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ABSTRACT

This paper is devoted to study a class of nonlocal variable
exponent problems involving fractional p(·, ·)-Laplacian op-
erator. Under appropriate conditions, some new results on
the existence and nonexistence of solutions are established
via variational approach and Pohozaev’s fibering method.

RESUMEN

Este artículo está dedicado al estudio de una clase de pro-
blemas no locales con exponente variable que involucran al
operador p(·, ·)-Laplaciano fraccionario. Bajo condiciones
apropiadas se establecen algunos resultados nuevos sobre la
existencia y no existencia de soluciones a través de un en-
foque variacional y el método de fibración de Pohozaev.
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1 Introduction

In the present paper, we are interested in the existence of solutions for the following problemM (Tu)
(
−∆p(·,·)

)s
u+ w(x)|u|p(x,x)−2u = λa(x)|u|q(x)−2u− εb(x)|u|r(x)−2u in Ω,

u = 0 in RN\Ω,
(PM

λ,ε)

where Ω ⊂ RN is a bounded smooth domain, p : Ω × Ω → (1,+∞), q, r : Ω → (1,+∞) are

continuous functions, s ∈ (0, 1) with N > sp(x, y) for all (x, y) ∈ Ω, λ, ε > 0 are parameters,

a, b, w ∈ L∞(Ω), M models a Kirchhoff coefficient,

Tu =

∫
R2N

|u(x)− u(y)|p(x,y)

p(x, y)|x− y|N+sp(x,y)
dx dy

and
(
−∆p(·,·)

)s is the fractional p(·, ·)-Laplacian defined as

(
−∆p(x,·)

)s
u(x) = p.v.

∫
RN

|u(x)− u(y)|p(x,y)−2(u(x)− u(y))

|x− y|N+sp(x,y)
dy, x ∈ RN ,

where p.v. is used as abbreviation in the principal value sense.

In the past few decades, nonlinear problems involving nonlocal and pseudo-differential operators

have gained considerable popularity and importance. The interest in investigating such problems

is stimulated by their applications in numerous fields of applied sciences, such as the description

of some phenomena in physics and engineering, population dynamics, finance, chemical reaction

design, optimization, minimal surfaces and game theory (see [12,29,32,38]). Moreover, differential

equations and variational problems with variable exponent have a strong physical motivation. As

can be seen in [5, 22, 35], they emerge from the mathematical description of the dynamics fluids

like the electrorhelogical and the thermorheological. They also appear in elastic mechanics, image

restoration and biology (see [14, 16, 37, 43]). Some recent results on p(·, ·)-Laplacian problems can

be found in [1, 4, 6, 13,15,19,25,27,30,36,42].

Recently, great attention has been focused in extending some results on p(·, ·)-Laplacian problems

to the fractional case. For example, we cite [11, 26]. In [26] Kaufmann et al. introduced the

fractional Sobolev space with variable exponent, and established the existence and uniqueness of

solutions for the fractional p(·, ·)-Laplacian problem
(
−∆p(·,·)

)s
u+ |u|q(x)−2u = f(x) in Ω

u = 0 on ∂Ω.

Bahrouni et al. [11] established some results on the following fractional p(·, ·)-Laplacian equation
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with the nonlocal Robin boundary condition
(
−∆p(·,·)

)s
u+ |u|p(x,x)−2u = f(x, u) in Ω

Ns,p(·,·)u+ β(x)|u|p(x,x)−2u = g(x) on RN\Ω,

where Ns,p(·,·) is the nonlinear modification of the following Neumann boundary condition

Nsu(x) := cN,s

∫
Ω

u(x)− u(y)

|x− y|N+2s
dy, x ∈ RN\Ω,

which was first introduced by Dipierro et al. in [17]. The latter nonlocal normal derivative is used

in [18] to describe the diffusion of a biological population living in an ecological niche and subject

to both local and nonlocal dispersals.

We also refer the reader to [9, 10,23,24] for more information.

Problem (PM
λ,ε) is a fractional version related to the following hyperbolic equation

ρ
∂2u

∂t2
−

(
ρ0
h

+
E

2L

∫ L

0

∣∣∣∣∂u∂x
∣∣∣∣2 dx

)
∂2u

∂x2
= 0,

which was initially introduced by Kirchhoff [28] as a generalization of the classical D’Alembert

wave equation taking into consideration the change in length of the strings produced by transverse

vibrations. For additional discussions and physical phenomena described by nonlinear vibration

theory, we mention [31]. It was mainly after the work [21], where Fiscella and Valdinoci proposed a

stationary fractional Kirchhoff model, that the existence and multiplicity of solutions for Kirchhoff-

type fractional p-Laplacian and p(·, ·)-Laplacian problems were well investigated by many authors,

one can see [8, 34,39,41,44]. In particular, Zhang et al. [41] studied the following problem M (Tu)
(
−∆p(·,·)

)s
u = f(x, u) in Ω

u = 0 in RN\Ω.
(1.1)

By means of variational methods and mountain pass theorem, they proved the existence of at

least one nontrivial solution for (1.1). In [2], Akkoyunlu and Ayazoglu considered the following

fractional p-Kirchhoff problem with potential

M(||u||p)
(
(−∆)spu+ V (x)|u|p−2u

)
= f(x, u) in RN , (1.2)

where

||u||p =

∫
R2N

|u(x)− u(y)|p

|x− y|N+sp
dx dy +

∫
RN

V (x)|u|pdx.

By using the variational approach, (S+) mapping theory and Krasnoselskii’s genus theory, the

authors have established the existence of infinitely many nontrivial weak solutions. After that,
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the equation (1.2) was generalized by Ayazoglu et al. in [7] considering the following fractional

Schrödinger-Kirchhoff equation

M(As,q(·),p(·,·)(u))
(
(−∆)sp(·,·)u+ V (x)|u|q(x)−2u

)
= f(x, u) in RN ,

where

As,q(·),p(·,·)(u) =

∫
R2N

|u(x)− u(y)|p(x,y)

p(x, y)|x− y|N+sp(x,y)
dx dy +

∫
RN

V (x)

q(x)
|u|q(x)dx,

N ≥ 2, M : (0,+∞) → (1,∞) is a continuous and monotone Kirchhoff function, f : RN ×
R → R is a Carathéodory function and V is a potential function. They obtained the existence

and multiplicity of solutions by applying the variational approach combined with Mountain Pass

Theorem and Krasnoselskii’s genus theory.

