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interpolation, Kantorovich type and quadrature type neural
network operators. We treat also the case of approximation
by iterated operators of the last four types. These approxi-
mations are derived by establishing multidimensional Jack-
son type inequalities involving the multivariate modulus of
continuity of the engaged function or its high order Fréchet
derivatives. Our multivariate operators are defined by using
a multidimensional density function induced by several dif-
ferent among themselves general sigmoid functions. This is
done on the purpose to activate as many as possible neurons.
The approximations are pointwise and uniform. The related

feed-forward neural network is with one hidden layer. We

finish with related L, approximations.
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RESUMEN

Presentamos aproximaciones multivariadas cuantitativas de
funciones multivariadas continuas con valores en un espa-
cio de Banach definidas en una caja o en RY, N € N, a
través de operadores de redes neuronales multivariados nor-
malizados, de cuasi-interpolacion, de tipo Kantorovich y de
tipo cuadratura. También tratamos el caso de aproximaciéon
usando operadores iterados de los ultimos cuatro tipos. Estas
aproximaciones se derivan estableciendo desigualdades mul-
tidimensionales de tipo Jackson que involucran el moédulo
de continuidad multivariado de la funciéon comprometida o
sus derivadas de Fréchet de alto orden. Nuestros operadores
multivariados son definidos usando una funcién de densidad
multidimensional inducida por varias funciones sigmoidales
generales diferentes entre si. Esto se hace con el propésito de
activar la mayor cantidad de neuronas posible. Las aproxi-
maciones son puntutales y uniformes. La red neuronal preali-
mentada relacionada tiene un nivel oculto. Concluimos con

aproximaciones L, relacionadas.

Keywords and Phrases: General sigmoid functions, multivariate neural network approximation, quasi-interpola-

tion operator, Kantorovich type operator, quadrature type operator, multivariate modulus of continuity, abstract
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1 Introduction

The author in [2, 3], see chapters 2-5, was the first to establish neural network approximations to
continuous functions with rates by very specifically defined neural network operators of Cardaliaguet-
Euvrard and “Squashing” types, by employing the modulus of continuity of the engaged function or
its high order derivative, and producing very tight Jackson type inequalities. He treats there both
the univariate and multivariate cases. The defining these operators “bell-shaped” and “squashing”
functions are assumed to be of compact support. Also in [3] he gives the Nth order asymptotic
expansion for the error of weak approximation of these two operators to a special natural class of

smooth functions, see chapters 4-5 there.

For this article the author is motivated by the article [14] of Z. Chen and F. Cao, also by [4-12,
15, 16].

The author here performs multivariate multiple general sigmoid functions based neural network
approximations to continuous functions over boxes or over the whole RV, N € N. Also he does
iterated and L, approximations. All convergences here are with rates expressed via the multivariate
modulus of continuity of the involved function or its high order Fréchet derivative and given by

very tight multidimensional Jackson type inequalities.

The author here comes up with the “right” precisely defined multivariate normalized, quasi-
interpolation neural network operators related to boxes or RV, as well as Kantorovich type and
quadrature type related operators on RV, Our boxes are not necessarily symmetric to the origin.
In preparation to prove our results we establish important properties of the basic multivariate

density functions induced by multiple general sigmoid functions and defining our operators.

Feed-forward neural networks (FNNs) with one hidden layer, the only type of networks we deal

with in this article, are mathematically expressed as
n
Ny (z) = cha(<aj ‘x)+bj), zeR’, seN,
j=0

where for 0 < j < n, b; € R are the thresholds, a; € R® are the connection weights, c; € R
are the coefficients, (a; - ) is the inner product of a; and z, and ¢ is the activation function of
the network. In many fundamental network models, the activation function is a general sigmoid
function, but here we use a multiple number of them simultaneously for the first time, so we can

activate a maximum number of neurons. About neural networks read [17-19).
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2 Basics

Let i =1,...,N € Nand h; : R — [—1,1] be a general sigmoid function, such that it is strictly
increasing, h; (0) = 0, h; (—x) = —h; (x), h; (+00) =1, h; (—o0) = —1. Also h; is strictly convex
over (—o0, 0] and striclty concave over [0, +00), with hEQ) e C(R,[-1,1]).

We consider the activation function

bi(z) =~ (hi(@+1)—hi(x—1)), z€R, i=1,...,N. (2.1)

e

As in [11, p. 285], we get that 1; (—z) = ¢; (z), thus ¥; is an even function. Since z +1 >z — 1,
then h; (x +1) > h; (x — 1), and ¢; () > 0, all z € R.

We see that

Let > 1, we have that
1
Ua) = (0 (a4 1)~ (2 1) <0,
by R} being strictly decreasing over [0, +00).

Let now 0 < z < 1,then 1—2z >0and 0 <1 —2 <1+x. It holds hl(z—1)=hl(1—2z) >
R} (x4 1), so that again ¢} (x) < 0. Consequently 1); is strictly decreasing on (0, +00).

Clearly, 1; is strictly increasing on (—o0,0), and ¢, (0) = 0.

