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ABSTRACT

In this work, we investigate the existence of a mild solution
and the approximate controllability of non-instantaneous im-
pulsive stochastic integrodifferential equations driven by the
Rosenblatt process in Hilbert space with the Hurst parame-
ter H ∈ (1/2, 1). We achieve the result using the semigroup
theory of bounded linear operators, Grimmer’s resolvent op-
erator theory, and stochastic analysis. Using Krasnoselskii’s
and Schauder’s fixed point theorems, we demonstrate the ex-
istence of mild solutions and the approximate controllability
of the system. Finally, an example shows the potential for
significant results.

RESUMEN

En este trabajo investigamos la existencia de una solución
mild y la controlabilidad aproximada de ecuaciones integro-
diferenciales estocásticas no-instantáneas impulsivas dirigi-
das por el proceso de Rosenblatt en espacios de Hilbert con
el parámetro de Hurst H ∈ (1/2, 1). Logramos este resultado
usando la teoría de semigrupos de operadores lineales acota-
dos, la teoría del operador resolvente de Grimmer y análisis
estocástico. Usando los teoremas de punto fijo de Krasnosel-
skii y Schauder, demostramos la existencia de soluciones mild
y la controlabilidad aproximada del sistema. Finalmente, un
ejemplo muestra el potencial para resultados significativos.
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1 Introduction

Stochastic differential equations have become an active field of study because of their various ap-

plications in fields such as electrical engineering, mechanics, medical biology, economic systems,

etc. For more information, see [2, 11, 18, 29]. The mathematical description of the phenomenon

under investigation must account for randomness since many real-world events, such as stock

prices, heat conduction in memory materials, and rising population, are unpredictable or noisy.

It has been demonstrated that stochastic differential systems are especially powerful methods for

describing and understanding this kind of event. Stochastic differential systems theory has been

applied to model various phenomena in this life. Numerous authors have also investigated the ex-

istence, uniqueness, stability, controllability, approximate controllability, and other qualitative and

quantitative properties of SDEs and stochastic integrodifferential equations (SIEs) using stochastic

analysis, the fixed point approach, and the concept of resolvent operators in the case of SIEs. See

for example, [6,9,15,17]. In the last decades the theory of impulsive partial equations or inclusions

seems to be a natural description of many real processes that are exposed to some disturbances,

the duration of which is insignificant in comparison to the duration of the process. In addition

to impulsive effects, stochastic effects also exist in real systems. Thus, impulsive stochastic dif-

ferential equations describing these dynamical systems subject to both impulsive and stochastic

changes have attracted significant attention. In particular, the papers [3, 26, 40] have studied the

existence of smooth solutions for certain impulsive neutral stochastic functional integrodifferential

equations with infinite delay in Hilbert spaces.

Let us consider (ζn)n∈Z a stationary Gaussian sequence with correlation function holds R(n) =

E(ζ0ζn) = n
2H−2

k L(n), with H ∈
(
1
2 , 1
)

and L → ∞. Let G denote the Hermite function of rank

H. Also, if G admits the following,

G(ρ) =
∑
j≥0

cjHj(ρ), cj =
1

j!
E(G(ζ0H(ζ0))),

then H = min{j|cj ̸= 0} ≥ 1. Hj(ρ) = (−1)je
ρ2

2
∂j

∂ρj
e−

ρ2

2 , where Hj(ρ) is the Hermite polynomial

of degree j. Then by the Non-central Limit Theorem, 1
nH

∑j=1
[nt] G(ζj) converges as n → ∞ in the

sense of finite-dimensional distributions to the process

RH
K(ρ) = c(H,K)

∫
R

∫ 1

0

 K∏
j=1

(ξ − ϑ)
−( 1

2+
1−H
K )

+

 dW (ϑ1) · · · dW (ϑK), (1.1)

The (1.1) is a Wiener integral of order K with respect to the standard Brownian motion (W (ϑ))ϑ∈R

and c(H,K) is normalizing constant depends on H and K. The process (RH
K(ρ))ρ≥0 is known as the

Hermite process.



CUBO
25, 3 (2023)

Approximate controllability of non-instantaneous... 469

• If K = 1, the process (1.1) is the fractional Brownian motion with Hurst index H ∈
(
1
2 , 1
)
.

• If K = 2, the process given by (1.1) is called the Rosenblatt process, and it is not a Gaussian

process, see [36,37].

Fractional Brownian motion is a Gaussian stochastic process, which depends on a parameter H ∈
(0, 1) called the Hurst index established by Kolmogorov [24]. For further reference on fractional

Brownian motion, we refer the reader to [28]. There is another process like Rosenblatt’s process

with a non-Gaussian character, which contributes to the other properties for H > 1/2, the long

memory property. Self-similar processes with long-range dependence are seen in a variety of fields,

including econometrics, internet traffic, hydrology, turbulence, and finance. The Rosenblatt process

is a self-similar process with stationary increments that occurs as the limit of long-range-dependent

stationary series. Still, it is not a Gaussian process, however, in real situations when the Gaussianity

is not plausible for the model, one can use the Rosenblatt process. Comparatively, Rosenblatt

process gains its interest due to its convolution of the dependence structures and the property of

non-Gaussianity. Therefore, it seems stimulating to establish the SDEs with Rosenblatt process.

Observations of stock price processes suggest that they are not self-similar. In particular, in [5,22],

the authors established the existence and uniqueness of mild solutions for stochastic differential

equations driven by the Rosenblatt process with finite delay. Recently, in [7, 8, 34, 35, 38], the

authors analyzed the stability and controllability of the stochastic functional differential equation

driven by the Rosenblatt process. Also, many real-life phenomena and processes are characterized

by abrupt changes in their state variable. These changes can be classified into two types: (i) In the

first type, the changes take place over a relatively short period compared to the overall duration of

the whole process, known as instantaneous impulses. (ii) In the second type, these changes start

impulsively at certain times and remain active for certain intervals, known as non-instantaneous

impulses. A well-known application of non-instantaneous impulses is the introduction of insulin

into the bloodstream, which is an abrupt change. The resulting absorption is gradual because it

remains active for a finite time interval. Models of this situation are created using differential and

integrodifferential equations of non-instantaneous pulses detailed in [21,23].

Approximate controllability refers to moving a system from an arbitrary initial state to a state

arbitrarily close to a final state using only certain admissible controls. Recently, many authors have

established results on the approximate controllability of first, second, and fractional-order differen-

tial equations with impulses; [1,14,32], and the references cited there. In references [12,16,39], the

authors studied the approximate controllability of fractional stochastic Hilfer integrodifferential

equations.