Inspired by the above cited papers, we will consider problem (PM
λ,ε) with sub-supercritical non-

linearities, and prove the existence of solutions via the variational methods combined with the

fibering method that was introduced by Pohozaev [33]. We also give the behavior of the solution

for problem (Pλ,ε), and so of the energy functional associated, as ε → 0. The Pohozaev’s fibering

method is centered on representing solutions in the form u = tv, where t is a real number (t ̸= 0),

and v ∈ X \ {0}, satisfying the condition:

∂Φ

∂t
(t, v) = 0. (1.3)

Here, Φ denotes a functional defined on R × X. Consequently, the fundamental concept of the

Pohozaev’s fibering method involves embedding the space X of the original problem within the

larger space R×X and subsequently exploring the new problem of conditional solvability within

the R×X space, subject to the condition (1.3).

2 Preliminaries

At first, we give some useful notations and basic results on variable exponent Lebesgue spaces that

will be used in proving the main theorems (see [20]). We denote by C+(Ω) the set of all continuous

functions q : Ω → (1,∞). For q ∈ C+(Ω), we write

q+ := max
x∈Ω

q(x) and q− := min
x∈Ω

q(x).

Define the variable exponent Lebesgue space as follows:

Lq(·)(Ω) =

{
u : Ω → R measurable :

∫
Ω

|u|q(x)dx <∞
}
.



CUBO
25, 3 (2023)

A class of fractional p(·, ·)−Laplacian problems 391

Lq(·)(Ω) endowed with the norm

||u||q(·) = inf

{
τ > 0 :

∫
Ω

∣∣∣u
τ

∣∣∣q(x) dx ≤ 1

}
.

is a separable and reflexive Banach space. Let Lq′(·)(Ω) be the conjugate space of Lq(·)(Ω) with
1

q(x) +
1

q′(x) = 1. Then the following Hölder-type inequality holds.

Lemma 2.1 ([20]). Let u ∈ Lq(·)(Ω) and v ∈ Lq′(·)(Ω). Then∫
Ω

|uv| dx ≤
(

1

q−
+

1

(q′)−

)
||u||q(·)||v||q′(·).

On the space Lq(·)(Ω), we consider the modular function given by

ρq(·)(u) =

∫
Ω

|u|q(x)dx.

Lemma 2.2 ([20]). For any u ∈ Lq(·)(Ω), we have

min
(
||u||q

−

q(·), ||u||
q+

q(·)

)
≤ ρq(·)(u) ≤ max

(
||u||q

−

q(·), ||u||
q+

q(·)

)
.

Lemma 2.3 ([20]). Let u ∈ Lq(·)(Ω) and {un} ⊂ Lq(·)(Ω). Then the following properties are

equivalent:

(1) lim
n→∞

||un − u||q(·) = 0;

(2) lim
n→∞

ρq(·)(un − u) = 0.

Lemma 2.4 ([3]). Let q, r ∈ C+(Ω) with q(x) ≤ r(x) in Ω and u ∈ Lr(·)(Ω). Then |u|q(·) ∈ L
r(·)
q(·) (Ω)

and

∥|u|q(·)∥ r(·)
q(·)

≤ max
(
∥u∥q

+

r(·), ∥u∥
q−

r(·)

)
.

Next, we define the convenient variable exponent fractional Sobolev space to supply a variational

structure for handling our problems. Let p : Ω× Ω → (1,∞) be as mentioned above and put

p(x) = p(x, x) for all x ∈ Ω.

Let W s,p(·,·)(Ω) be the variable exponent fractional Sobolev space defined as follows:

W :=W s,p(·,·)(Ω) =

{
u ∈ Lp(·)(Ω) :

∫
Ω×Ω

|u(x)− u(y)|p(x,y)

ξp(x,y)|x− y|N+sp(x,y)
dx dy <∞, for some ξ > 0

}
.

Equip W with the norm

||u||W = [u]W + ||u||p(·),
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where

[u]W = inf

{
ξ > 0 :

∫
Ω×Ω

|u(x)− u(y)|p(x,y)

ξp(x,y)|x− y|N+sp(x,y)
dx dy ≤ 1

}
.

Then (W, ||u||W) is a Banach space. For any u ∈ W, we set

ρp,p(u) =

∫
Ω×Ω

|u(x)− u(y)|p(x,y)

|x− y|N+sp(x,y)
dx dy +

∫
Ω

|u|p(x)dx

and

||u||p,p = inf

{
ξ > 0 : ρp,p

(
u

ξ

)
≤ 1

}
.

The norm ||·||p,p is equivalent to ||·||W. Furthermore, from [41, Lemma 2.2], (W, || · ||W) is uniformly

convex and hence W is a reflexive Banach space. The following lemma states the compactness of

the embedding W into the variable exponent Lebesgue spaces.

Lemma 2.5 ([40, 41]). Let Ω ⊂ RN be a smooth bounded domain and s ∈ (0, 1). Assume that

p : Ω× Ω → (1,∞) is continuous and symmetric (i.e. p(x, y) = p(y, x)) with sp(x, y) < N for all

x, y ∈ Ω. Let q ∈ C+(Ω) such that

q(x) < p∗s(x) :=
Np(x)

N − sp(x)
for all x ∈ Ω.

Then, there exists C = C(N, s, p, q,Ω) such that

||u||q(·) ≤ C||u||W for all u ∈ W.

Therefore, the space W is continuously embedded into Lq(·)(Ω). Moreover, this embedding is com-

pact.

Due to the presence of the Dirichlet boundary condition u = 0 in RN\Ω, we need to encode this

condition in the weak formulation of (PM
λ,ε) and (Pλ,ε). For this, let us define the new space

X := Xs,p(·,·)(Ω) =

{
u : RN → R, u|Ω ∈ Lp(·)(Ω),

∫
Q

|u(x)− u(y)|p(x,y)

ξp(x,y)|x− y|N+sp(x,y)
dx dy <∞, for some ξ > 0

}
,

where Q = RN × RN\(Ωc × Ωc). Endow X with the norm

||u||X = [u]X + ||u||p(·),

where

[u]X = inf

{
ξ > 0 :

∫
Q

|u(x)− u(y)|p(x,y)

ξp(x,y)|x− y|N+sp(x,y)
dx dy ≤ 1

}
.

In the same way (X, || · ||X) is a separable reflexive Banach space.

Since the variable exponent p, p and q are continuous, we can extend p to RN × RN and p, q to
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RN continuously with conditions given in Lemma 2.5. Let X0 be the linear space:

X0 = {u ∈ X : u = 0 a.e. in RN\Ω}

equipped with the norm

||u||X0 = [u]X = inf

{
ξ > 0 :

∫
R2N

|u(x)− u(y)|p(x,y)

ξp(x,y)|x− y|N+sp(x,y)
dx dy ≤ 1

}
.

Obviously, (X0, || · ||X0) is a reflexive Banach space. Set

ρ0(u) =

∫
R2N

|u(x)− u(y)|p(x,y)

|x− y|N+sp(x,y)
dx dy for all u ∈ X0.