See that
1
i i () = 5 (he (+00) — i (+00)) = 0, (2.3)
and
i () = ¢ (hi (~00) — i (~00)) = 0 (2.4)

That is the x-axis is the horizontal asymptote on ;.

Conclusion, 1 is a bell symmetric function with maximum

_ hi (1)
vi(0) = =2,
We need
Theorem 2.1. We have that
o0
Y iw—i)=1, VeeR, i=1,.. N (2.5)

Proof. As exactly the same as in [11, p. 286], is omitted. O
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Theorem 2.2. It holds
(o]
/ Y (r)de=1, i=1,...,N. (2.6)
—oo

Proof. Similar to [11, p. 287]. It is omitted. O

Thus ; (z) is a density function on R, i =1,..., N.

We give

Theorem 2.3. Let 0 < a < 1, and n € N with n'=® > 2. It holds

0 1 l—a _ 9
Z wi(nz—k)<( hl(z )), i=1,...,N. (2.7)
|nmﬁi\720:1’a
Notice that b (nla
T G 1 _2)):0, i=1,...,N

n—-+oo 2

for some x — 1 < &<z + 1.
Since h} is strictly decreasing we obtain h} (§) < h} (x — 1) and

B (x — 1)

¥ (z) < 5 , Vz>1 (2.9)
Therefore we have
o0 o0 1 o0
Y. titw—k= > Wilns—k)<g5 D> hi(lnw—k-1)
k=—o0 k=—o0 k=—o00
|nz—k|>nt=2 [na—k|>n'=" [nz—k|>n'~"
1 [t -
< 2/<n1—a_1) Bi(w—1d@—1)=3 (hi (z—1) Tnm_l))
1 1
3 [hi (+00) — h; (n'~* = 2)] = 3 (1—h; ('™ =2)) (2.10)
The claim is proved. O

Denote by |-] the integral part of the number and by [-] the ceiling of the number.

We further give
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Theorem 2.4. Let x € [a,b] CR and n € N so that [na] < [nb|. It holds

Z,ETHM] 1/111 e ) < %1(1), Vaé€lab, i=1,...,N. (2.11)
Proof. As similar to [11, p. 289] is omitted. O
Remark 2.5. We have that
Lnb)
lim > wilnw—k)#£1, i=1,...,N, (2.12)

k=[na]

for at least some x € [a, b].

See [11, p. 290/, same reasoning.

Note 2.6. For large enough n we always obtain [na] < |nb|. Alsoa < £ <b, iff [na] <k < |nb].
In general it holds (by (2.5))

[nb]

> wi(nz—k)<1, i=1,...,N. (2.13)
k=[na]
We make
Remark 2.7. We define
N
Z(x1,...,xNn) = Z () = Hwi (z;), x=(x1,...,25y) ERY, NeN (2.14)
i=1
It has the properties:
(4)
Z(x) >0, VreRN, (2.15)
(iz)
o Z@-ky= > Y - > Z(m—ky,...,an —ky) =
k=—o0 k}l—*OO kz:*OO szfoo
e’} e} o) N N o) 2.5)
DD DR H%(in—kz’):H( > %(xi—ki)) =1
k1=—00 ko=—00 kny=—o001t=1 =1 \k;=—o00
Hence -
Y Z(@-k) =1 (2.16)
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That is

Y Zmz-k)=1, VzeRY, neN. (2.17)

k=—o0

and

/RN Z (x)dr = /RN (1]__\[[ i (m)) dey---dey = lj__v[ (/_Z s (mi)dxi> (26) 1, (2.18)

thus

/ Z(z)dx =1, (2.19)
RN

that is Z is a multivariate density function.

Here denote ||z||, = max{|z1],...,|zn|}, z € RY, also set oo := (00,...,00), —00 :=

(—00,...,—00) upon the multivariate context, and

where a := (a1,...,an), b:=(b1,...,bn).

We obuviously see that

[nb] [nb] N [nb1] [nbn | N

k=[na] k=[na] \t=1 ki=[na1] kEn=[nan] \i=1

N [nb;]

= H Z ’Lpi (n.’lﬁl - kjl) . (2'20)

i=1 \ki=[na;]

For0< B <1andn €N, afiredx € RN, we have that

[nb) Lnb] nb]

Z Z (nx —k) = Z Z (nx — k) + Z Z (nx —k). (2.21)
k=[na] Ai: ]'nalL ﬁi: [na] N
I%-=ll <75 I%-=ll >

n

In the last two sums the counting is over disjoint vector sets of k’s, because the condition

H% — xHoo > n% implies that there exists at least one k—nT — xT’ > n—lg, where r € {1,...,N}.
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(v) We notice that

[nb] [nb1] [nbn | N
Y. Zma-k)= Y o Y (Hwi(n:viki)>
k=[na] ki=[na1] kn=[nan] \i=1

Eog| >
I | N g

N (e’ [ner
< H < Z wi (nxl - kl)) Z ’(/}r (nxr - kr)
z;l ki=—o0 kr=[na,]
i#r %_wT‘>%
| nb,|
= > e (nay —ky) (2.22)
kr=[na,]
—7—3:r‘>,’ 3
) %)
< Z wv (n'Tr - k'r) = Z 1/)7‘ (TL.Z‘T - kr)
k,.=—00 k,.=—00
|k7f—1'r|>n% |nw,\—kr\>n175
@7 1—h, (=7 -2) 1—h; (n'=F —2)
< < max ,
2 i€{l,...,N} 2

where 0 < B < 1.