Motivated by this consideration, in this paper, we investigate the existence of mild solutions and

approximate controllability of non-instantaneous impulsive stochastic integrodifferential equations
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driven by the Rosenblatt process having the following form:

dϑ(ρ) = [Aϑ(ρ) +

∫ ρ

0

Γ(ρ− s)ϑ(s)ds+ Bu(ρ) + F(ρ, ϑ(ρ))]dρ+ G(ρ, ϑ(ρ))dRH(ρ),

ρ ∈ ∪m
i=0(si, ρi+1),

ϑ(ρ) = pi(ρ, ϑ(ρ
−
i )), ρ ∈ ∪m

i=1(ρi, si],

ϑ(0) = ϑ0,

(1.2)

where 0 = ρ0 = s0 < ρ1 < · · · < sm < ρm+1 = b, J = [0, b], ϑ(·) takes values in the separable

Hilbert space H with inner product ⟨·, ·⟩ and norm ∥·∥. A : D(A) ⊂ H → H and Γ(ρ) : D(Γ(ρ)) ⊂
H → H are closed linear unbounded operators with D(Γ(ρ)) ⊃ D(A). {RH(ρ)}ρ≥0 is Q-Rosenblatt

process with Hurst index H ∈ ( 12 , 1) defined in a complete probability space (Ω, ,F , {Fρ}ρ≥0;P)

with values in a Hilbert space K. The functions pi(ρ, ϑ(ρ−i )) represent non-instantaneous impulses

in the intervals (ρi, si], i = 1, 2, . . . ,m, and the functions F : [0, b] × H → H, G : [0, b] × H →
L2
0(K,H) are appropriate functions wich will be specified later. The control function u(·) is given

in L2
Fρ

([0, b],U) of admissible control functions, where L2
Fρ

([0, b],U) is the Hilbert space of all Fρ-

adopted, square integrable processes; U is a Hilbert space; B is a bounded linear operator from U

into H.

More specifically, our work focuses on developing a set of new, good criteria for the existence of

mild solutions and approximate controllability of non-instantaneous impulsive stochastic integro-

differential equations driven by the Rosenblatt process having the following abstract form (1.2).

The main contributions of our work, in particular, are summarized in the three aspects listed

below:

• A new class of non-instantaneous impulsive partial stochastic integrodifferential equations

driven by the Rosenblatt process in Hilbert spaces is formulated.

• Initially, we establish the existence and uniqueness of mild solutions of the system above using

stochastic analysis theory and the fixed point technique combined with resolvent operator

theory.

• In comparison to [6, 17,23], we enhance the approach and ease the conditions.

• Non-instantaneous impulsive partial stochastic integrodifferential equations driven by the

Rosenblatt process in Hilbert spaces have received little attention in the literature. In order

to bridge this gap, we have looked into the approximate controllability of (1.2).

This paper is organized as follows. In Section 2, we give some preliminaries, basic definitions, and

results, which will be used in the sequel. In Section 3, the existence and approximate controllability

outcomes of the considered system (1.2) are discussed. Section 4 illustrates the derived theoretical
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results through an example. Section 5 presents the conclusion and future direction of works in the

last part of this work.

2 Preliminaries

Throughout this paper, X, Y, H represent the real separable Hilbert spaces and (Ω,F , {Fρ}ρ≥0;P)

be a complete probability space with natural filtration (Fρ)ρ≥0, where Fρ, the Random variables

generate σ-algebra
{
βH(s),W (s), s ∈ [0, ρ]

}
and P-null sets. We denote by L2

Fρ
([0, b],H) the

space of all square integrable and Fρ-adapted process from [0, b] to H and L(X,H), L(Y,H) are

respectively, the space of bounded linear operators from X to H and Y to H. For convenience, the

same notation ∥·∥ is used to denote the norms in X, H, Y, L(X,H) and L(Y,H) and the inner

product of X, H, Y is denoted by ⟨·, ·⟩.

Let C([0, b], L2(Ω,H)) be the space of all continuous Fρ-adapted measurable processes from [0, b]

to L2(Ω,H) that satisfy sup
ρ∈[0,b]

E∥ϑ(ρ)∥2 < ∞. Then, it is easy to see that C
(
[0, b], L2(Ω,H)

)
is a

Banach space equipped with the following norm :

∥ϑ∥C =

(
sup

ρ∈[0,b]

E∥ϑ(ρ)∥2
) 1

2

. (2.1)

Let

Vq =
{
ϑ ∈ C([0, b], L2(Ω,H)) : ∥ϑ∥2C ≤ q

}
. (2.2)

2.1 Rosenblatt process

Consider a time interval [0, b] with arbitrary fixed horizon b and {RH(ρ), ρ ∈ [0, b]} the one dimen-

sional Rosenblatt process with parameter H ∈ ( 12 , 1), R
H has the following integral representation

[37]

RH(ρ) = q(H)

∫ ρ

0

∫ ρ

0

[∫ ρ

ϑ1∨ϑ2

∂KH′

∂u
(u, ϑ1)

∂KH′

∂u
(u, ϑ2)du

]
dW1(ϑ1)dW1(ϑ2), (2.3)

where KH(ρ, s) is given by

KH(ρ, s) = cHs
1
2−H

∫ ρ

s

(u− s)H−3/2uH−1/2du for ρ > s,

with

cH =

√
H(2H− 1)

β(2− 2H,H− 1
2 )
,
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β(·, ·) denotes the Beta function, KH(ρ, s) = 0 when ρ ≤ s, {W1(ρ), ρ ∈ [0, b]} is a Brownian

motion, H′ = H+1
2 and q(H) = 1

H+1

√
H

2(2H−1) is a normalizing constant. The covariance of the

Rosenblatt process {RH(ρ), ρ ∈ [0, b]} satisfies

E(RH(ρ)RH(s)) =
1

2

(
s2H + ρ2H − |s− ρ|2H

)
and this structure of {RH(ρ)}ρ∈[0, b] allows us to represent it as a Wiener integral.

Let RH
Q(ρ) be a K-valued Rosenblatt process with covariance Q as

RH
Q(ρ) = RQ(ρ) =

∞∑
n=1

√
δnξn(ρ)en, ρ ≥ 0.