Lemma 2.6 ([41]). For all u, un ∈ X0, the following properties hold true:

(1) ||u||X0
> 1 =⇒ ||u||p

−

X0
≤ ρ0(u) ≤ ||u||p

+

X0
;

(2) ||u||X0
≤ 1 =⇒ ||u||p

+

X0
≤ ρ0(u) ≤ ||u||p

−

X0
;

(3) ||un − u||X0 → 0 ⇐⇒ ρ0(un − u) → 0.

Lemma 2.7 ([41]). Let Ω ⊂ RN be a smooth bounded domain and s ∈ (0, 1). Assume that p :

Ω × Ω → (1,∞) is continuous and symmetric with sp(x, y) < N for all x, y ∈ Ω. Let q ∈ C+(Ω)

such that

q(x) < p∗s(x) :=
Np(x)

N − sp(x)
for all x ∈ Ω.

Then, there exists C = C(N, s, p, q,Ω) > 0 such that

||u||q(·) ≤ C||u||X0
for all u ∈ X0.

Therefore, the space X0 is continuously embedded into Lq(·)(Ω). Moreover, this embedding is com-

pact.

Remark 2.8. Since 1 < p(x) = p(x, x) < p∗s(x) for all x ∈ Ω, by Lemma 2.7, the norms || · ||X0

and || · ||X are equivalent in X0.

We look for solutions of problems (PM
λ,ε) and (Pλ,ε) in the separable reflexive Banach space X =

X0 ∩ Lr(·)(Ω) which is equipped with the norm

||u||X = ||u||X + ||u||r(·).
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3 Hypotheses and main results

Before stating what we believe that are the main contributions, we first list some assumptions on

the data of (PM
λ,ε). Concerning the Kirchhoff function M : R+ → R+, we use the following two

assumptions:

(M0) M is a C1 nondecreasing function;

(M1) M is a continuous function such that M(t) ≥ m0 > 0 for all t > 0.

For the functions a, b, w, p, q and r, we make the following hypotheses:

(H1) q, r : Ω → (1,∞) and p : Ω × Ω → (1,∞) are continuous such that sp(x, y) < N, p(x, y) =

p(y, x) and q(x) < p∗s(x) < r− := min
x∈Ω

r(x) for all (x, y) ∈ Ω× Ω, where

p∗s(x) :=
Np(x, x)

N − sp(x, x)
;

(H2) a, b, w ∈ L∞(Ω) with b and w are nonnegative and |Ω+
a | > 0, where Ω+

a = {x ∈ Ω : a(x) > 0};

(H3) ab
− q(·)

r(·) ∈ L
r(·)

r(·)−q(·) (Ω+
a );

(H4) q
−(r− − q+) < p+(r− − p−) and r+ ≤ min

{
q−p+(q+−p−)

p+(r−−p−)−q−(r−−q+) ,
q−(r−−p−)

q+−p−

}
;

The main results can be stated as follows.

Theorem 3.1. Assume that (M0)− (M1) and (H1)− (H2) hold. If q+ < p−, then problem (PM
λ,ε)

admits at least one nontrivial solution.

Theorem 3.2. Assume that (M1) and (H1)− (H2) hold. If p+ < q−, a(x) ≥ 0 for a.e. x ∈ Ω and

b(x) > b0 > 0 for a.e. x ∈ Ω, then for all ε > 0 there exists λε > 0 such that problem (PM
λ,ε) has

no nontrivial solution for all λ ∈ (0, λε).

The following two theorems concern problem (PM
λ,ε) with M ≡ 1, that is,


(
−∆p(·,·)

)s
u+ w(x)|u|p(x,x)−2u = λa(x)|u|q(x)−2u− εb(x)|u|r(x)−2u in Ω

u = 0 in RN\Ω.
(Pλ,ε)

Theorem 3.3. Assume that (H1)− (H4) hold. If q(·) = q is constant with p+ < q or p(·) and r(·)
are constants, then for all ε > 0 there exists λ∗ε > 0 such that problem (Pλ,ε) admits at least one

nontrivial solution provided λ > λ∗ε.

Theorem 3.4. Assume that (H1) − (H4) hold and q(·) = q is constant with p+ < q or p(·) and

r(·) are constants. Let ε0 > 0 and λ > λ∗ε0 . Then, there exists ε1 ∈ (0, ε0) such that for all
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ε ∈ (0, ε1), problem (Pλ,ε) admits at least one nontrivial solution uε verifying ||uε||X → +∞ and

Iε(uε) → −∞ as ε→ 0, where Iε is the associated energy functional to (Pλ,ε).

Remark 3.5. The conclusions of Theorems 3.1 and 3.2 also hold for problem (Pλ,ε).

4 Proof of theorems

Proof of Theorem 3.1. It is well known that the weak solution of (PM
λ,ε) corresponds to the

critical point of the energy functional defined on X by

Iε(u) = M̂

(∫
R2N

|u(x)− u(y)|p(x,y)

p(x, y)|x− y|N+sp(x,y)
dx dy

)
+

∫
Ω

w(x)

p(x)
|u|p(x)dx

−λ
∫
Ω

a(x)

q(x)
|u|q(x)dx+ ε

∫
Ω

b(x)

r(x)
|u|r(x)dx, (4.1)

where M̂(t) =
∫ t

0
M(τ)dτ. By standard arguments, one can verify that Iε ∈ C1(X,R). For any

(t, v) ∈ (0,∞)×X, we define

Φε(t, v) := Iε(tv)

= M̂

(∫
R2N

tp(x,y)
|v(x)− v(y)|p(x,y)

p(x, y)|x− y|N+sp(x,y)
dx dy

)
+

∫
Ω

w(x)

p(x)
tp(x)|v|p(x)dx

−λ
∫
Ω

a(x)

q(x)
tq(x)|v|q(x)dx+ ε

∫
Ω

b(x)

r(x)
tr(x)|v|r(x)dx.

Observe that if u = tv is a nontrivial critical of Iε, then
∂Φε

∂t
(t, v) = 0. Moreover, if for each

v ∈ X \ {0}, there is a unique t = t(v) satisfying

∂Φε

∂t
(t, v) = 0 (4.2)

and t : v 7→ t(v) is continuously differentiable on X \ {0}, we can infer that

Ĩε(v) := Iε(t(v)v)

is a well-defined C1 functional. The following result plays a key role in the proof of our main

theorem.

Lemma 4.1 ([33]). Let Ψ : X → R be a functional of class C1 on X\{0} verifying

⟨Ψ′(v), v⟩ ≠ 0 if Ψ(v) = 1.