That is we get:

[nb] 1—
Z Z (nx —k) < max (1_hi(n 5_2)>, (2.23)

i€{l,...,.N} 2

0< B <1, withnEN:nlfﬂ>2,Vw€HfV:1[ai,bi].

(vi) It is clear that

i Z(nz—k) < max (1 —hi (070 2)> , (2.24)

i€{l,...,N} 2

O<B<1,nGN:nl_B>2,Vmenij\;1[ai,bi].
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(vit) By Theorem 2.4 we get that

1 1 1
0< =

n b = )
St Z = k) L (S 0 (e — k) TLL 06 ()

thus

1 1
0< < (2.25)

Vaoe (Hf\il [ai,bi]), n € N.

Furthermore it holds

[nb]| N [nb; |
nh_)rr;o k; W Z (nx —k) = nlgr;o 1:[1 i rz . i (nx; — k) (2.26)

N [nbi]
H nh_)rrgo Z ¥ (nx; — k) | # 1,

1=1 ki= f”ﬂq-\
for at least some = € (Hil [@;, bJ)

We state

Definition 2.8. We denote by

b (18—
N (B,n) ;= max <1 hi( 5 2)> : (2.27)

ie{l,...,N}
where 0 < 8 < 1.

We make
Remark 2.9. Here (X, HH,y) is a Banach space.

Let f € C’(H2 1 [al,bl],X), x = (x1,...,2N) € vazl [ai,b;], n € N such that [na;] < [nb;],
1=1,...,N.

We introduce and define the following multivariate linear normalized neural network operator (x :=

(21, o) € (T faasbi]) )

Sy £ (£) Z (nz — k)
A (frz1s e an) = An (fra) = I
' " Z,Lg meﬂ (nx — k)

|nb1] |nb2 | [nbn | k k N
an [nai] Zlm:z(naﬂ Zkz\f N(naN] ( nl rr TN) (Hi:l i (an - kl))

(2.28)
nb;
Hz‘lil ( JEFHMJ Vi (nw; — kz))
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For large enough n € N we always obtain [na;] < |nb;|, i = 1,...,N. Also a; < 5 < b;, iff
[na;] <k; < |nb;],i=1,...,N.

When g € C (Hz 1 lai, b1]> we define the companion operator

e ZlEanna—\ 9 ( ) Z (na: - k)

A, (g,2) = - (2.29)
S Z (nw = k)
Clearly /Nln is a positive linear operator. We have that
N N
A, (1,z)=1, Vze (H [ai,bi]> .
i=1
Notice that A, (f) € C (Hl as, bi) ,X) and A, (¢) € C (HZ s, bJ) .
Furthermore it holds
E a1 ()11, 2 (n = k)
k na 5
l4n (.2, < ==l = A (111, 2) (2:30)
> keina] Z (nz — k)
N
Vo € ITL, [as,bi). Clearly |I£1], € C (T, lai,bi])
So, we have that
l4n (£, < A (111, 2) (2:31)
Vo eI, fabl, ¥ ne N,V f e C (T, faibi], X)
Let ce X and ge C (Hl 1 lai, b; }) then cg € C (HZ 1 lai, by ,X) .
Furthermore it holds
A, (cg, ) = cA, (g,x), Vxe H a;i, bl . (2.32)
Since A, (1) = 1, we get that
Ap(c)=¢, VecelX. (2.33)

We call gn the companion operator of A,,.

For convenience we call

[nb]

k=[na]
L’nle Lnsz LnbNJ

DD f(kl T) (ﬁ[lwi(mi—ki)) (2.34)

klzfnaﬂ kz:[nag] k}N ]'naN‘\



Multiple general sigmoids based Banach space ... 421

Ve (njil ai.bi])

That is 4 (f.2)
A (f,2) = : , 2.35
(f, ) Z;Enbr{,a] — (2.35)
Vae (Hf\il [ai,bi]>, n € N.
Hence
tothe)— iy = D =10 (B 2 02— 0) (2.36)
n(fox)—f(z)= . .
Z[Enb[jna_‘ (’I’L{I? . k)
Consequently we derive
095 -1 Lnb)
[An (f,2) = f (@), S (Hw ) A (fa)=f@) D Zne—k)| , (2.37)
k=[na]

~

Ve (Hf\il [a,‘,biD .
We will estimate the right hand side of (2.37).