Next, we introduce the space L2
0(K,H) of all Q-Hilbert-Schmidt operators Ψ : K → H. Recall that

Ψ ∈ L(K,H) is called a Q-Hilbert-Schmidt operator if

∥Ψ∥ =

∞∑
n=1

∥
√
δnΨen∥2 <∞,

and that the space L2
0 equipped with the inner product < ϕ,ψ >L2

0
=

∞∑
n=1

< ϕen, ψen >, is a

Hilbert space.

Let ρ : [0, b] → L2(Q1/2K,H) such that

∞∑
n=1

∥K∗
H(ρQ

1/2en)∥L2([0,b];H) <∞. (2.4)

Definition 2.1 (Tudor [37]). Let κ(l) : [0, b] → L2(Q1/2K,H) satisfy (2.4). In that case, the

stochastic integral of κ with respect to the Rosenblatt process RH
Q(ρ) is defined for ρ ≥ 0 as follows

∫ ρ

0

κ(l)dRH
Q(l) :=

∞∑
n=1

∫ ρ

0

κ(s)Q1/2endRn(l) =

∞∑
n=1

∫ ρ

0

∫ τ

0

(K∗
H(κQ

1/2en))(ϑ1, ϑ2)dW1(ϑ1)dW1(ϑ2).

Lemma 2.2 ([34]). For any κ : [0, b] → L2(Q1/2K,H) such that
∑∞

n=1 ∥κQ1/2en∥L1/H([0,b];V) <∞
holds, and for any α, β ∈ [0, b] with β > α, we have

E

∥∥∥∥∥
∫ β

α

κ(ρ)dRQ(ρ)

∥∥∥∥∥
2

≤ cH(β − α)2H−1
∞∑

n=1

∫ β

α

∥κ(ρ)Q1/2en∥2dρ.

If, in addition,
∞∑

n=1

∥κ(ρ)Q1/2en∥ is uniformly convergent for ρ ∈ [0, b],
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then, it holds that

E

∥∥∥∥∥
∫ β

α

κ(ρ)dRQ(ρ)

∥∥∥∥∥
2

≤ cH(β − α)2H−1

∫ β

α

∥κ(ρ)∥2L2(Q1/2K,V)dρ.

For further references, we refer to [19,37].

2.2 Integrodifferential equations in Banach spaces

We recall some knowledge of partial integrodifferential equations and the related resolvent opera-

tors. Let D be the Banach space D(A) equipped with the graph norm defined by

∥ϑ∥D := ∥Aϑ∥+ ∥ϑ∥ for ϑ ∈ D.

We denote by C(R+,D), the space of all functions from R+ into D which are continuous. Let us

consider the following system for further purposes: ϑ′(ρ) = Aϑ(ρ) +

∫ ρ

0

Γ(ρ− s)ϑ(s)ds for ρ ≥ 0

ϑ(0) = ϑ0 ∈ D.
(2.5)

Definition 2.3 ([20]). A resolvent operator for equation (2.5) is a bounded linear operator valued

function Ψ(ρ) ∈ L(H) for ρ ≥ 0, having the following properties :

(i) Ψ(0) = I (the identity map of H) and ∥Ψ(ρ)∥ ≤ Neβρ for some constants N > 0 and β ∈ R.

(ii) For each ϑ ∈ H, Ψ(ρ)ϑ is strongly continuous for ρ ≥ 0.

(iii) For ϑ ∈ H,Ψ(·)ϑ ∈ C1(R+;H) ∩ C(R+;D) and

Ψ′(ρ)ϑ = AΨ(ρ)ϑ+

∫ ρ

0

Γ(ρ− s)Ψ(s)ϑds = Ψ(ρ)Aϑ+

∫ ρ

0

Ψ(ρ− s)Γ(s)ϑds, for ρ ∈ [0, b].

Next, we assume A and (Γ(ρ))ρ≥0 satisfy the following conditions:

(R1) The operator A is the infinitesimal generator of a strongly continuous semigroup (T(ρ))ρ≥0

on H.

(R2) For all ρ ≥ 0, the operator Γ(ρ) is closed and linear from D(A) to Y and Γ(ρ) ∈ L(B,H).

For any ϑ ∈ H, the map ρ 7→ Γ(ρ)ϑ is bounded, differentiable and the derivative ρ 7→ Γ′(ρ)ϑ

is bounded and uniformly continuous for ρ ≥ 0.

Theorem 2.4 ([20]). Assume that (R1)-(R2) hold. Then, there exists a unique resolvent operator

of the Cauchy problem (2.5).
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We have the following useful results.

Theorem 2.5 ([13]). Let the assumptions (R1) and (R2) be satisfied. Let the C0-semigroup

(T(ρ))ρ≥0 generated by A be compact for ρ > 0. Then the corresponding resolvent operator

(Ψ(ρ))ρ≥0 of equation (1.2) is also compact for ρ > 0.

Lemma 2.6 ([13]). Let the assumptions (R1) and (R2) be satisfied. Then, there exists a constant

L = L(b) such that

∥Ψ(ρ+ ε)−Ψ(ε)Ψ(ρ)∥L(H) ≤ L(ε), for 0 < ε ≤ ρ ≤ b.

Based on these, we have the following Theorem establishing the equivalence between operator-norm

continuity of the semigroup generated by A and the resolvent operator (Ψ(ρ))ρ≥0 corresponding

to the linear equation (2.5).

Theorem 2.7 ([25]). Let A be the infinitesimal generator of a C0-semigroup (T(ρ))ρ≥0 and let

(Γ(ρ))ρ≥0 satisfy (R2). Then the resolvent operator (Ψ(ρ))ρ≥0 for Eq. (2.5) is operator-norm

continuous (or continuous in the uniform operator topology) for ρ > 0 if and only if (T(ρ))ρ≥0 is

operator-norm continuous for ρ > 0.

Now, we introduce the space Cb = PC([0, b], L2(Ω,H)) formed by all H−valued stochastic processes

{ϑ(ρ), ρ ∈ [0, b] such that ϑ|Ii ∈ C(Ii,H) for all w ∈ Ω, i = 0, 1, . . . ,m, and there exist

ϑ(ρ−i ) and ϑ(ρ+i ), i = 1, 2, . . . ,m with ϑ(ρ−i ) = ϑ(ρi) and supρ∈[0,b] E∥ϑ(ρ)∥2 <∞}

endowed with the norm

∥ϑ∥PC =

(
sup

ρ∈[0,b]

E∥ϑ(ρ)∥2
)1/2

, (2.6)

where Ii = (ρi, ρi+1], i = 0, 1, . . . ,m.

Now, we define the mild solution of Eq. (1.2) expressed by the resolvent operator Ψ(ρ) as follows.