If v is a conditional critical point of Ĩε under the constraint Ψ(v) = 1, then u := t(v)v is a critical

point of Iε.
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Consider the functional Ψε : X → R given by

Ψε(v) = M

(∫
R2N

|v(x)− v(y)|p(x,y)

p(x, y)|x− y|N+sp(x,y)
dx dy

)∫
R2N

|v(x)− v(y)|p(x,y)

|x− y|N+sp(x,y)
dx dy

+

∫
Ω

w(x)|v|p(x)dx+ ε

∫
Ω

b(x)|v|r(x)dx. (4.3)

It is obvious that Ψε satisfies hypotheses of Lemma 4.1, therefore the problem of finding solutions

of (PM
λ,ε) will be reduced to that of locating the critical points of Ĩε on the set

Uε = {v ∈ X : Ψε(v) = 1}.

Note that (4.2) is equivalent to

φv(t) := M

(∫
R2N

tp(x,y)|v(x)− v(y)|p(x,y)

p(x, y)|x− y|N+sp(x,y)
dx dy

)∫
R2N

tp(x,y)
|v(x)− v(y)|p(x,y)

|x− y|N+sp(x,y)
dx dy

+

∫
Ω

tp(x)w(x)|v|p(x)dx+ ε

∫
Ω

tr(x)b(x)|v|r(x)dx− λ

∫
Ω

tq(x)a(x)|v|q(x)dx

= 0. (4.4)

Let

Θa :=

{
v ∈ X :

∫
Ω

a(x)|v|q(x)dx > 0

}
.

Claim 4.2. For any v ∈ Θa, equation (4.4) admits a unique positive solution t(v). Moreover,

φv(t) < 0 for all t < t(v) and φv(t) > 0 for all t > t(v).

Indeed, by (M0), for all t ≥ 1,

φv(t) ≥ tp
−
M

(∫
R2N

|v(x)− v(y)|p(x,y)

p(x, y)|x− y|N+sp(x,y)
dx dy

)∫
R2N

|v(x)− v(y)|p(x,y)

|x− y|N+sp(x,y)
dx dy

+tp
−
∫
Ω

w(x)|v|p(x)dx+ εtr
−
∫
Ω

b(x)|v|r(x)dx− λtq
+

∫
Ω

a(x)|v|q(x)dx

and for all 0 < t ≤ 1,

φv(t) ≤ tp
−
M

(∫
R2N

|v(x)− v(y)|p(x,y)

p(x, y)|x− y|N+sp(x,y)
dx dy

)∫
R2N

|v(x)− v(y)|p(x,y)

|x− y|N+sp(x,y)
dx dy

+tp
−
∫
Ω

w(x)|v|p(x)dx+ εtr
−
∫
Ω

b(x)|v|r(x)dx− λtq
+

∫
Ω

a(x)|v|q(x)dx

Since q+ < p−, we can choose t∞ > 1 such that φv(t∞) > 0 and by (H2), we can find 0 < t0 ≤ 1

satisfying φv(t0) ≤ 0. Therefore, by virtue of the continuity of φv, equation (4.4) has at least one

solution t(v) > 0. The uniqueness of t(v) follows from (H2) and using the fact that q+ < p− and
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M is nondecreasing. Furthermore, for all t < t(v),

M

(∫
R2N

tp(x,y)|v(x)− v(y)|p(x,y)

p(x, y)|x− y|N+sp(x,y)
dx dy

)∫
R2N

tp(x,y)
|v(x)− v(y)|p(x,y)

|x− y|N+sp(x,y)
dx dy

+

∫
Ω

tp(x)w(x)|v|p(x)dx+ ε

∫
Ω

tr(x)b(x)|v|r(x)dx

< λ

∫
Ω

tq(x)a(x)|v|q(x)dx (4.5)

and for all t > t(v),

M

(∫
R2N

tp(x,y)|v(x)− v(y)|p(x,y)

p(x, y)|x− y|N+sp(x,y)
dx dy

)∫
R2N

tp(x,y)
|v(x)− v(y)|p(x,y)

|x− y|N+sp(x,y)
dx dy

+

∫
Ω

tp(x)w(x)|v|p(x)dx+ ε

∫
Ω

tr(x)b(x)|v|r(x)dx

> λ

∫
Ω

tq(x)a(x)|v|q(x)dx. (4.6)

Then, the function t : v 7→ t(v) is well defined, and by applying the implicit function theorem, we

deduce that t(·) ∈ C1 (X \ {0}, (0,+∞)) . If v ∈ Uε ∩ Θa and t(v) ≥ 1, it holds from (H1), the

nondecreasing of M and (4.4) that

t(v)p
−

= t(v)p
−
Ψε(v)

= M

(∫
R2N

|v(x)− v(y)|p(x,y)

p(x, y)|x− y|N+sp(x,y)
dx dy

)∫
R2N

t(v)p
− |v(x)− v(y)|p(x,y)

|x− y|N+sp(x,y)
dx dy

+t(v)p
−
∫
Ω

w(x)|v|p(x)dx+ εt(v)p
−
∫
Ω

b(x)|v|r(x)dx

≤ M

(∫
R2N

t(v)p(x,y)
|v(x)− v(y)|p(x,y)

p(x, y)|x− y|N+sp(x,y)
dx dy

)∫
R2N

t(v)p(x,y)
|v(x)− v(y)|p(x,y)

|x− y|N+sp(x,y)
dx dy

+

∫
Ω

t(v)p(x)w(x)|v|p(x)dx+ ε

∫
Ω

t(v)r(x)b(x)|v|r(x)dx

= λ

∫
Ω

t(v)q(x)a(x)|v|q(x)dx

≤ λt(v)q
+

∫
Ω

a(x)|v|q(x)dx,

thus

t(v)p
−−q+ ≤ λ

∫
Ω

a(x)|v|q(x)dx.

This shows that t(·) is bounded in Uε∩Θa. Since M is nondecreasing, M̂(τ) ≤ τM(τ) for all τ ≥ 0.
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Then, by (H1) and (4.4) for any v ∈ Uε ∩Θa, we have

Ĩε(v) ≤ 1

p−
M

(∫
R2N

tp(x,y)
|v(x)− v(y)|p(x,y)

p(x, y)|x− y|N+sp(x,y)
dx dy

)∫
R2N

tp(x,y)
|v(x)− v(y)|p(x,y)

|x− y|N+sp(x,y)
dx dy

+
1

p−

∫
Ω

tp(x)w(x)|v|p(x)dx+
ε

r−

∫
Ω

tr(x)b(x)|v|r(x)dx− λ

q+

∫
Ω

tq(x)a(x)|v|q(x)dx

=

(
1

p−
− 1

q+

)
M

(∫
R2N

tp(x,y)
|v(x)− v(y)|p(x,y)

p(x, y)|x− y|N+sp(x,y)
dx dy

)∫
R2N

tp(x,y)
|v(x)− v(y)|p(x,y)

|x− y|N+sp(x,y)
dx dy

+

(
1

p−
− 1

q+

)∫
Ω

tp(x)w(x)|v|p(x)dx+ ε

(
1

r−
− 1

q+

)∫
Ω

tr(x)b(x)|v|r(x)dx

< 0.