For the last and others we need

Definition 2.10 ([11, p. 274]). Let M be a convex and compact subset of (RN, ||'Hp>, p € [1, 0],
and (X7 ||H7) be a Banach space. Let f € C (M, X). We define the first modulus of continuity of

f as
wi (f,0) = sup |f(z)—fWI,, 0<d<diam(M). (2.38)

z,yeM
le—yll, <6

If 6 > diam (M), then
w1 (f,0) = w1 (f,diam (M)). (2.39)

Notice wy (f,0) is increasing in 6 > 0. For f € Cp (M, X) (continuous and bounded functions)
w1 (f,0) is defined similarly.

Lemma 2.11 ([11, p. 274]). We have w; (f,d) = 0 asd | 0, iff f € C(M,X), where M is a
convexr compact subset of (RN, H-||p), p € [1,00].

Clearly we have also: f € Cy (RN, X) (uniformly continuous functions), iff wy (f,0) — 0 as d | 0,
where wy is defined similarly to (2.38). The space Cp (RN , X ) denotes the continuous and bounded

functions on RY.
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When f € Cp (RN,X) we define,

By (f,2) = By (f,1, .. ) i= i f (i) Z (nx — k)

k=—oc0

N

k1=—00 ko=—0c0 kn=—0c0

n €N,V z € RN, N €N, the multivariate quasi-interpolation neural network operator.

Also for f € Cp (RN, X) we define the multivariate Kantorovich type neural network operator

Co (f,2) = Cy (fi1,...,o5) = fj <nN/ 0, dt) Z(nz — k) = (2.41)
k=—o0 n
k1+1 ko+1 kEny+1 N
" ’ f(t,...,t )dt Lo.odt )( ’(/Jz(l‘l—k‘l)>,
12—200 kQZ—OO szoo < / /kn2 /cvjzv ' " ' " 11;[1 !

neN, VaeRV,

Again for f € Cp (IR{N , X ) , N € N, we define the multivariate neural network operator of quadra-
ture type D, (f,x), n € N, as follows.

0

Let 0 = (01,...,0n) € NN r = (rq,...,7y) € Z& Wy = Wy py....ry > 0, such that > w, =
r=0

0, 0y Oy

Z Z e Z Wry,rg,...ry = 1; ke ZN and

r1=07r2=0 rN=0

5nk (f) = 6n Jk1,ko,.. ok Zw7 ( )

_ii Zw f kl T S T (2.42)
725N nel’n ndy’ ' n nly /)’ '

r1=07r2=0 ry=0

where § := (%,%7 7%)
We set
Dy (f,z) == Dy (fi 215, 2N) = Z Onk (f) Z (nx — k) (2.43)
k=—c0
Z Z Z On ks k.. (sz n%—k’ ) , vr e RV,
k1=—o00 ka=—00 kny=—o00

In this article we study the approximation properties of A, By, C,, D, neural network operators
and as well of their iterates. That is, the quantitative pointwise and uniform convergence of these

operators to the unit operator I.
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3 Multivariate general sigmoid neural network approxima-
tions

Here we present several vectorial neural network approximations to Banach space valued functions

given with rates.
We give
Theorem 3.1. Let f € C(HN [ai,bi],X), 0<B<1lace (vazl [ai,bi]), N,n € N with

i=1
nt=8 > 2. Then

1)

N -1
1
140 ()~ S @], < (wa,(l)) 1 (£5 )+ 28w @ 71, || =20 0,
i=1
(3.1)
and
2)
[0 () =11, <2 ). (3.2)
We notice that 1i_>m Ay (f) “iw f, pointwise and uniformly.
n oo
Above wy is with respect to p = oo and the speed of convergence is max (niﬁ, on (B, n))
Proof. As similar to [12] is omitted. Use of (2.37). O
We make

Remark 3.2 ([11, pp. 263-266]). Let (RN, ||||p), N € N; where |||, is the Ly-norm, 1 < p < oo.
RY is a Banach space, and (RN)j denotes the j-fold product space RN x --- x RN endowed with

— — NI
the maz-norm ||z gryi = 12&&;2 2all,, where x == (21,...,2;) € (RM)".

Let (X, ””'v) be a general Banach space. Then the space L; := L; ((RN)j ;X) of all j-multilinear

continuous maps g : (]RN)j = X,j=1,...,m, is a Banach space with norm
llg ()l
lgll:=1llgll,, == sup g ()], =sup . (3.3)
L K el - llzll,

HafH(RN)J‘:l

Let M be a non-empty convex and compact subset of RF and xo € M is fized.

Let O be an open subset of RN : M C O. Let f : O — X be a continuous function, whose Fréchet
derivatives (see [20]) f9) : O — L; = L; ((RN)j ;X> exist and are continuous for 1 < j < m,
m € N.
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Call (z — x0) = (x — 20,..., 0 — x0) € (RN)j,xEM.
We will work with f|p.

Then, by Taylor’s formula [13], [20, p. 124] , we get

f(z) = Em: 1Y (xO)j(f” —2) | R (@,a0), allze M, (3.4)
=0 '

where the remainder is the Riemann integral

R, (x,x0) := /0 % (f(m) (zo +u(z — ) — f() (:co)) (x — z0)" du, (3.5)

here we set f© (z0) (z — 20)° = f (o).