Definition 2.8. A H-valued stochastic process ϑ ∈ C([0, b], L2(Ω,H)) is called a mild solution of

the stochastic problem (1.2), if

(1) ϑ(ρ) is Fρ−adapted and measurable for each ρ ≥ 0.

(2) ϑ(ρ) has càdlàg paths on ρ ∈ [0, b] a.s. and for each ρ ∈ [0, b], ϑ(ρ) satisfies ϑ(ρ) =

pi(ρ, ϑ(ρ
−
i )) for all ρ ∈ (ρi, si], i = 1, 2, . . . ,m and ϑ(ρ) is the solution of the following

integral equations
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ϑ(ρ) = Ψ(ρ)ϑ0 +

∫ ρ

0

Ψ(ρ− s) F(s, ϑ(s)) ds +

∫ ρ

0

Ψ(ρ− s) Bu(s) ds

+

∫ ρ

0

Ψ(ρ− s)G(s, ϑ(s))dRH(s) ds, for ρ ∈ [0, ρ1], (2.7)

ϑ(ρ) = Ψ(ρ− si)pi(si, ϑ(ρ
−
i )) +

∫ ρ

si

Ψ(ρ− s) F(s, ϑ(s)) ds +

∫ ρ

si

Ψ(ρ− s) Bu(s) ds

+

∫ ρ

si

Ψ(ρ− s)G(s, ϑ(s))dRH(s) ds, for ρ ∈ [si, ρi+1], i = 1, 2, . . . ,m.

Let us denote the state value of the system (1.2) at the time ρ by ϑρ = ϑ(ρ;ϑ0, u) with respect to

initial value ϑ0 and the control function u. The set of all final states is known as reachable set of

the system (1.2) and defined as M(b, ϑ0, u) =
{
ϑb = ϑ(b;ϑ0, u) : u ∈ L2([0, b],U)

}
.

Definition 2.9. Eq. (1.2) is said to be approximately controllable on the interval [0, b], if

M(b, ϑ0, u) = L2(Ω,H),

that is, for arbitrary ε > 0, it is possible to steer the state from the point ϑ0 to within a distance ε

from all points in the state space L2(Ω,H) at time b.

To discuss the approximate controllability of system (1.2) we introduce the following operators.

(1) The controllability Grammian Πb
0 is defined by:

Πρi+1
si =

∫ ρi+1

si

Ψ(ρi+1 − s)BB∗Ψ∗(ρi+1 − s)ds,

where B∗ and Ψ∗(ρ) denote the adjoint of the operators B and Ψ(ρ).

(2) W (γ,Π
ρi+1
si ) = (γ Id +Π

ρi+1
si )−1.

In the sequel we assume that the operator W (γ,Π
ρi+1
si ) satisfies

(H0) γW (γ,Π
ρi+1
si ) → 0 as γ → 0+ in the strong operator topology.

The above condition (H0) is equivalent to the approximate controllability of the linear system.
dϑ(ρ)

dρ
= Aϑ(ρ) +

∫ ρ

0

Γ(ρ− s)ϑ(s)ds+ Bu(ρ), ρ ∈ [0, b],

ϑ(0) = ϑ0.

(2.8)
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In fact, we have that

Theorem 2.10 ([4, 10]). The following statements are equivalent:

(i) The control system (2.8) is approximately controllable on [0, b].

(ii) B∗Ψ∗(ρ)ϑ = 0 for all ρ ∈ [0, b] imply ϑ = 0.

(iii) The condition (H0) holds.

Lemma 2.11 ([27]). For any ϑρi+1 ∈ L2(Ω,Fρi+1 ,H), there exist Φi ∈ L2(Ω; L2([si, ρi+1];L
0
2(Y,H))),

such that ϑρi+1
= Eϑρi+1

+

∫ ρi+1

si

Φi(s)dR
H(s).

Our results are based on the following Krasnoselskii’s and Schauder’s fixed point theorem.

Theorem 2.12 (Krasnoselskii’s theorem [32]). Let B be a closed, bounded and convex subset of a

Banach space H, and let Φ1,Φ2 be maps of B into H such that Φ1ϑ1+Φ2ϑ2 ∈ B, for all ϑ1, ϑ2 ∈ B.

If Φ1 is a contraction and Φ2 is continuous and compact, then the equation ϑ = Φ1ϑ+Φ2ϑ has a

solution on B.

Theorem 2.13 (Schauder’s theorem [33]). If B is a closed, bounded and convex subset of a Banach

space H and F : B → B is completely continuous, then F has a fixed point in B.

3 Approximate controllability results

This section proves the approximate controllability of the stochastic control system (1.2). Let

M = supρ∈[0,b]∥Ψ(ρ)∥. In order to establish the results, we impose the following hypotheses.

(C1) T(ρ) is compact for ρ > 0.

(C2) The maps pi : bi ×H → H, bi = [ρi, si], i = 1, 2, . . . ,m are continuous functions and satisfy

(a) There exist constants Dpi > 0, i = 1, 2, . . . ,m, such that

E∥pi(ρ, ϑ)∥2 ≤ Dpi(1 + E∥ϑ∥2), ∀ρ ∈ bi and ϑ ∈ H.

(b) There exist constants Rpi > 0, i = 1, 2, . . . ,m, such that

E∥pi(ρ, ϑ1)− pi(ρ, ϑ2)∥2 ≤ RpiE∥ϑ1 − ϑ2∥2, ∀ρ ∈ bi and ϑ1, ϑ2 ∈ H.

(C3) The map F : b0 ×H → H, b0 =

m⋃
i=0

[si, ρi+1] is a continuous function and satisfies
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(a) There exists a constant MF > 0 such that

E∥F(ρ, ϑ)∥2 ≤ MF(1 + E∥ϑ∥2), ∀ρ ∈ b0 and ϑ ∈ H.

(b) There exists a constant RF > 0 such that

E∥F(ρ, ϑ1)− F(ρ, ϑ2)∥2 ≤ RFE∥ϑ1 − ϑ2∥2, ∀ρ ∈ b0 and ϑ1, ϑ2 ∈ H.

(C4) The map G : b0 ×H → L0
2, is a continuous function and satisfies

(a) There exists a constant MG > 0 such that

E∥G(ρ, ϑ)∥2 ≤ MG(1 + E∥ϑ∥2), ∀ρ ∈ b0 and ϑ ∈ H.