Then

α0 := inf
v∈Uε∩Θa

Ĩε(v) < 0.

Let {vn} ⊂ Uε ∩Θa be a sequence such Ĩε(vn) → α0. From (M1), we have

1 = Ψε(vn) ≥ m0

∫
R2N

|vn(x)− vn(y)|p(x,y)

|x− y|N+sp(x,y)
dx dy,

thus from Lemma 2.6, we deduce that {vn} is bounded in X0. Therefore, up to a subsequence, we

may assume that 
vn ⇀ v0 in X0,

vn → v0 in Lp(·)(Ω) and Lq(·)(Ω),

vn → v0 a.e. in Ω.

(4.7)

We may also assume that t(vn) → t0, since {t(vn)} is bounded. Then

M̂

(∫
R2N

t
p(x,y)
0

|v0(x)− v0(y)|p(x,y)

p(x, y)|x− y|N+sp(x,y)
dx dy

)
≤ lim inf

n→+∞
M̂

(∫
R2N

t(vn)
p(x,y) |vn(x)− vn(y)|p(x,y)

p(x, y)|x− y|N+sp(x,y)
dx dy

)
,

lim
n→+∞

∫
Ω

t(vn)
p(x)w(x)

p(x)
|vn|p(x)dx =

∫
Ω

t
p(x)
0 w(x)

p(x)
|v0|p(x)dx,

lim
n→+∞

∫
Ω

t(vn)
q(x)a(x)

q(x)
|vn|q(x)dx =

∫
Ω

t
q(x)
0 a(x)

q(x)
|v0|q(x)dx

and ∫
Ω

t
r(x)
0 b(x)

r(x)
|v0|r(x)dx ≤ lim inf

n→+∞

∫
Ω

t(vn)
r(x)b(x)

r(x)
|vn|r(x)dx.

Therefore

Iε(t0v0) ≤ lim inf
n→+∞

Iε(t(vn)vn) = lim inf
n→+∞

Ĩε(vn) = α0 < 0, (4.8)

from which, we deduce that v0 ̸= 0 and t0 > 0. Recall that the pair (t(vn), vn) verifies (4.4), so by
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sending n to +∞ and using (4.7), we arrive at

M

(∫
R2N

t
p(x,y)
0

|v0(x)− v0(y)|p(x,y)

p(x, y)|x− y|N+sp(x,y)
dx dy

)∫
R2N

t
p(x,y)
0

|v0(x)− v0(y)|p(x,y)

|x− y|N+sp(x,y)
dx dy (4.9)

+

∫
Ω

t
p(x)
0 w(x)|v0|p(x)dx+ ε

∫
Ω

t
r(x)
0 b(x)|v0|r(x)dx (4.10)

≤ λ

∫
Ω

t
q(x)
0 a(x)|v0|q(x)dx. (4.11)

Thus
∫
Ω
a(x)|t0v0|q(x)dx > 0. Furthermore, t0v0 ∈ Lr(·)(Ω), and hence t0v0 ∈ X. In view of Claim

4.2 and (4.9), we have t0 ≤ t(v0). Suppose by contradiction that t0 < t(v0). Let ψv0 : t 7→ Iε(tv0).
Then tψ′

v0(t) = φv0(t), therefore by Claim 4.2, tψ′
v0(t) < 0 for all 0 < t < t(v0), which yields that

the function ψv0 is decreasing on [0, t(v0)]. It follows from (4.8) that

Ĩε(v0) = Iε(t(v0)v0) < Iε(t0v0) ≤ α0. (4.12)

By definition of t(·), for any τ > 0, we have

M

(∫
R2N

t(τv0)
p(x,y)|τ(v0(x)− v0(y))|p(x,y)

p(x, y)|x− y|N+sp(x,y)
dx dy

)∫
R2N

t(τv0)
p(x,y) |τ(v0(x)− v0(y))|p(x,y)

|x− y|N+sp(x,y)
dx dy

+

∫
Ω

t(τv0)
p(x)w(x)|τv0|p(x)dx+ ε

∫
Ω

t(τv0)
r(x)b(x)|τv0|r(x)dx

= λ

∫
Ω

t(τv0)
q(x)a(x)|τv0|q(x)dx,

so that

M

(∫
R2N

(τt(τv0))
p(x,y)|v0(x)− v0(y)|p(x,y)

p(x, y)|x− y|N+sp(x,y)
dx dy

)∫
R2N

(τt(τv0))
p(x,y) |v0(x)− v0(y)|p(x,y)

|x− y|N+sp(x,y)
dx dy

+

∫
Ω

(τt(τv0))
p(x)w(x)|v0|p(x)dx+ ε

∫
Ω

(τt(τv0))
r(x)b(x)|v0|r(x)dx

= λ

∫
Ω

(τt(τv0))
q(x)a(x)|v0|q(x)dx.

Hence, by the uniqueness of the solution t(v0) of equation (4.4), we have

τt(τv0) = t(v0). (4.13)

We next choose τ > 0 such that τv0 ∈ Uε. From (4.12) and (4.13), we obtain

Ĩε(τv0) = Iε(t(τv0)τv0) = Iε(t(v0)v0) = Ĩε(v0) < α0,

which contradicts the definition of α0, and consequently t0 = t(v0). By (4.8) and (4.13), we have

α0 ≤ Ĩε(τv0) = Iε(t(τv0)τv0) = Iε(t(v0)v0) = Ĩε(v0) ≤ α0,
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thus Ĩε(v0) = α0. Hence v0 is a conditional critical point of Ĩε. Applying Lemma 4.1, we conclude

that u := t(v0)v0 is a solution of (PM
λ,ε). The proof of Theorem 3.1 is finished.