We consider

W= wi (f(m), h) = sup Hf(m) (z) — £ ()|, (3.6)
z,yeM
le—yll,<h
h > 0.
We obtain
| (70 (o - u e = 20) = £ (@0) (= 20)"| <
Hf(m) (zo +u(z — ) — f( (%)H Nz = ol < wllz — ol V o ;L xo”ﬂ ’ (3.7)

by [1, Lemma 7.1.1, p. 208], where [-] is the ceiling.

Therefore for all x € M (see [1, pp. 121-122]):

w Tl = ol ] (1= ™!
o @z, < wlhe = anlly [ |50 | Ot w, (o= aoll,)  (38)

by a change of variable, where

t g _ st
P (1) ::A R (|t(|m—)1)!ds - % (

S (=T, VteR, (3.9)
§=0
is a (polynomial) spline function, see [1, p. 210-211].

Also from there we get

(b < |t|m+1 ‘t|m h|t‘7n—1 Vt R 310
mO S\ G T aml Tsemo1 ) ER (8.10)
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with equality true only at t = 0.

Therefore it holds

B (5r20)], < w0 (ux ) A e ) xo|;"‘1> CveeM. (1D
(m+1)lh 2m]! 8(m —1)!
We have found that
£ (@) — é f9 (ivo)j(!if — z0)’ < (f(m), h) (Hx(n: iol)%l: N |z ;:;H;n N h ||§(;if)|lz):_l>
vy
< 00, (3.12)
V x,x9 € M.

Here 0 < wy (f(m), h) < 00, by M being compact and f) being continuous on M.

One can rewrite (3.12) as follows:

m f(j) (fo) ( o xo)j (m) ” _ onerl H _ ggOHm h H — ;UOHmﬂ
f(.)_jg() 4! Sw <f ’h> (m—i—l])olh + 2m! =+ 8(m—1p)! ’

! (3.13)

Vxg € M, a pointwise functional inequality on M.
Here (- — )’ maps M into (RN)j and it is continuous, also f\9) (xo) maps (RN)j into X and it

is continuous. Hence their composition fO) (z0) (- — zo)’ is continuous from M into X.

Clearly f (-) = >0, W € C(M,X), hence Hf () =20 WHW eC(M).

Let {EN} be a sequence of positive linear operators mapping C (M) into C (M) .
NeN

Therefore we obtain

- ™) (o) (- — z0)
Ly Hf(‘)zf (O).( 0) (z0) <

=0 Jt .
T L m+1 T T C—zall™ T T - m—1 .
o () (Z~ (1 (mj||11;!h))<o>+(LN (I 2W;lp))<o>+h(LN(||8 <mi”f); )) (o)

(3.14)
VNeN,Vxye M.

N - ~
Clearly (3.14) is valid when M = [] [as, b;] and L,, = A,, see (2.29).
i=1
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All the above is preparation for the following theorem, where we assume Fréchet differentiability

of functions.

This will be a direct application of Theorem 10.2 in [11, pp. 268-270]. The operators A,, A, fulfil
its assumptions, see (2.28), (2.29), (2.31), (2.32) and (2.33).

We present the following high order approximation results.

N
Theorem 3.3. Let O open subset of (RN, H'Hp), p € [1,00], such that [] [ai;,b;] € O C RV,
i=1

and let (X, ||||7) be a general Banach space. Let m € N and f € C™ (0, X), the space of m-

times continuously Fréchet differentiable functions from O into X. We study the approximation of

f|i1i_7[1[a7:7bi}. Let o € (f{l (@i, bz]) and r > 0. Then
1)
wﬂu»uw—ééﬁ(A(ﬂ”@@(—xwﬂ)uw <
wn (£, (G (I = 20ll*)) () ™ .
G Gl 7)) ) ) (& (1= 2l)) )
[(m11)+;+nf]’ (3.15)

2) additionally if f9) (z¢) =0, j=1,...,m, we have

14w () (20) — £ (o), <

w1 (f(m),r (( (H ~ 2 ||m+1>> (a:o))’"lﬂ)

— ((An (11 = wolly*")) (xo))(’"“) (3.16)

m

(4 (- ”3||m+1))(xo))("”“) (3.17)
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4)
et -1, _ o _;jl' ’H(A (79 o) ¢ = w0)') ) o) o
1 (f(m)7r H (ﬁn (” - $0H;n+1>) (xO)H:}::oE l]_V[ [ai,bi])
+ rm/! -
G st ) ol [ o5 5] o
We need

~ N
Lemma 3.4. The function (An (|| — a:0||;")) (@) s continuous in xg € (H [a;, Z]), m € N.
i=1

Proof. By Lemma 10.3, [11, p. 272]. O

‘We make

Remark 3.5. By [11, Remark 10.4, p. 273/, we get that

(e (1 =ol)) @0y <[ (= 208577)) ) io)mb] L
forallk=1,...,m
We give
Corollary 3.6 (to Theorem 3.3, case of m = 1). Then
D
(A () (o) = £ (@)l < [|(4n (/O o) (- = 20)) ) (o)
n (100 (A (1= o012)) @) ) (B (1 = 0l2)) a0))* [0+ 2]
(3.20)
2
s on-fl s L=l @) el | s