(b) There exists a constant RG > 0 such that

E∥G(ρ, ϑ1)− G(ρ, ϑ2)∥2 ≤ RGE∥ϑ1 − ϑ2∥2, ∀ρ ∈ b0 and ϑ1, ϑ2 ∈ H.

(C5) The following inequalities hold

(a) max
0≤i≤m

Ni < 1,

(b) max
1≤i≤m

Dpi < 1,

(c) max
1≤i≤m

{M2∥B∥2Ru0ρ
2
1, Rpi , 2

(
M2Rpi +M2∥B∥2Ruiρ

2
i+1

)
} < 1.

(C6) The linear control system (2.8) is approximately controllable on [0, b].

For any γ > 0, we define the operator S(γ) : C([0, b], L2(Ω,H)) → C([0, b], L2(Ω,H)) by

(S(γ)ϑ)(ρ) = Ψ(ρ)ϑ0 +

∫ ρ

0

Ψ(ρ− s) F(s, ϑ(s)) ds +

∫ ρ

0

Ψ(ρ− s) Bu(γ)(s, ϑ) ds

+

∫ ρ

0

Ψ(ρ− s)G(s, ϑ(s))dRH(s), ∀ρ ∈ [0, ρ1]

and

(S(γ)ϑ)(ρ) = Ψ(ρ− si)pi(si, ϑ(ρ
−
i )) +

∫ ρ

si

Ψ(ρ− s) F(s, ϑ(s)) ds +

∫ ρ

si

Ψ(ρ− s) Bu(γ)(s, ϑ) ds

+

∫ ρ

si

Ψ(ρ− s)G(s, ϑ(s))dRH(s), ∀ρ ∈ [si, ρi+1], i = 1, 2, . . . ,m,
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where,

u(γ)(s, ϑ) = B∗Ψ∗(ρi+1 − s)(γId +Πρi+1
si )−1

{
Eϑρi+1 +

∫ ρi+1

si

Φi(s)dR
H(s)−Ψ(b− si)pi(si, ϑ(ρ

−
i ))

}
− B∗Ψ∗(ρi+1 − s)

∫ ρi+1

si

(γId +Πρi+1
si )−1Ψ(ρi+1 − s) F(s, ϑ(s)) ds

− B∗Ψ∗(ρi+1 − s)

∫ ρi+1

si

(γId +Πρi+1
s )−1Ψ(ρi+1 − s)G(s, ϑ(s))dRH(s)

and J0(0, ·) = ϑ0, ϑ(ρm+1) = ϑρm+1
= ϑb.

Lemma 3.1. There exist positive constants Rui and Rvi i = 0, 1, . . . ,m, such that for all ϑ1, ϑ2 ∈
Cb, we have

E∥u(γ)(ρ, ϑ1)− u(γ)(ρ, ϑ2)∥2 ≤ Rui∥ϑ1 − ϑ2∥PC , (3.1)

E∥u(γ)(ρ, ϑ)∥2 ≤ Rvi , (3.2)

where

Rui = 3
∥B∥2M4

γ2
{
Rpi + (ρi+1 − si)

2RF + 2RGcH(ρi+1 − si)
2H
}
, (3.3)

Rvi =
4∥B∥2M4

γ2
[
E∥ϑρi+1∥2 +Dpi(1 +M) + (ρi+1 − si)

2 DF(1 +M)

+ cH(ρi+1 − si)
2HDG(1 +M)

]
, ∥ϑ∥2PC ≤ M. (3.4)

Proof. Let ϑ1, ϑ2 ∈ Cb

E∥u(γ)(s, ϑ2)− u(γ)(s, ϑ1)∥2

≤ E
∥∥∥∥B∗Ψ∗(ρi+1 − s)(γId +Πρi+1

si )−1
{
Ψ(b− si)

[
pi(si, ϑ1(ρ

−
i ))− pi(si, ϑ2(ρ

−
i ))
]}

−B∗Ψ∗(ρi+1 − s)

∫ ρi+1

si

(γId +Πρi+1
si )−1Ψ(ρi+1 − s)

[
F(s, ϑ1(s))− F(s, ϑ2(s))

]
ds

−B∗Ψ∗(ρi+1 − s)

∫ ρi+1

si

(γId +Πρi+1
s )−1Ψ(ρi+1 − s)

[
G(s, ϑ1(s))− G(s, ϑ2(s))

]
dRH(s)

∥∥∥∥2
≤ 3∥B∥2M2

γ2

[
M2E

∥∥pi(si, ϑ1(ρ−i ))− pi(si, ϑ2(ρ
−
i ))
∥∥2

+M2(ρi+1 − si)

∫ ρi+1

si

E∥F(s, ϑ1(s))− F(s, ϑ2(s))∥2 ds

+M2cH(ρi+1 − si)
2H−1

∫ ρi+1

si

E∥G(s, ϑ1(s))− G(s, ϑ2(s))∥2 ds

]
≤ 3

∥B∥2M4

γ2
RpiE∥ϑ2 − ϑ1∥2 + 3(ρi+1 − si)RF

∥B∥2M4

γ2

∫ ρi+1

si

E∥ϑ2(s)− ϑ1(s)∥2 ds

+ 6 RGcH(ρi+1 − si)
2H−1 ∥B∥2M4

γ2

∫ ρi+1

si

E∥ϑ2(s)− ϑ1(s)∥2 ds
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≤ 3
∥B∥2M4

γ2
{
Rpi + (ρi+1 − si)

2RF + 2 RGcH(ρi+1 − si)
2H
}
∥ϑ2 − ϑ1∥2PC . (3.5)

Hence,

E∥u(γ)(s, ϑ2)− u(γ)(s, ϑ1)∥2 ≤ Rui∥ϑ2 − ϑ1∥2PC .

The proof of inequality (3.2) is

E∥u(γ)(s, ϑ2)∥2 ≤ E
∥∥∥∥B∗Ψ∗(ρi+1 − s)(γId +Πρi+1

si )−1
{
ϑρi+1

−Ψ(b− si)pi(si, ϑ(ρ
−
i ))
}

− B∗Ψ∗(ρi+1 − s)

∫ ρi+1

si

(γId +Πρi+1
si )−1Ψ(ρi+1 − s) F(s, ϑ(s)) ds

− B∗Ψ∗(ρi+1 − s)

∫ ρi+1

si

(γId +Πρi+1
s )−1Ψ(ρi+1 − s)G(s, ϑ(s))dRH(s)

∥∥∥∥2
≤ 4∥B∥2M2

γ2

[
M2Dpi(1 + E∥ϑ∥2) +M2(ρi+1 − si)

∫ ρi+1

si

DF(1 + E∥ϑ∥2) ds

+M2cH(ρi+1 − si)
2H−1

∫ ρi+1

si

DG(1 + E∥ϑ∥2) ds
]

≤ 4∥B∥2M4

γ2
[
Dpi(1 + E∥ϑ∥2) + (ρi+1 − si)

2 DF(1 + E∥ϑ∥2)

cH(ρi+1 − si)
2H DG(1 + E∥ϑ∥2)

]
.

