Cubo A Mathematical Journal

A nice asymptotic reproducing kernel

Raymond Mortini ${ }^{1, \otimes(\text { (D) }}$
${ }^{1}$ Université de Lorraine, Département de Mathématiques et Institut Élie Cartan de Lorraine, CNRS, F-57000 Metz, France.
Current address: Université du
Luxembourg, Département de
Mathématiques, L-4364 Esch-sur-Alzette, Luxembourg.
raymond.mortini@univ-lorraine.fr ${ }^{\boxtimes}$

Abstract

We extend the assertion of Problem 12340 in Amer. Math. Monthly 129 (2022), 686, by deriving some additional asymptotic behaviour of that special kernel.

\section*{RESUMEN}

Extendemos la formulación del Problema 12340 en Amer. Math. Monthly 129 (2022), 686, derivando un comportamiento asintótico adicional de dicho núcleo especial.

Keywords and Phrases: Integral kernel, reproducing kernel, good kernel, summability kernel, real analysis.
2020 AMS Mathematics Subject Classification: 26A99, 47B34.

1 An integral operator

The solution to Problem 12340 in $[1$, p. 686] tells us that for $g:[0,1] \rightarrow \mathbb{R}$ continuous,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{n}{2^{n}} \int_{0}^{1} \frac{g(x)}{x^{n}+(1-x)^{n}} d x=\frac{\pi}{4} g\left(\frac{1}{2}\right) \tag{1.1}
\end{equation*}
$$

We shall prove the following additional properties:

Proposition 1.1. Let $f \in L_{l o c}^{1}(\mathbb{R})$ and for $t>0$ and $x \in[0,1]$, let

$$
k_{t}(x):=\frac{1}{\pi} \frac{1}{2^{t}} \frac{4 t}{x^{t}+(1-x)^{t}}
$$

Then
(i) $\lim _{t \rightarrow \infty} k_{t}(x)= \begin{cases}0 & \text { if } x \neq 1 / 2 \\ \infty & \text { if } x=1 / 2 .\end{cases}$
(ii) $\lim _{t \rightarrow \infty} \int_{0}^{1} k_{t}(x) d x=1$.
(iii) $\lim _{t \rightarrow \infty} \int_{0}^{1} k_{t}(x) f\left(s-\frac{1}{2}+x\right) d x=f(s)$ for each continuity point s of f.
(iv) $\lim _{t \rightarrow \infty} \int_{-\infty}^{\infty} K_{t}\left(y-s+\frac{1}{2}\right) f(y) d y=f(s)$ for each continuity point s of f, where K_{t} coincides with k_{t} extended outside $[0,1]$ by 0.

Thus we may call $k(t, x):=k_{t}(x)$ a shifted asymptotic reproducing kernel for $L^{1}[0,1]$ or $C[0,1]$ for example (see also at the end of this note).

Proof. (i) is evident
(ii) We show, more generally, that for any continuous function g on $[0,1]$ we have

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \int_{0}^{1} k_{t}(x) g(x) d x=g(1 / 2) \tag{1.2}
\end{equation*}
$$

Note that (1.1) is just the discrete version of (1.2) by taking $t=n^{1}$. So, to prove (1.2), we split the integral into two parts and use two different changes of variables. Let $t \geq 1$. Then

[^0]\[

$$
\begin{aligned}
I_{t} & :=\frac{t}{2^{t}} \int_{0}^{1 / 2} \underbrace{\frac{g(x)}{x^{t}+(1-x)^{t}} d x}_{x=\frac{1}{2}-\frac{s}{2 t}}+\frac{t}{2^{t}} \int_{1 / 2}^{1} \underbrace{\frac{g(x)}{x^{t}+(1-x)^{t}} d x}_{x=\frac{1}{2}+\frac{s}{2 t}} \\
& =\frac{t}{2^{t}} \int_{0}^{t} \frac{g\left(\frac{1}{2}-\frac{s}{2 t}\right)}{\left(\frac{1}{2}-\frac{s}{2 t}\right)^{t}+\left(\frac{1}{2}+\frac{s}{2 t}\right)^{t}} \frac{1}{2 t} d s+\frac{t}{2^{t}} \int_{0}^{t} \frac{g\left(\frac{1}{2}+\frac{s}{2 t}\right)}{\left(\frac{1}{2}+\frac{s}{2 t}\right)^{t}+\left(\frac{1}{2}-\frac{s}{2 t}\right)^{t}} \frac{1}{2 t} d s \\
& =\frac{1}{2} \int_{0}^{t} \frac{g\left(\frac{1}{2}-\frac{s}{2 t}\right)+g\left(\frac{1}{2}+\frac{s}{2 t}\right)}{\left(1-\frac{s}{t}\right)^{t}+\left(1+\frac{s}{t}\right)^{t}} d s .
\end{aligned}
$$
\]