1
2
N
00,20€ [] [ai,bi]
i=1

= (f“%ru@ () o
2

1
~ 2 2 T
L Gy ) N [y AT )
i=1
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Remark 3.7. We estimate (0 < a <1, m,n € N:nl=* > 2),
S 15 = o[ 2 (no —
e m k na Lo nxo )
A (I = woll ) (o) = =A=IalTn
Zk [na] (nl'() - k)
B [nb] m+1
(2 25) k
(H ¥; (1 ) > ‘ —2o|  Z(nwo—k) (3.22)
k=[na] el

N -t Lnb) i me1

= (H Uy (1)) Z Hn — Zo Z (nxo — k)
=1 k=[na] 0
r—wol|  <qw
[nb] k m+1

+ Z H’I’) — X0 A (’rL{Eo — k)

k=[na] ) 0

%*Zo” >n%
. 23) !
1 m
(H vi(1 ) {na(m+1) +on (a,n) 1o~ alloo“} o (323)
(where b—a = (by —aq,...,by —an)).

N
We have proved that (V xo € [] [ai, bi])

i=1

A (I = 2ol (@o) < (fw <1>>_ {

O<a<l,mneN:nl=>2)

FonGan b= a2 =) G20

And, consequently it holds

N ~1
~ 1
m—+1 ) _ m+1
[ (1 = 2oz ) @l < (1:[1 n (1)) {na<m+1> T 6 (ayn) I — a]™ }
i=1 -
=¢1(n) =0, asn— +oc. (3.25)

So, we have that 1 (n) — 0, as n — +oo. Thus, when p € [1,00], from Theorem 3.3 we have the

convergence to zero in the right hand sides of parts (1), (2).

Next we estimate H (Zn (f(j) (o) (- — xo)j)) (SUO)H

Y
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i 19 o) (5 —0) 2 = 1)

(3 (1 =) oy - L0 G 2 =
When p =00, j=1,...,m, we obtain
J J
9 (o) (’f _ xo) ‘ < 79 @ H: o (3.27)
~ oo
We further have that
. 2.2
H( (fu) 20) (- — xo)'7)) (20) W 2.25)
N Lnbj k j
(H ¥i (1 > F9 (o) ( - 330) Z (nxo — k) | <
i=1 k= (mﬂ ¥
N [nb] k j
(H P; (1 > Z Hf(” xo)H Hn —xzo|| Z(nzo—k)| = (3.28)
i=1 k=[na] 0
N
(fw) Joo o ( 5 =] #0m-) -
i=1 k=[na]
! Lnb) i i
<H¢v(1)> Hf o H Z Hn —xo|| Z(nxo— k)
k=[na]
[ % —=ol| <7
[nb] j
+ Y Hfb — g ’ Z (nzo — k) (2;3) (3.29)
k=[na] oo

g )wawu+wmmm_W}AQGMHm.
i=1

That is
(A (19 (@0) (- = 20)')) (xO)Hw 50, asn - oo,
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Therefore when p = oo, for j =1,...,m, we have proved:

H (Avn (f(j) (o) (- — $0)j)) (o)

- (ﬂ”’" <1)> £ @[ {55 + b o 1o el }
=

(Hwi <1>> [

i=1

=!2j (Tl) < 00, (330)

IN

1 j
s rovenio- o}

and converges to zero, as n — 0.

We conclude:

In Theorem 3.3, the right hand sides of (3.26) and (3.18) converge to zero as n — oo, for any
p € [1,00].

Also in Corollary 3.6, the right hand sides of (3.20) and (3.21) converge to zero as n — 0o, for any

p € [l,00].

Conclusion 3.8. We have proved that the left hand sides of (3.15), (3.16), (3.17), (3.18) and
(3.20), (3.21) converge to zero as n — oo, for p € [1,00]. Consequently A, — I (unit operator)
pointwise and uniformly, as n — oo, where p € [1,00]. In the presence of initial conditions we

achieve a higher speed of convergence, see (3.16). Higher speed of convergence happens also to the
left hand side of (3.15).

We give

N
Corollary 3.9 (to Theorem 3.3). Let O open subset of (RN, ||-[|.), such that I [a;,b;] € O C RY,
i=1

and let (X, ||||A/> be a general Banach space. Let m € N and f € C™ (0,X), the space of m-

times continuously Fréchet differentiable functions from O into X. We study the approzimation of

N
/] Nl Let xg € <H [ai,bi]) and r > 0. Here @1 (n) as in (3.24) and @25 (n) as in (3.30),
ai,b; i=1
=1
wheren € N:n'=@*>2 0<a<1,j=1,...,m. Then

1

Y
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2) additionally, if fO) (2¢) =0, j =1,...,m, we have

wr (1,1 (o () ™)

b ) o0 = e, < TR o ) [ ]
(3.32)
3)
" i (n) @1 (f(m)m (1 (n))ﬁ) "
14 <f>—f||7HmﬁM DI — (1 (m))(750)