≤ 4∥B∥2M4

γ2
[
E∥ϑρi+1∥2 +Dpi(1 +M) + (ρi+1 − si)

2 DF(1 +M)

cH(ρi+1 − si)
2H DG(1 +M)

]
.

Hence,

E∥u(γ)(s, ϑ)∥2 ≤ Rvi .

Let the constant M satisfy the inequality

M ≥ max
1≤i≤m

[
Q0

1−N0
,

Dpi

1−Dpi

,
Qi

1−Ni

]
, (3.6)

where

Qi =
16ρ4i+1∥B∥4M4

γ2
E∥ϑρi+1

∥2 +
(
1 +

4∥B∥4M4ρ2i+1

γ2

)[
4M2Dpi + 4M2ρ2i+1MF + 4cHρ

2H
i+1M

2MG

]
,

DJ0 = 0,

Ni =

(
1 +

4∥B∥4M4ρ2i+1

γ2

){
4M2Dpi + 4M2ρ2i+1MF + 4cHρ

2H
i+1M

2MG

}
N0 =

(
1 +

4∥B∥4M4ρ21
γ2

){
4M2ρ21MF + 4cHρ

2H
1 M2MG

}
Q0 =

16ρ41∥B∥4M4

γ2
E∥ϑρ1∥2 +

(
1 +

4∥B∥4M4ρ21
γ2

)[
4M2E∥ϑ0∥2 + 4M2ρ21MF + 4cHρ

2H
1 M2MG

]
.
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Theorem 3.2. Assume that hypotheses (C1)–(C5) hold. Then the system (1.2) has at least one

mild solution on [0, b].

Proof. First, we define two operators Φ1 and Φ2 on

SM = {ϑ ∈ Cb : ∥ϑ∥2PC ≤ M} ⊆ Cb.

as follows

(Φ1ϑ)(ρ) =


Ψ(ρ)ϑ0 +

∫ ρ

0

Ψ(ρ− s)Buγ(s, ϑ)ds, ρ ∈ [0, ρ1],

pi(ρ, ϑ(ρ
−
i )), ρ ∈ (ρi, si],

Ψ(ρ− si)pi(si, ϑ(ρ
−
i )) +

∫ ρ

si

Ψ(ρ− s)Buγ(s, ϑ)ds ρ ∈ (si, ρi+1] ,

and

(Φ2ϑ)(ρ) =



∫ ρ

0

Ψ(ρ− s)F(s, ϑ(s))ds+

∫ ρ

0

Ψ(ρ− s)G(s, ϑ(s))dRH(s) ρ ∈ [0, ρ1],

0 ρ ∈ (ρi, si],∫ ρ

si

Ψ(ρ− s)F(s, ϑ(s))ds+

∫ ρ

si

Ψ(ρ− s)G(s, ϑ(s))dRH(s) ρ ∈ (si, ρi+1] .

The set SM is a bounded closed and convex set in Cb. Next, we prove that the operators Φ1 and

Φ2 satisfy all the conditions of Krasnoselskii’s theorem. For the sake of convenience, we split the

proof into several steps.

Step 1. We prove that Φ1ϑ1 +Φ2ϑ2 ∈ SM for any ϑ1, ϑ2 ∈ SM.

For any ϑ1, ϑ2 ∈ SM and ρ ∈ [0, ρ1], we have

E∥(Φ1ϑ1)(ρ) + (Φ2ϑ2)(ρ)∥2 ≤ 4E∥Ψ(ρ)ϑ0∥2 + 4E
∥∥∥∥∫ ρ

0

Ψ(ρ− s)Buγ(s, ϑ)ds

∥∥∥∥2
+ 4E

∥∥∥∥∫ ρ

0

Ψ(ρ− s)F(s, ϑ(s))ds

∥∥∥∥2 + 4E
∥∥∥∥∫ ρ

0

Ψ(ρ− s)G(s, ϑ(s))dRH(s)

∥∥∥∥2
≤ 4M2E∥ϑ0∥2 + 4M2∥B∥2ρ

∫ ρ

0

E ∥uγ(s, ϑ)∥2 ds

+ 4M2

∫ ρ

0

E ∥F(s, ϑ(s))∥2 ds+ 4M2cHρ
2H−1

∫ ρ

0

E ∥G(s, ϑ(s))∥2 ds

≤ 4M2E∥ϑ0∥2 +
4∥B∥4M4ρ21

γ2

[
4E∥ϑρ1

∥2 + 4M2E∥ϑ0∥2 + 4M2ρ21 DF(1 +M)

+ 4M2cHρ
2H
1 DG(1 +M)

]
+ 4M2ρ21 DF(1 +M) + 4M2cHρ

2H
1 DG(1 +M)
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≤ 16ρ41∥B∥4M4

γ2
E∥ϑρ1∥2 +

(
1 +

4∥B∥4M4ρ21
γ2

)
×
{
4M2E∥ϑ0∥2 + 4M2ρ21MF(1 +M) + 4cHρ

2H
1 M2MG(1 +M)

}
.

Hence,

E∥(Φ1ϑ1)(ρ) + (Φ2ϑ2)(ρ)∥2 ≤ Q0 +N0M ≤ M. (3.7)

For any ϑ1, ϑ2 ∈ SM, and ρ ∈ (ρi, si], i = 1, 2, . . . ,m, we have

E∥(Φ1ϑ1)(ρ) + (Φ2ϑ2)(ρ)∥2 = E∥pi(ρ, ϑ1(ρ−i ))∥
2 ≤ Dpi(1 + E∥ϑ1∥2).