Proof of Theorem 3.2. Suppose that problem (PM
λ,ε) has a nontrivial solution u. Then, taking

u as a test function,

M

(∫
R2N

|u(x)− u(y)|p(x,y)

p(x, y)|x− y|N+sp(x,y)
dx dy

)∫
R2N

|u(x)− u(y)|p(x,y)

|x− y|N+sp(x,y)
dx dy

+

∫
Ω

w(x)|u|p(x)dx+ ε

∫
Ω

b(x)|u|r(x)dx = λ

∫
Ω

a(x)|u|q(x)dx (4.14)

Since b(x) > b0 > 0, for a.e. x ∈ Ω, by Young’s inequality, we can write

λ

∫
Ω

a(x)|u|q(x)dx ≤ ε

∫
Ω

q(x)

r(x)
b(x)|u|r(x)dx+

∫
Ω

r(x)− q(x)

r(x)
ε

−q(x)
r(x)−q(x) (λa(x))

r(x)
r(x)−q(x) b(x)

q(x)
q(x)−r(x) dx

≤ εq+

r−

∫
Ω

b(x)|u|r(x)dx+
r+ − q−

r−

∫
Ω

ε
−q(x)

r(x)−q(x) (λa(x))
r(x)

r(x)−q(x) b(x)
q(x)

q(x)−r(x) dx

≤ εq+

r−

∫
Ω

b(x)|u|r(x)dx+
r+ − q−

r−
ε−κλϱ||a||γ∞

∫
Ω

b(x)
r(x)

r(x)−q(x) dx,

where

κ :=

 q+

r−−q+ if ε ≤ 1
q−

r+−q− if ε > 1,
ϱ :=

 r−

r+−q− if λ < 1

r+

r−−q+ if λ ≥ 1

and

γ :=

 r−

r+−q− if ||a||∞ < 1

r+

r−−q+ if ||a||∞ ≥ 1.

It holds then from (4.14) that

M

(∫
R2N

|u(x)− u(y)|p(x,y)

p(x, y)|x− y|N+sp(x,y)
dx dy

)∫
R2N

|u(x)− u(y)|p(x,y)

|x− y|N+sp(x,y)
dx dy

≤ ε(q+ − r−)

r−

∫
Ω

b(x)|u|r(x)dx+
r+ − q−

r−
ε−κλϱ||a||γ∞

∫
Ω

b(x)
r(x)

r(x)−q(x) dx

≤ r+ − q−

r−
ε−κλϱ||a||γ∞

∫
Ω

b(x)
r(x)

r(x)−q(x) dx, (4.15)

since q+ < r−. On the other hand, by Lemmas 2.2, 2.6 and 2.7, for some C0 > 0, we have

∫
Ω

|u|q(x)dx ≤ C0

(∫
R2N

|u(x)− u(y)|p(x,y)

|x− y|N+sp(x,y)
dx dy

)ϑ

, (4.16)
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where

ϑ :=



q−

p+ if ||u||q(x) ≤ 1 and ||u||X0
≤ 1

q+

p+ if ||u||q(x) > 1 and ||u||X0
≤ 1

q−

p− if ||u||q(x) ≤ 1 and ||u||X0
> 1

q+

p− if ||u||q(x) > 1 and ||u||X0
> 1.

Note that ϑ > 1, since p+ < q−. From (M1), (4.14) and (4.16), we get

m0

(
1

C0||a||∞

∫
Ω

a(x)|u|q(x)dx
) 1

ϑ

≤ M

(∫
R2N

|u(x)− u(y)|p(x,y)

p(x, y)|x− y|N+sp(x,y)
dx dy

)
×
∫
R2N

|u(x)− u(y)|p(x,y)

|x− y|N+sp(x,y)
dx dy (4.17)

≤ λ

∫
Ω

a(x)|u|q(x)dx,

which implies (
mϑ

0

λC0||a||∞

) 1
ϑ−1

≤ m0

(
1

C0||a||∞

∫
Ω

a(x)|u|q(x)dx
) 1

ϑ

. (4.18)

Combining (4.15), (4.17) and (4.18), we obtain

(
mϑ

0

λC0||a||∞

) 1
ϑ−1

≤ r+ − q−

r−
ε−κλϱ||a||γ∞

∫
Ω

b(x)
r(x)

r(x)−q(x) dx,

hence

λ ≥ λε :=

 r−εκm
ϑ

ϑ−1

0

C
1

ϑ−1

0 ||a||
γ(ϑ−1)+1

ϑ−1
∞ (r+ − q−)

∫
Ω
b(x)

r(x)
r(x)−q(x) dx


ϑ−1

ϱ(ϑ−1)+1

,

and the proof of Theorem 3.2 is completed.

Proof of Theorem 3.3. Assume q(·) = q is constant. For v ∈ Θa and t > 0, we set

Υε,v(t) :=

∫
R2N

tp(x,y)−q|v(x)−v(y)|p(x,y)

|x−y|N+sp(x,y) dx dy +
∫
Ω
tp(x)−qw(x)|v|p(x)dx+ ε

∫
Ω
tr(x)−qb(x)|v|r(x)dx∫

Ω
a(x)|v|qdx

,

F (v) :=

∫
R2N

|v(x)−v(y)|p(x,y)

|x−y|N+sp(x,y) dx dy +
∫
Ω
w(x)|v|p(x)dx∫

Ω
a(x)|v|qdx

and

H(v) :=
ε
∫
Ω
b(x)|v|r(x)dx∫

Ω
a(x)|v|qdx

.

Then  tp
−−qF (v) + tr

−−qH(v) ≤ Υε,v(t) ≤ tp
+−qF (v) + tr

+−qH(v) if t ≥ 1

tp
+−qF (v) + tr

+−qH(v) ≤ Υε,v(t) ≤ tp
−−qF (v) + tr

−−qH(v) if t < 1.
(4.19)
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Having in mind that p+ < q < r−, it follows that

lim
t→0+

Υε,v(t) = lim
t→+∞

Υε,v(t) = +∞. (4.20)

On the other hand, it is not difficult to see that the function Υε,v admits a global minimum t∗(v),

which is a unique solution of the equation

∫
R2N

(q − p(x, y)) tp(x,y)|v(x)− v(y)|p(x,y)

|x− y|N+sp(x,y)
dx dy +

∫
Ω

(q − p(x)) tp(x)w(x)|v|p(x)dx

= ε

∫
Ω

(r(x)− q) tr(x)b(x)|v|r(x)dx. (4.21)

By (4.20), for λ > 0 large enough, there are exactly two positive reals t1(v) < t∗(v) < t2(v)

such that Υε,v(t1(v)) = Υε,v(t2(v)) = λ. Clearly t1(v) and t2(v) satisfy (4.4) with M ≡ 1, and

t(v) := t2(v) increases as λ increases or ε decreases. Let

Θε
a(λ) := {v ∈ Θa : λ > Υε,v(t

∗(v))}.