1 2
. [ ++} =:p3(n) =0, asn—oo. (3.33)

‘We continue with

Theorem 3.10. Let f € Cp (RN,X), 0<pB<1,zeRY NneNuwithn' =" >2 w isfor
p=o0. Then

1)
1
1B (1) = £ @, < (15 ) + 2w G UL = de ). (53)
2)
[1B2 () = 111, _ <22 (). (3.35)
Given that [ € (CU (RN,X) NCg (RN,X)), we obtain lim B, (f) = f, uniformly. The
n— oo
speed of convergence above is max (n%, 6y (B,n)).
Proof. As similar to [12] is omitted. O
We give

Theorem 3.11. Let f € Cp (RN,X), 0<p<1,2zeRY, NnéeNuwithn' =P > 2 w isfor
p=o0. Then

1
ICn (f.2) = £ @), <o (£ + 25 ) + 28w (8. 171,

=:A3(n), (3.36)

oo

i 5= 111, < 2 ). (3:37)

Given that f € (CU (RN, X) NCp (RN, X)) , we obtain li_)m Cn (f) = f, uniformly.

Proof. As similar to [12] is omitted. O
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We also present

Theorem 3.12. Let f € Cg (]RN,X)7 0<p<1,2zeRY, NneNuwithn' =P > 2 w isfor

p=o0. Then
1)
1 1
namﬂm—fumysM(ﬂn+,ﬁ)+%Nwmmeww=Aum, (3.38)
2)
1D (5= £1L,||_ < A ). (3.39)
Given that f € (CU (RN, X) NCp (RN, X)) , we obtain lim D, (f) = f, uniformly.
n— oo
Proof. As similar to [12] is omitted. O

We make

Definition 3.13. Let f € Cp (RN, X), N € N, where (X, H||7) is a Banach space. We define

the general neural network operator

o B’n,(fax)y Zflnk(f):f(%)v
Fo(fox)i= Y bu(f)Zma—k) = Co(f,2), if lux (f) =0 S f@)at, (3.40)
h=mee n (fv x) ) Zf lnk (f) = 5nk (f) .

Clearly I,y (f) is an X-valued bounded linear functional such that ||l (f)l., < H Hf”’VH .

Hence F, (f) is a bounded linear operator with HHFn (f)”'YH < HHf”'VH .

We need

Theorem 3.14. Let f € Cp (RN, X), N > 1. Then F, (f) € Cp (RY, X).

Proof. Very lengthy and as similar to [12] is omitted. O
Remark 3.15. By (2.28) it is obvious that H||An NI,

N N
C (H [ai, bi] 7X), given that f € C (H [ai, bi] ,X)

i=1 i=1
Call L,, any of the operators A,, By, Cy, Dy,.

<
= s

< oo, and A, (f) €

Clearly then

N2z L] = 1 0| < 0 o] <fien] . @an

etc.
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Therefore we get
s ol < i) veen (3.42)
the contraction property.
Also we see that
Nzt D) < s o s s imaon]_ <) e
Here Lk are bounded linear operators.
Notation 3.16. Here N € N, 0 < 8 < 1. Denote by
N -1
i (1 y ‘ Ln = Ana
CN = (inlw ( )> v (3.44)
1, if L, = B,,Cp, Dy,
L» Zf L, = Ana Bna
w(n) = 71’[1 ) ' (3.45)
H+n77 Zan:CnaDnv
1 A
C ai7biaX ’ ZL7: s
Q= (El[ ] ) f L ' (3.46)
C'B RN,X)a Zf Ln:Bnacran?
and
1 A
ai;bi ’ g Ln = An;,
Y = 11;[1 [ )i (3.47)
RN: Zf L, = ancnaDn'
We give the condensed
Theorem 3.17. Let f € Q,0< <1, z€Y;n, N € N withn'# > 2. Then
(2)
ILn (£.2) = @), < ex w1 (frp ) + 208 B |IF1L | _] =7 (348)
where wy 18 for p = oo,
(i)
(10 (5 = 71, <700 =0, as 0= o0, (3.49)

For f uniformly continuous and in  we obtain

lim Ly, (f) = f,

n—oo

pointwise and uniformly.
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Proof. By Theorems 3.1, 3.10, 3.11, 3.12. O

Next we do iterated neural network approximation (see also [9]).

We make

Remark 3.18. Let r € N and L, as above. We observe that
Lif—f=(Lnf =Ly )+ (L7 f =Ly f) +

(L2_2f_L:1_3f)++(L3‘f_Lnf)+(Lnf_f)

Then

ns =11 _ < 1zar = 2ol + {ear = 22|+

lza2r = Lol |+ o+ 12f = ZadlL |+ |12as = 11| =
ezt @or = pl ||+ {12e2 @ar = 2lL|| +[|I267 @t = D]

oot 1L Laf = DI+ [120f = 11| <r|iEas =11 350)

That is
[zes = s _ < efizas =1, - (3.51)

We give

Theorem 3.19. All here as in Theorem 3.17 and r € N, 7 (n) as in (3.48). Then

lizns =11 <vrm). (3.52)

So that the speed of convergence to the unit operator of L] is not worse than of L.