Hence,

E∥(Φ1ϑ1)(ρ) + (Φ2ϑ2)(ρ)∥2 ≤ Dpi(1 +M) ≤ M. (3.8)

For any ϑ1, ϑ2 ∈ SM, and ρ ∈ (si, ρi+1], i = 1, 2, . . . ,m, we have

E∥(Φ1ϑ1)(ρ) + (Φ2ϑ2)(ρ)∥2 ≤ 4M2E∥pi(si, ϑ(ρ−i ))∥
2 + 4E

∥∥∥∥∫ ρ

si

Ψ(ρ− s)Buγ(s, ϑ)ds

∥∥∥∥2
+ 4E

∥∥∥∥∫ ρ

si

Ψ(ρ− s)∥F(s, ϑ(s))ds
∥∥∥∥2 + 4E

∥∥∥∥∫ ρ

si

Ψ(ρ− s)G(s, ϑ(s))dRH(s)

∥∥∥∥2
≤

16ρ4i+1∥B∥4M4

γ2
E∥ϑρi+1

∥2 +
(
1 +

3∥B∥4M4ρ2i+1

γ2

)
×
{
4M2Dpi(1 +M) + 4M2ρ2i+1MF(1 +M) + 4cHρ

2H
i+1M

2MG(1 +M)
}

≤
16ρ4i+1∥B∥4M4

γ2
E∥ϑρi+1

∥2

+

(
1 +

4∥B∥4M4ρ2i+1

γ2

)[
4M2Dpi + 4M2ρ2i+1MF + 4cHρ

2H
i+1M

2MG

]
+

(
1 +

4∥B∥4M4ρ2i+1

γ2

){
4M2Dpi + 4M2ρ2i+1MF + 4cHρ

2H
i+1M

2MG

}
M.

Hence,

E∥(Φ1ϑ1)(ρ) + (Φ2ϑ2)(ρ)∥2 ≤ Qi +NiM ≤ M. (3.9)

Equations (3.7)–(3.9) implies that

∥Φ1ϑ1 +Φ2ϑ2∥2PC ≤ M.

Hence, Φ1ϑ1 +Φ2ϑ2 ∈ SM.
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Step 2. Φ2 is continuous on SM. Let {ϑn}∞n=1 be a sequence such that ϑn → ϑ in SM.

For any ρ ∈ (si, ρi+1], i = 0, 1, . . . ,m, we have

E∥(Φ2ϑn)(ρ)− (Φ2ϑ)(ρ)∥2 ≤ 2M2ρi+1

∫ ρ

si

E∥F(s, ϑn(s))− F(s, ϑ(s))∥2ds

+ 4cHM
2ρ2H−1

i+1

∫ ρ

si

E∥G(s, ϑn(s)− G(s, ϑ(s))∥2L0
2
ds

≤
[
2M2RF ρ

2
i+1 + 4cHM

2ρ2Hi+1

]
∥ϑn − ϑ∥2PC .

Hence, E∥(Φ2ϑn)(ρ)− (Φ2ϑ)(ρ)∥2 → 0 as n→ ∞, thus, Φ2 is continuous on SM.

Step 3. We show {(Φ2ϑ)(ρ) : ϑ ∈ SM} is equicontinuous.

For any τ1, τ2 ∈ (si, ρi+1], i = 0, 1, . . . ,m, τ1 < τ2 and ϑ ∈ SM, we obtain

E∥(Φ2ϑ)(τ2) + (Φ2ϑ)(τ1)∥2 ≤ 4MFτ1

∫ τ1

si

∥Ψ(τ2 − s)−Ψ(τ1 − s)∥2(1 +M)ds

+ 4M2MF(1 +M)(τ2 − τ1)
2

+ 8cHρ
2H−1
i+1 MG

∫ τ1

si

∥Ψ(τ2 − s)−Ψ(τ1 − s)∥2(1 +M)ds

+ 8M2cHρ
2H−1
i+1 MG(τ2 − τ1). (3.10)

We conclude that E∥(Φ2ϑ)(τ2) − (Φ2ϑ)(τ1)∥2 → 0 as τ2 → τ1, since the operator Ψ(ρ) is

compact, which implies the continuity of the operator Ψ(ρ). Hence {(Φ2ϑ)(ρ) : ϑ ∈ SM} is

equicontinuous. Also, clearly {(Φ2ϑ)(ρ) : ϑ ∈ SM} is bounded.

Step 4. We show that Z(ρ) = {(Φ2ϑ)(ρ) : ϑ ∈ SM} is relatively compact in H.

Clearly, Z(0) = {0} is compact. Let ε be a real number and ρ ∈ (si, ρi+1], i = 0, 1, . . . ,m be

fixed with 0 < ε < ρ. For any ϑ ∈ SM, we define

(Φε
2ϑ)(ρ) =



∫ ρ−ε

0

Ψ(ρ− ε− s)∥F (s, ϑ(s))ds+
∫ ρ−ε

0

Ψ(ρ− ε− s)G(s, ϑ(s))dRH(s) ρ ∈ [0, ρ1],

0 ρ ∈ (ρi, si],∫ ρ−ε

si

Ψ(ρ− ε− s)F(s, ϑ(s))ds+

∫ ρ−ε

si

Ψ(ρ− ε− s)G(s, ϑ(s))dRH(s) ρ ∈ (si, ρi+1] ,
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and

(Φ∗ε
2 ϑ)(ρ) =



Ψ(ε)

∫ ρ−ε

0

Ψ(ρ− ε− s)F(s, ϑ(s))ds

+Ψ(ε)

∫ ρ−ε

0

Ψ(ρ− ε− s)G(s, ϑ(s))dRH(s) ρ ∈ [0, ρ1],

0 ρ ∈ (ρi, si],

Ψ(ε)

∫ ρ−ε

si

Ψ(ρ− ε− s)F(s, ϑ(s))ds

+Ψ(ε)

∫ ρ−ε

si

Ψ(ρ− ε− s)G(s, ϑ(s))dRH(s) ρ ∈ (si, ρi+1] .