Note that $t \mapsto\left(1+\frac{s}{t}\right)^{t}$ is increasing; so the integrand is dominated for $s \geq 1$ by

$$
\frac{\|g\|_{\infty}}{\left(1+\frac{s}{2}\right)^{2}} \leq\|g\|_{\infty} 4 s^{-2}
$$

Hence, as $t \rightarrow \infty$,

$$
\begin{aligned}
\lim _{t \rightarrow \infty} I_{t} & =\frac{1}{2} 2 g(1 / 2) \int_{0}^{\infty} \frac{1}{e^{-s}+e^{s}} d s \\
& =g(1 / 2) \int_{0}^{\infty} \frac{e^{s}}{1+\left(e^{s}\right)^{2}} d s \\
& =g(1 / 2)\left[\arctan e^{s}\right]_{0}^{\infty} \\
& =g(1 / 2)\left(\frac{\pi}{2}-\frac{\pi}{4}\right) \\
& =\frac{\pi}{4} g(1 / 2)
\end{aligned}
$$

If we take $g \equiv 1$, we finally obtain (ii):

$$
\int_{0}^{1} k_{t}(x) d x=\frac{4}{\pi} I_{t} \rightarrow 1
$$

(iii) Let $f \in L^{1}[0,1]$ and suppose that $1 / 2$ is a continuity point of f. Given $\epsilon>0$, choose $\delta>0$ so that $|f(x)-f(1 / 2)|<\epsilon$ for $|x-1 / 2|<\delta$. For $0 \leq x \leq 1$ and $t \geq 1$, let $h(x):=x^{t}+(1-x)^{t}$. Then h is a convex function with minimum at $x=1 / 2$. Hence, whenever $0<\delta<1 / 2$, the condition $|x-1 / 2| \geq \delta$ with $0 \leq x \leq 1$ implies that

$$
x^{t}+(1-x)^{t} \geq(1 / 2+\delta)^{t}+(1 / 2-\delta)^{t}
$$

Thus, as $\delta \neq 0$,

$$
\frac{t}{2^{t}} \frac{1}{x^{t}+(1-x)^{t}} \leq \frac{t}{(1+2 \delta)^{t}+(1-2 \delta)^{t}}=: m_{t} \rightarrow 0 \quad \text { as } \quad t \rightarrow \infty
$$

Consequently $\left|\int_{0}^{1} k_{t}(x) f(x) d x-\int_{0}^{1} k_{t}(x) f(1 / 2) d x\right|$

$$
\begin{aligned}
& \leq\left|\left(\int_{\substack{|x-1 / 2| \geq \delta \\
0 \leq x \leq 1}}+\int_{|x-1 / 2| \leq \delta}\right) k_{t}(x)\right| f(x)-f(1 / 2)|d x| \\
& \leq \frac{4 m_{t}}{\pi} \int_{\substack{|x-1 / 2| \geq \delta \\
0 \leq x \leq 1}}(|f(x)|+|f(1 / 2)|) d x+\epsilon \int_{|x-1 / 2| \leq \delta} k_{t}(x) d x \\
& \leq \frac{4 m_{t}}{\pi}\left(| | f| |_{1}+|f(1 / 2)|\right)+\epsilon \int_{0}^{1} k_{t}(x) d x \\
& \leq 2 \epsilon \text { for } t \geq t_{0}
\end{aligned}
$$