Proof. By (3.51) and (3.49). O
We make
Remark 3.20. Let my,...,m, € N:m; < my < - < m,, 0 < 8 <1, f e Q. Then

o (my) > @ (ma) > >p(m,), ¢ as in (3.45).
Therefore
wi (f, o (m1)) = w1 (frp(m2)) = -+ Zwi (f, 0 (my)). (3.53)

Assume further that mz_ﬁ >2,49=1,...,r. Then

On (Bymy) > 0n (B,m2) > -+ > 0n (B, my). (3.54)
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Let L,,, as above, i =1,...,7, all of the same kind.

We write

Lun, (L, —y (- Ling (Liny f))) = f =
Lon, (Lo (- Long (Lny £))) = Ly (L, (-« Liny f)) +
Lon, (L, (-« Liny ) = Lon, (L (o Long f)) +
Lo, (L, (- L £)) = Ly, (Linyy (oo Ly ) + -+ 4 (3.55)
L, (L, f) = Lin, f + Ln, f = f =
Lo, (L s (o Liny)) (L £ = f) + Ly (Lonyy (- Ling)) (Lny f — f) +
Lo, (Liny o (o L)) Ling f — f) + 4 Lin, (Liny_y f — f) + Lin, f — f-

Hence by the triangle inequality property of HHHVH we get
oo

HHLmr (Lmr—l ( m2( mlf _fH"/HOOS HHLmr (Lm7,71 ( ) mlf_f H H
+H||Lmr Loy s (o L)) Lona f — )| H
+HHL (Lo (- L ) Lunsf = £ H
ot 1 o f = DI+ 02w = 0
(repeatedly applying (3.41))
< Wzt = £\ [12mef = 21+ [12maf = 11
T Y N I (o2 [ o [ (EET™
i=1
That is, we proved
12, (Eon, s o Lo (Lo £0) = 11| <ZHIIL NEF(N e (3.57)

We give

Theorem 3.21. Let f € Q; N, my,mo,....,m, € N:m; <mg < - < m,, 0 < < 1;
miP > 2 i=1,....r,x €Y, and let (Linyy s Lim,.) as (Apyy .oy Am,.) or (Bmy,...,Bm,) or

?

(Cryy---sCm,) or (Dpyy...y D, ), p = 00. Then

|Zm, (Lo o By B D) @) = £ @) < 12, (B - o L ) = ]|
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3 W = 11 < e 3 [ (oo e+ 26 (B 11,
i=1 i=1
< rew [wr (£ m) + 20w Bom) |USIL]| |- 359)

Clearly, we notice that the speed of convergence to the unit operator of the multiply iterated operator

is not worse than the speed of Ly, .
Proof. Using (3.57), (3.53), (3.54) and (3.48), (3.49). O

We continue with

Theorem 3.22. Let all as in Corollary 3.9, and r € N. Here 3 (n) is as in (3.33). Then

[hans = s < v |idnr = 1L |_ < res . (3.59)
Proof. By (3.51) and (3.33). O

Next we present some L, , p1 > 1, approximation related results.

N
Theorem 3.23. Letp; > 1, f € C (H [ai,bi],X>, 0< B <1; N,neN withn'=# > 2, and

i=1

A1 (n) as in (3.1), wy is for p=oo. Then

N P1
HHAn (f) = fHVH N <M | J]i—a)) - (3.60)
P1-,i1;[1[t17:,b7‘,] i
We notice that lim H”A" H—=f » =0.
n—00 pl,’_l;[l[ai,bi]
Proof. Obvious, by integrating (3.1), etc. O

It follows

Theorem 3.24. Letpy > 1, f € Cp (RN,X), 0<B<1;NneNwithn'=? > 2, and w; is for
p=00; X2 (n) as in (3.34) and K a compact subset of RN. Then

[ =11l < 2o 175 (3.61)

where | K| < 0o, is the Lebesgue measure of K.

We notice that HILH;O HHBn (f) — f||,prl’K =0, for f € (Cy (RN, X)nCp (RV, X)).

Proof. By integrating (3.34), etc. O



Next come

Proof. By (3.36).
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Theorem 3.25. All as in Theorem 3.24, but now we use Az (n) of (3.36). Then
1
lew e =11 <2 () K55 (3.62)
p1,K
We have that Tim ||ICo (f) = I, =0, for f € (Cu (RY,X) N Cs (RN, X)).
n—o00 th
O
Theorem 3.26. All as in Theorem 3.24, but now we use Ay (n) of (3.38). Then
1
1D (5= £1L,|| < A (o) 1K (3.63)
p1, K
We have that lim 1D, (f) = fIL|| =0, for f € (Cu (RY,X) NCp (RY, X))
n— oo P1,
O

Proof. By (3.38).

Application 3.27. A typical application of all of our results is when (X, ||||A/> = (C,||), where

C are the complexr numbers.
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