Then, for λ sufficiently large, Θε
a(λ) ̸= ∅. By (4.21), for v ∈ Θε

a(λ), we have

∫
R2N

p(x, y)t∗(v)p(x,y)|v(x)− v(y)|p(x,y)

|x− y|N+sp(x,y)
dx dy +

∫
Ω

p(x)t∗(v)p(x)w(x)|v|p(x)dx

+ε

∫
Ω

r(x)t∗(v)r(x)b(x)|v|r(x)dx < λqt∗(v)q
∫
Ω

a(x)|v|qdx,

it holds then

t∗(v) <


(

λq
∫
Ω
a(x)|v|qdx

εr−
∫
Ω
b(x)|v|r(x)dx

) 1

r−−q if t∗(v) ≥ 1(
λq

∫
Ω
a(x)|v|qdx

εr−
∫
Ω
b(x)|v|r(x)dx

) 1

r+−q if t∗(v) < 1.
(4.22)

Claim 4.3. If v ∈ Uε ∩Θε
a(λ), then

1 < ε

∫
Ω

b(x)|v|r(x)dx+ β

(∫
Ω

b(x)|v|r(x)dx
)θ

.

for some β > 0 and

θ :=



q(r−−p−)−r+(q−p−)
r+(r−−q) if ||v||q < 1 and t∗(v) ≥ 1,

p+

r+ if ||v||q < 1 and t∗(v) < 1,
q(r+−p+)−r+(q−p+)

r+(r+−q) if ||v||q ≥ 1 and t∗(v) < 1,
q(r−−p−)−r+(q−p−)

r+(r−−q) if ||v||q ≥ 1 and t∗(v) ≥ 1.

We just prove the case ||v||q < 1 and t∗(v) ≥ 1, since others cases can be treated similarly. In fact,
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we have Υε,v(t
∗(v)) < λ, thus

∫
R2N

t∗(v)p(x,y)|v(x)− v(y)|p(x,y)

|x− y|N+sp(x,y)
dx dy +

∫
Ω

t∗(v)p(x)w(x)|v|p(x)dx < λt∗(v)q
∫
Ω

a(x)|v|qdx,

(4.23)

which yields

t∗(v)p
−
(∫

R2N

|v(x)− v(y)|p(x,y)

|x− y|N+sp(x,y)
dx dy +

∫
Ω

w(x)|v|p(x)dx
)
< λt∗(v)q

∫
Ω

a(x)|v|qdx. (4.24)

Taking into account that Ψε(v) = 1, from (4.3) with M ≡ 1 and (4.24), we get

1− ε

∫
Ω

b(x)|v|r(x)dx < λt∗(v)q−p−
∫
Ω

a(x)|v|qdx

and hence in view of (4.22),

(
ε

∫
Ω

b(x)|v|r(x)dx
) q−p−

r−−q
(
1− ε

∫
Ω

b(x)|v|r(x)dx
)
<
( q

r−

) q−p−

r−−q

(
λ

∫
Ω

a(x)|v|qdx
) r−−p−

r−−q

.

(4.25)

By Lemmas 2.1, 2.4 and (H3), we can find C1 > 0 such that

∫
Ω

a(x)|v|qdx ≤ C1

(∫
Ω

b(x)|v|r(x)dx
) q

r+

. (4.26)

Combining this inequality with (4.25), we deduce

1 < ε

∫
Ω

b(x)|v|r(x)dx+ β

(∫
Ω

b(x)|v|r(x)dx
) q(r−−p−)−r+(q−p−)

r+(r−−q)

and the claim follows. Therefore, for some C2 > 0,∫
Ω

b(x)|v|r(x)dx > C2 for all v ∈ Θε
a(λ).

So, according to (4.22) and (4.26), the set {t(v) : v ∈ Uε ∩Θε
a(λ)} is bounded above. Let v1 be

fixed in Uε. Then, v1 ∈ Θε
a(λ) for all λ > λ1ε := Υε,v1(t

∗(v1)). From (4.4) with M ≡ 1, we have

Ĩε(v1) ≤
(

1

p−
− 1

r−

)∫
R2N

t(v1)
p(x,y) |v1(x)− v1(y)|p(x,y)

|x− y|N+sp(x,y)
dx dy

+

(
1

p−
− 1

r−

)∫
Ω

t(v1)
p(x)w(x)|v1|p(x)dx− λ

(
1

q
− 1

r−

)∫
Ω

t(v1)
qa(x)|v1|qdx. (4.27)

Recalling that λ 7→ tλ(v1) := t(v1) increases as λ increases and p− ≤ p+ < q < r−, we choose

λ2ε > 0 large enough such that for all λ > λ2ε, Ĩε(v1) < 0. Hence, for all λ > λ∗ε := max(λ1ε, λ
2
ε),

α1 := inf
v∈Uε∩Θε

a(λ)
Ĩε(v) < 0. Now, we show that the minimum of Ĩε is achieved in Uε ∩Θε

a(λ) with
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λ > λ∗ε. Indeed, let {vn} ⊂ Uε ∩Θε
a(λ) such that Ĩε(vn) → α1. Since {vn} is bounded in X0, going

to a subsequence if necessary, there exists v0 ∈ X0 satisfying (4.7). As previously argued in the

proof of Theorem 3.1, we deduce that v0 ̸= 0, v0 ∈ Lr(·)(Ω) and {t(vn)} converges to t0 = t(v0) > 0

with

Ĩε(v0) = Iε(t(v0)v0) = Iε(t0v0) ≤ α1. (4.28)

Since {t∗(vn)} is also bounded, up to a subsequence, t∗(vn) → t∗0. By (4.19) and direct computation,

we obtain

Υε,v0(t
∗(vn)) ≥ min

t>0

(
tp

−−qF (v0) + tr
−−qH(v0)

)
=

(q − p−

r− − q

) p−−q

r−−p−

+

(
q − p−

r− − q

) r−−q

r−−p−

F (v0) r−−q

r−−p−H(v0)
q−p−

r−−p− if t∗(vn) ≥ 1

Υε,v0(t
∗(vn)) ≥ min

0<t<1

(
tp

+−qF (v0) + tr
+−qH(v0)

)
=

(q − p+

r+ − q

) p+−q

r+−p+

+

(
q − p+

r+ − q

) r+−q

r+−p+

F (v0) r+−q

r+−p+H(v0)
q−p+

r+−p+ if t∗(vn) < 1.

