥L(X)∥f(s, ūρ(s,ūs), Būρ(s,ūs))− f(s, ū∗ρ(s,ū∗
s)
, Bū∗ρ(s,ū∗

s)
)∥Xds,

∥Pu− Pu∗∥X ≤ (LgiM + LqiMT + TMKe(Lf1 +B∗Lf2))∥u− u∗∥X .

Let δ = max{LGM,LgiM + LqiMT}, then for all t ∈ [0, T ], we obtain

∥Pu− Pu∗∥X ≤ (δ + TMKe(Lf1 +B∗Lf2))∥u− u∗∥X .

We have

∥Pu− Pu∗∥X ≤ ∆∥u− u∗∥X .

Since ∆ < 1, which implies that P is a contraction map and there exists a unique fixed point u(t)

which is the mild solution of system (1.4)-(1.6) on [0, T ].
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3.3 Continuous Dependence of Mild Solutions

This section is concerned with continuous dependence of mild solutions consider the system (1.4)-

(1.6).

Theorem 3.3. Suppose that the assumptions (H3) and (H4) are satisfied and the following con-

dition hold:

[
max{MLG,MLgi +MTLqi}+MT (Lf1 + Lf2B

∗)(Me + Jϕ)
]
< 1.

Then for each ϕ, ϕ∗, let u, u∗ be the corresponding mild solutions of the system (1.4)-(1.6), then

the following inequalities hold:

∥u− u∗∥X ≤ MT (M + Lf1 + Lf2B
∗)

1− [MLG +MT (Lf1 + Lf2B
∗)(Me + Jϕ)]

∥ϕ− ϕ∗∥, t ∈ (0, t1],

∥u− u∗∥X ≤ MT (M + Lf1 + Lf2B
∗)

1− [MLgi +MTLqi +MT (Lf1 + Lf2B
∗)(Me + Jϕ)]

∥ϕ− ϕ∗∥, t ∈ (si, ti+1],

for i = 1, 2, . . . , N.

Proof. The proof is similar as Theorem 3.2.

4 Trajectory Controllability

This section deals with the T −controllability results of the considered nonlinear fractional delay

differential equation with non-local condition and non-instantaneous impulses.

Theorem 4.1. Let the assumption (H3) and (H4) hold, then problem (1.7)-(1.9) is T −controllable

on [0, T ].

Proof. Let ϑ(t) be any given trajectory in T and we choose the feedback control ϖ(t) given as

ϖ(t) = B̧−1[C0 D
α
t ϑ(t)−Aϑ(t)− f(t, ϑρ(t,ϑt), Bϑρ(t,ϑt))], t ∈ (si, ti+1] ⊆ (0, T ]. (4.1)

Plugging the control ϖ(t) from Eq. (4.1) in Eq. (1.7) and we get

C
0 D

α
t u(t) = Au(t) + f(t, uρ(t,ut), Buρ(t,ut)) +

C
0 D

α
t ϑ(t)−Aϑ(t)− f(t, ϑρ(t,ϑt), Bϑρ(t,ϑt)),

t ∈ (si, ti+1] ⊆ (0, T ].



CUBO
25, 3 (2023)

Fractional differential inclusion 377

From the equation above, we have

C
0 D

α
t [u(t)− ϑ(t)] = A[u(t)− ϑ(t)] + f(t, uρ(t,ut), Buρ(t,ut))− f(t, ϑρ(t,ϑt), Bϑρ(t,ϑt)),

t ∈ (si, ti+1] ⊆ (0, T ].