As $\lim _{t \rightarrow \infty} \int_{0}^{1} k_{t}(x) f\left(\frac{1}{2}\right) d x=f\left(\frac{1}{2}\right)$ by (ii), we deduce that

$$
\lim _{t \rightarrow \infty} \int_{0}^{1} k_{t}(x) f(x) d x=f\left(\frac{1}{2}\right)
$$

If $f \in L_{l o c}^{1}(\mathbb{R})$ satisfies the assumptions above, we put $F(x):=f\left(s-\frac{1}{2}+x\right)$. Then $F \in L^{1}[0,1]$ and $1 / 2$ is a continuity point of F. Hence

$$
\lim _{t \rightarrow \infty} \int_{0}^{1} k_{t}(x) F(x) d x=F(1 / 2)=f(s)
$$

(iv) is obtained from (iii) by a linear change of the variable.

We may ask what happens if s is a jump point. Do we have a similar behaviour as in the DirichletJordan Theorem for Fourier series?

It is interesting to discuss the relations that exist between our shifted asymptotic reproducing kernel $k_{t}(x)=k(t, x)$ and the so-called "summability kernels" in [2, p. 9], respectively "good kernels" in [3, p. 48], the most prominent examples being the Fejér kernel and the Poisson kernel for $L^{1}(\mathbb{T})$ concerning 2π-periodic functions. In fact, using suitable transformations, in particular the new variable $y=2 \pi\left(x-\frac{1}{2}\right)$, equivalently $x=\frac{1}{2}+\frac{y}{2 \pi}$, we get the following relations (we restrict w.l.o.g. to the discrete case): let $I_{n}:=\int_{0}^{1} k_{n}(x) d x$ and

$$
K_{n}^{*}(y):=I_{n}^{-1} \cdot k_{n}\left(\frac{1}{2}+\frac{y}{2 \pi}\right), \quad-\pi \leq y<\pi
$$

and extend this function 2π-periodically. Then K_{n}^{*} is continuous on \mathbb{R} as

$$
K_{n}^{*}(-\pi)=\lim _{y \rightarrow-\pi} K_{n}^{*}(y)=k_{n}(0)=k_{n}(1)=\lim _{y \rightarrow \pi} K_{n}^{*}(y)=K_{n}^{*}(\pi)
$$

Observe that for $|y|<\pi$,

$$
K_{n}^{*}(y)=I_{n}^{-1} \cdot \frac{4 n \pi^{n-1}}{(\pi+y)^{n}+(\pi-y)^{n}}
$$

Moreover, $K_{n}^{*} \geq 0$,

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} K_{n}^{*}(y) d y=1
$$

and, by the proof of (iii) and (ii),

$$
\int_{\delta \leq|y| \leq \pi} K_{n}^{*}(y) d y \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

for every $\delta>0, \delta$ small. Hence, according to [3, p. 48], $\left(K_{n}^{*}\right)$ is a family of good kernels. Consequently, by [3, Theorem 4.1, p. 49],

$$
\left(f * K_{n}^{*}\right)(x)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x-y) K_{n}^{*}(y) d y \rightarrow f(x)
$$

for every continuity point x of $f \in L_{l o c}(\mathbb{R}), f \quad 2 \pi$-periodic.
Readers having a good command of the Chinese language (unfortunately I don't), may also consult the classroom survey [4] for studies on summability/good kernels.

2 Acknowledgments

I would like to thank the referees for their valuable comments.

References

[1] A. Garcia, "Problem 12340," Amer. Math. Monthly, vol. 129, no. 7, p. 686, 2022, doi: 10.1080/00029890.2022.2075672.
[2] Y. Katznelson, An introduction to harmonic analysis. New York, USA: Dover Publications, Inc., 1976.
[3] E. M. Stein and R. Shakarchi, Fourier analysis, ser. Princeton Lectures in Analysis. New York, USA: Princeton University Press, Princeton, 2003, vol. 1.
[4] Z. Wang, "Studies on several kernels in Fourier analysis," Pure Appl. Math., vol. 31, no. 3, pp. 238-244, 2015, doi: 10.3969/j.issn.1008-5513.2015.03.003.

[^0]: ${ }^{1}$ This was submitted by myself and Rudolf Rupp as solution to the Monthly problem above.