Therefore, passing to the limit as n→ +∞, we get Υε,v0
(t∗0) > 0, thus t∗0 > 0. On the other hand,

by (4.7) and Fatou’s lemma, we entail λ ≥ Υε,v0(t
∗
0) ≥ Υε,v0(t

∗(v0)). Suppose by contradiction

that λ = Υε,v0(t
∗(v0)). We have λ = Υε,vn(t(vn)), thus

∫
R2N

t(vn)
p(x,y)|vn(x)− vn(y)|p(x,y)

|x− y|N+sp(x,y)
dx dy +

∫
Ω

t(vn)
p(x)w(x)|vn|p(x)dx

+ε

∫
Ω

t(vn)
r(x)b(x)|vn|r(x)dx = λt(vn)

q

∫
Ω

a(x)|vn|qdx,

and so, by (4.7),

∫
R2N

t(v0)
p(x,y)|v0(x)− v0(y)|p(x,y)

|x− y|N+sp(x,y)
dx dy +

∫
Ω

t(v0)
p(x)w(x)|v0|p(x)dx

+ε

∫
Ω

t(v0)
r(x)b(x)|v0|r(x)dx ≤ λt(v0)

q

∫
Ω

a(x)|v0|qdx,

which means that Υε,v0(t
∗(v0)) = λ ≥ Υε,v0(t(v0)). Therefore,

t∗(v0) = t(v0) = t0. (4.29)

From (4.21), we have

(
q − p−

)(∫
R2N

t∗(v0)
p(x,y)|v0(x)− v0(y)|p(x,y)

|x− y|N+sp(x,y)
dx dy +

∫
Ω

t∗(v0)
p(x)w(x)|v0|p(x)dx

)
≥
(
r− − q

)
ε

∫
Ω

t∗(v0)
r(x)b(x)|v0|r(x)dx. (4.30)
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By virtue of (4.4) with M ≡ 1, (4.29)-(4.30) and (H4), we get

α1 = lim
n→+∞

Iε(t(vn)vn) ≥ Iε(t(v0)v0) = Iε(t∗(v0)v0)

≥ ε

q

(
(q − p+)(r− − q)

p+(q − p−)
− r+ − q

r+

)∫
Ω

t∗(v0)
r(x)b(x)|v0|r(x)dx

=
ε (qp+(q − p−)− r+ [p+(r− − q)− q(r− − q)])

r+p+q(q − p−)

∫
Ω

t∗(v0)
r(x)b(x)|v0|r(x)dx

≥ 0,

which contradicts α1 < 0. Then λ > Υε,v0(t
∗(v0)), and consequently v0 ∈ Θε

a(λ). We choose

τ > 0 such that τv0 ∈ Uε. Using the uniqueness of the solution t∗(v0) of equation (4.21), we

infer τt∗(τv0) = t∗(v0). Therefore Υε,τv0(t
∗(τv0)) = Υε,v0(t

∗(v0)) < λ, thus τv0 ∈ Θε
a(λ). Hence

τv0 ∈ Uε ∩Θε
a(λ). It holds from (4.13) and (4.28) that

α1 ≤ Ĩε(τv0) = Iε(t(τv0)τv0) = Iε(t(v0)v0) = Ĩε(v0) ≤ α1,

thus Ĩε(v0) = α1. Thanks again to Lemma 4.1, we see that u := t(v0)v0 is a solution of (Pλ,ε).

Suppose now that p(x, y) = p, r(x) = r are constant and q(x) varies. Let

Γv(t) := A(v) + εtr−pB(v)− λ

∫
Ω

tq(x)a(x)|v|q(x)−pdx,

where

A(v) :=

∫
R2N

|v(x)− v(y)|p

|x− y|N+sp
dx dy +

∫
Ω

w(x)|v|pdx

and

B(v) :=

∫
Ω

b(x)|v|rdx.

Then Γv is continuous, Γv(0) = A(v) > 0 and Γv(t) → +∞ as t→ +∞, since p < q(x) < r for all

x ∈ Ω. On the other hand, for λ large enough, we have inf
t>0

Γv(t) < 0. Therefore, by (H2), there

are exactly two positive reals t1(v) < t2(v) such that Γv(t1(v)) = Γv(t2(v)) = 0. So, by using the

same arguments as above, we obtain a solution of (Pλ,ε). The proof of Theorem 3.3 is completed.

Proof of Theorem 3.4. Let ε0 > 0. In view of Theorem 3.3, for λ > λ∗ε0 , problem (Pλ,ε) with

ε = ε0 admits a solution uε0 = t(vε0)vε0 with vε0 ∈ Θε0
a (λ). In the case q(x) = q, for all ε ∈ (0, ε0),

problem (Pλ,ε) has a solution uε = t(vε)vε. In fact, from (4.19), we have

Υε,v(t
∗(v)) ≤

(q − p+

r+ − q

) p+−q

r+−p+

+

(
q − p+

r+ − q

) r+−q

r+−p+

F (v) r+−q

r+−p+

×

(∫
Ω
b(x)|v|r(x)dx∫
Ω
a(x)|v|qdx

) q−p+

r+−p+

ε
q−p+

r+−p+ if t∗(v) ≥ 1
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and

Υε,v(t
∗(v)) ≤

(q − p−

r− − q

) p−−q

r−−p−

+

(
q − p−

r− − q

) r−−q

r−−p−

F (v) r−−q

r−−p−

×

(∫
Ω
b(x)|v|r(x)dx∫
Ω
a(x)|v|qdx

) q−p−

r−−p−

ε
q−p−

r−−p− if t∗(v) < 1.

Since p− ≤ p+ < q < r−, Υε,v(t
∗(v)) ↓ 0 as ε ↓ 0. Thus λ > Υε,vε0

(t∗(vε0)) for any ε ∈ (0, ε0).

Hence vε0 ∈ Θε
a(λ). By (4.21), we have

min
(
(t∗ε(vε0))

p−
, (t∗ε(vε0))

p+
)∫

R2N

(q − p(x, y)) |vε0(x)− vε0(y)|p(x,y)

|x− y|N+sp(x,y)
dx dy

≤ εmax
(
(t∗ε(vε0))

r− , (t∗ε(vε0))
r+
)∫

Ω

(r(x)− q) b(x)|vε0 |r(x)dx,

which yields

1

ε

∫
R2N

(q − p(x, y)) |vε0(x)− vε0(y)|p(x,y)

|x− y|N+sp(x,y)
dx dy

≤ max
(
(t∗ε(vε0))

r+−p−
, t∗ε(vε0)

r−−p+
)∫

Ω

(r(x)− q) b(x)|vε0 |r(x)dx.

It holds that t∗ε(vε0) → +∞ as ε → 0, since p+ < r−. Noting that t∗ε(vε0) < tε(vε0), we deduce

that tε(vε0) → +∞ as ε → 0. Therefore, in view of (4.27), for some ε1 ∈ (0, ε0) small enough,

Ĩε(vε0) < 0 for all ε ∈ (0, ε1). Let τ > 0 such that τvε0 ∈ Uε∩Θε
a(λ). Since Ĩε(τvε0) = Ĩε(vε0) < 0,

inf
v∈Uε∩Θε

a(λ)
Ĩε(v) < 0 for all ε ∈ (0, ε1).

Through a similar reasoning to that of Theorem 3.1, we can show that for any ε ∈ (0, ε1), problem

(Pλ,ε) has a solution uε = tε(vε)vε, with vε ∈ Uε ∩ Θε
a(λ). Moreover, Iε(uε) = Ĩε(vε) → −∞ as

ε → 0. By (4.1) with M ≡ 1 and (4.16), we conclude that ||uε||X → +∞ as ε → 0. The proof of

Theorem 3.4 is completed.
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