Again, if we choose χ(t) = u(t)− ϑ(t), without loss of generality, then our original problem (1.7)-

(1.9) is modified as follows:

C
0 D

α
t χ(t) = Aχ(t) + f(t, uρ(t,ut), Buρ(t,ut))− f(t, ϑρ(t,ϑt), Bϑρ(t,ϑt)), (4.2)

t ∈ (si, ti+1] ⊆ (0, T ], i = 0, 1, . . . , N,

χ(t) = gi(t, u(t))− gi(t, ϑ(t)), χ′(t) = qi(t, u(t))− qi(t, ϑ(t)), (4.3)

t ∈ (ti, si], i = 1, 2, . . . , N, (4.4)

χ(t) = −G(u) +G(ϑ), t ∈ (−∞, 0], χ′(0) = 0. (4.5)

The mild solution of the problem (4.2)-(4.5) is given by

χ(t) =


(−G(u) +G(ϑ))Sα(t) +

∫ t

0
Tα(t− s)[f(s, uρ(s,us), Buρ(s,us))− f(s, ϑρ(s,ϑs), Bϑρ(s,ϑs))]ds,

t ∈ (0, t1],

Sα(t− si)[gi(t, u(t))− gi(t, ϑ(t))] +
∫ t

ti
Sα(s− ti)ds[qi(t, u(t))− qi(t, ϑ(t))]

+
∫ t

si
Tα(t− s)[f(s, uρ(s,us), Buρ(s,us))− f(s, ϑρ(s,ϑs), Bϑρ(s,ϑs))]ds, t ∈ (si, ti+1],

For the trajectory control, we will show that ∥χ(t)∥ = 0. Now, without loss of generality, we

consider the subinterval (si, ti+1], to estimate

(LgiM + LqiMT + TMKe(Lf1 +B∗Lf2))∥u− u∗∥X .

∥χ(t)∥ ≤ ∥Sα(t− si)∥∥gi(t, u(t))− gi(t, ϑ(t))∥+
∫ t

ti

∥Sα(s− ti)∥ds∥qi(t, u(t))− qi(t, ϑ(t))∥

+

∫ t

si

∥Tα(t− s)∥∥f(s, uρ(s,us), Buρ(s,us))− f(s, ϑρ(s,ϑs), Bϑρ(s,ϑs))∥ds,

≤ LgiM∥χ(t)∥+ LqiM

∫ t

ti

|χ(t)∥ds+MKe(Lf1 +B∗Lf2)

∫ t

ti

∥χ(t)∥ds

= LgiM∥χ(t)∥+ [LqiM +MKe(Lf1 +B∗Lf2)]

∫ t

ti

∥χ(t)∥ds

= Φ∥χ(t)∥+Ψ

∫ t

ti

∥χ(s)∥ds,

where Φ = LgiM , Ψ = [LqiM +MKe(Lf1 + B∗Lf2)] are constants. Now, applying Gronwall’s
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inequality, we get

χ(t) = 0.

Hence u(t) = ϑ(t) almost everywhere. Thus, the control problem (1.7)-(1.9) is T −controllable.

5 Examples

This section contains examples to validate the derived results (existence and T −controllability) of

the considered systems.

5.1 Example

To prove the theoretical existence result, we shall consider the following impulsive fractional order

partial differential inclusion of the form

∂αu(t, x)

∂tα
∈ ∂2u(t, x)

∂y2
+

∫ t

−∞
e2(s−t) cos

(
u(s− ρ1(s)ρ2(∥u∥), x)

16

)
ds, t ̸= 1

2
, (5.1)

u(t, 0) = u(t, π) = 0; u′(t, 0) = u′(t, π) = 0, t ≥ 0, (5.2)

u(t, x) = ϕ(t, x); u′(0, x) = u0, t ∈ (−∞, 0], x ∈ [0, π], (5.3)

∆u|t= 1
2

=

∫ 1
2

−∞
g

(
1

2
− s

)
u(s, x) ds; ∆u′|t= 1

2
=

∫ 1
2

−∞
q

(
1

2
− s

)
u(s, x) ds, (5.4)

are fixed numbers and ϕ(t) ∈ Be. Let X = L2[0, π] and define the operator A : D(A) ⊂ X → X

by Aw = w′′ with the domain D(A) := {w ∈ X : w,w′ are absolutely continuous, w′′ ∈ X,

w(0) = 0 = w(π)}. Then

Aw =

∞∑
n=1

n2(w,wn)wn, w ∈ D(A),

where wn(x) =
√

2
π sin(nx), n ∈ N is the orthogonal set of eigenvectors of A. It is well known that

A is the infinitesimal generator of an analytic semigroup (T (t))t≥0 in X and is given by

T (t)ω =

∞∑
n=1

e−n2t(ω, ωn)ωn, for all ω ∈ X, and every t > 0.

Let h(s) = e2s, s < 0 then l =
∫ 0

−∞ h(s)ds = 1
2 <∞, for t ∈ (−∞, 0] and define

∥ϕ∥Be
=

∫ 0

−∞
h(s) sup

θ∈[s,0]

∥ϕ(θ)∥L2ds.

Hence for (t, ϕ) ∈ [0, 1] ×Be, where ϕ(θ)(x) = ϕ(θ, x), (θ, x) ∈ (−∞, 0] × [0, π]. We assume that

ρi : [0,∞) → [0,∞), i = 1, 2, are continuous functions.



CUBO
25, 3 (2023)

Fractional differential inclusion 379

Set u(t)(x) = u(t, x), and ρ(t, ϕ) = ρ1(t)ρ2(∥ϕ(0)∥) we have

f(t, ϕ)(x) =

∫ 0

−∞
e2(s) cos

(
ϕ

16

)
ds.

Then with above setting the problem (5.1)-(5.4) can be written in the abstract form of equation

(1.1)-(1.3). Further, we can estimate

∥f(t, ϕ)(x)− f(t, φ)(x)∥L2 =

[∫ π

0

{∫ 0

−∞
e2(s)

∥∥∥∥cos( ϕ

16

)
− cos

( φ
16

)∥∥∥∥ ds}2

dx

] 1
2

≤ 1

16

[∫ π

0

{∫ 0

−∞
e2(s)(∥ϕ− φ∥L2)ds

}2

dx

] 1
2

≤
√
π

16
∥ϕ− φ∥Be

.

This shows that the multivalued map f follows the assumption H2. This implies that there exists

at least one mild solution of problem (5.1)-(5.4).

5.2 Example

Consider the following fractional order functional differential equation

∂α

∂tα
u(t, x) =

∂2

∂y2
u(t, x) +

∫ t

−∞
e2(ν−t)u(ν − σ(∥u∥), x)

24
dν

+

∫ t

0

cos(t− s)

∫ ξ

−∞
e2(ν−ξ)u(ν − σ(∥u∥), x)

25
dν ds,

(t, x) ∈ ∪N
i=1[si, ti+1]× [0, π], (5.5)

u(t, 0) = u(t, π) = 0, t ≥ 0, (5.6)

u(t, x) +

r∑
k=1

cku(sk, x) = ϕ(t, x), t ∈ (−∞, 0]; u′(t, x) = 0, x ∈ [0, π], (5.7)

u(t, x) = Gi(t, y); u′(t, x) = Hi(t, y), t ∈ (ti, si], (5.8)

are fixed numbers and ϕ ∈ Be. Setting u(t)(x) = u(t, x), and

ρ(t, ϕ) = t− σ(∥ϕ(0)∥), (t, ϕ) ∈ [0, T ]×Be,

we have

f(t, ϕ,Bϕ) =

∫ 0

−∞
e2(ν)

ϕ

24
dν +

∫ t

0

cos(t− s)

∫ 0

−∞
e2(ν)

ϕ

25
dν ds,

gi(t, y) = Gi(t, y); qi(t, y) = Hi(t, y), G(y) =

r∑
k=1

cku(sk, x).
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Then the above equations (5.5)-(5.8) can be written in the abstract form as (1.4)-(1.6). Further-

more, we can see that for (t, ϕ,Bϕ), (t, ψ,Bψ) ∈ [0, T ]×Be ×Be, may verify that

∥f(t, ϕ,Bϕ)− f(t, ψ,Bψ)∥L2 ≤

[∫ π

0

{∫ 0

−∞
e2(s)

∥∥∥∥ ϕ24 − ψ

24

∥∥∥∥ ds}2

dy

+

∫ π

0

{∥∥∥∥∫ t

0

cos(t− s)

∫ 0

−∞
e2(ν)

ϕ

25
− ψ

25
dν ds

∥∥∥∥} dy]1/2
≤

[∫ π

0

{
1

24

∫ 0

−∞
e2(s) sup ∥ϕ− ψ∥ds

}2

dy

+

∫ π

0

{
1

25

∫ 0

−∞
e2(s) sup ∥ϕ− ψ∥ds

}2

dy

]1/2

≤
√
π

24
∥ϕ− ψ∥+

√
π

25
∥ϕ− ψ∥.

Hence, function f satisfies (H3). Similarly, we can show that the functions gi, qi, h(y) satisfy (H4).

All the condition of Theorem 3.2 have fulfilled, so we deduced that the system (5.5)-(5.8) has a

unique mild solution on [0, T ].

5.3 Example

Consider the following example for fractional functional ordinary differential equation

C
0 D

α
t u(t) = u(t) +

etu(t− σ(u(t))) + 2

1 + u2(t− σ(u(t)))
+

∫ t

0

sin(t− s)u(s− σ(u(s)))ds, t ∈ (0, 1], (5.9)

u(t) +

r∑
k=1

cku(sk) =
1

2
, t ∈ (−∞, 0], u′(t) = 0, (5.10)

u(t) =
u(t)

16(1 + u(t))
; u′(t) =

u(t)

25(1 + u(t))
, t ∈ (1, 2], (5.11)

where C
0 D

α
t is classical Caputo’s fractional derivative of order α ∈ (1, 2), 0 = t0 = s0 < t1 = 1 <

s1 = 2 are prefixed numbers and 1
2 ∈ Be. Setting

ρ(t, φ) = t− σ(φ(0)),

f(t, φ,Bφ) =
etφ+ 2

1 + φ2
+

∫ t

0

sin(t− s)φds,

gi(t, y) =
u(t)

16(1 + u(t))
; qi(t, y) =

u(t)

25(1 + u(t))
, G(y) =

r∑
k=1

cku(sk),

then the problem (5.9)-(5.11) can be written in the abstract form as (1.4)-(1.6), which implies that

the system (5.9)-(5.11) has a unique mild solution on [0, 2].
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5.4 Example

Consider the following control system

∂α

∂tα
u(t, x) =

∂2

∂y2
u(t, x) +

∫ t

−∞
e4(ν−t)u(ν − σ(∥u∥), x)

12
dν + 14ϖ(t, x) (5.12)

+

∫ t

0

sin(t− s)

∫ ξ

−∞
e4(ν−ξ)u(ν − σ(∥u∥), x)

28
dν ds, (t, x) ∈ ∪N

i=1[si, ti+1]× [0, π],

with initial, history and impulsive conditions given as (5.6)-(5.8). With these settings as given in

example 5.2, the problem (5.12) with conditions (5.6)-(5.8) can be written in the abstract form of

equation (1.7)-(1.9). Therefore the problem (5.12) is T −controllable on J .

Thus, examples provided in this paper demonstrate the authenticity of our results. In first ex-

ample, we considered fractional order partial differential inclusion with instantaneous impulsive

and showed that considered problem has least one mild solution. Non-instantaneous impulse with

partial derivative and nonlocal condition is taken in second examples and proved that there exists

a unique mild solution for it. In third example, we considered the functional ordinary differential

equation with infinite delay and demonstrate the uniqueness of mild solution for the system.

6 Conclusion

In this investigation, we observed that the Definition 2.8 is more reasonable and suitable by using

the generalized Caputo’s derivative in compare to classical and it is generalized form. Furthermore,

we have proved the existence, uniqueness and continuous dependence results of mild solutions for

fractional differential inclusion and equations with state dependent delay subject to instantaneous

and non-instantaneous impulse. We showed T −controllability. Also, we have illustrated the exis-

tence and T −controllability theory from some examples.
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