By Lemma 2.6 and using the compactness of
(
Ψ(ε)

)
ε>0

, we deduce that the set Zε(ρ) =

{(Φε
2ϑ)(ρ) : ϑ ∈ SM} is precompact in H for every ε, 0 < ε < ρ. Moreover, by Lemma 2.6

and Hölder’s inequality, for every ρ ∈ (0, ρ1], we obtain:

E∥(Φε
2ϑ)(ρ)−

(
Φ∗ε

2 ϑ
)
(ρ)∥2

≤ 2E
∥∥∥∥Ψ(ε)

∫ ρ−ε

0

Ψ(ρ− s− ε)F(s, ϑ(s))ds−
∫ ρ−ε

0

Ψ(ρ− s)F(s, ϑ(s))ds

∥∥∥∥2
+ 2E

∥∥∥∥Ψ(ε)

∫ ρ−ε

0

Ψ(ρ− s− ε)G(s, ϑ(s))dRH
Q(s)−

∫ ρ−ε

0

Ψ(ρ− s)G(s, ϑ(s))dRH
Q(s)

∥∥∥∥2
= 2E

∥∥∥∥ ∫ ρ−ε

0

[
Ψ(ε)Ψ(ρ− s− ε)−Ψ(ρ− s)

]
F(s, ϑ(s))ds

∥∥∥∥2
+ 2E

∥∥∥∥∫ ρ−ε

0

[
Ψ(ε)Ψ(ρ− s− ε)−Ψ(ρ− s)

]
G(s, ϑ(s))dRH

Q(s)

∥∥∥∥2
≤ 2E

∫ ρ−ε

0

∥∥Ψ(ε)Ψ(ρ− s− ε)−Ψ(ρ− s)
∥∥2∥∥F(s, ϑ(s))∥∥2ds

+ 2E
∫ ρ−ε

0

∥∥Ψ(ε)Ψ(ρ− s− ε)−Ψ(ρ− s)
∥∥2∥∥G(s, ϑ(s))∥∥2dRH

Q(s)

≤ 2L(ε)2ρ

∫ ρ−ε

0

E
∥∥F(s, z(s))∥∥2ds+ 2L(ε)2

∫ ρ−ε

0

E
∥∥G(s, ϑ(s))∥∥2dRH

Q(s)

≤ 3L(ε)2
∫ ρ−ε

0

MF(1 + ∥ϑ(s)∥2)ds+ 3L(ε)2cHb
2H−1

∫ ρ−ε

0

MG(1 + ∥ϑ(s)∥2)ds

≤ 3L(ε)2b2MF(1 +M) + 3L(ε)2cHb
2HMG(1 +M) −→

ε→0
0.

So the set Zε(ρ) = {(Φε
2ϑ)(ρ) : ϑ ∈ SM} is precompact in H by using the total boundedness.

Using this idea again, we obtain

E∥(Φ2ϑ)(ρ)− (Φε
2ϑ)(ρ)∥2 ≤ 3E

∥∥∥∥∫ ρ

0

Ψ(ρ− s)F(s, ϑ(s))ds−
∫ ρ−ε

0

Ψ(ρ− s)F(s, ϑ(s))ds

∥∥∥∥2
+ 3E

∥∥∥∥∫ ρ

0

Ψ(ρ− s)G(s, ϑ(s))dRH
Q(s)−

∫ ρ−ε

0

Ψ(ρ− s)G(s, ϑ(s))dRH
Q(s)

∥∥∥∥2
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≤ 3E
∥∥∥∥∫ ρ

ρ−ε

Ψ(ρ− s)F(s, ϑ(s))ds

∥∥∥∥2 + 3E
∥∥∥∥∫ ρ

ρ−ε

Ψ(ρ− s)G(s, ϑ(s))dRH
Q(s)

∥∥∥∥2
≤ 3M2ε

[ ∫ ρ

ρ−ε

E∥F(s, ϑ(s))∥2ds+ 2cHε
2H−1

∫ ρ

ρ−ε

E∥G(s, ϑ(s))∥2ds
]

≤ 2M2ε2MF(1 +M) + 2M2cHε
2HMG(1 +M) → 0 as ε→ 0.

Similarly, for any ρ ∈ (ei, ρi+1] with i = 1, . . . ,m. Let ei < ρ ≤ s ≤ ρi+1 be fixed and let ε be

a real number satisfying 0 < ε < ρ. If we use Lemma 2.6 and compactness of
(
Ψ(ε)

)
ε>0

, we

deduce that the set Zε(ρ) is precompact in H for every ε, 0 < ε < ρ. Moreover, by Lemma

2.6 and Hölder’s inequality, for every ϑ ∈ SM we have:

E∥(Φε
2ϑ)(ρ)−

(
Φ∗ε

2 ϑ
)
(ρ)∥2

≤ 2E
∥∥∥∥Ψ(ε)

∫ ρ−ε

si

Ψ(ρ− s− ε)F(s, ϑ(s))ds−
∫ ρ−ε

si

Ψ(ρ− s)F(s, ϑ(s))ds

∥∥∥∥2
+ 2E

∥∥∥∥Ψ(ε)

∫ ρ−ε

si

Ψ(ρ− s− ε)G(s, ϑ(s))dRH
Q(s)−

∫ ρ−ε

si

Ψ(ρ− s)G(s, ϑ(s))dRH
Q(s)

∥∥∥∥2
≤ 3
(
L(ε)

)2[
b

∫ ρ−ε

si

E∥∥F(s, ϑ(s))∥2ds+ cHb
2H−1

∫ ρ−ε

si

E∥G(s, ϑ(s))∥2ds
]

≤ 3
(
L(ε)

)2[
b2MF(1 +M) + cHb

2HMG(1 +M)

]
−→
ε→0

0.

So the set Zε(ρ) = {(Φε
2ϑ)(ρ) : ϑ ∈ SM} is precompact in H by using the total boundedness.

Using this idea again, we obtain

E∥(Φ2ϑ)(ρ)− (Φε
2ϑ)(ρ)∥2 ≤ 2E

∥∥∥∥ ∫ ρ

ρ−ε

Ψ(ρ− s)F(s, ϑ(s))ds

∥∥∥∥2 + 2E
∥∥∥∥∫ ρ

ρ−ε

Ψ(ρ− s)G(s)dRH
Q(s)

∥∥∥∥2
≤ 2M2ε2MF(1 +M) + 2M2cHε

2HMG(1 +M) → 0 as ε→ 0.

Therefore, as ε→ 0, there are precompact sets arbitrarily close to the set Z(ρ) = {(Φ2ϑ)(ρ) :

ϑ ∈ SM}. Thus, the set Z(ρ) = {(Φ2ϑ)(ρ) : ϑ ∈ SM} is precompact in H. Finally, by the

Arzelà-Ascoli theorem, we can conclude that the operator Φ2 is continuous and compact.

Step 5. Φ1 is a contraction.

For any ϑ1, ϑ2 ∈ SM and ρ ∈ [0, ρ1], we have

E∥(Φ1ϑ1)(ρ)− (Φ1ϑ2)(ρ)∥2 ≤M2Ru0ρ
2
1∥ϑ2 − ϑ1∥2PC . (3.11)

For any ϑ1, ϑ2 ∈ SM and ρ ∈ (ρi, si], i = 1, 2, . . . ,m, we have

E∥(Φ1ϑ1)(ρ)− (Φ1ϑ2)(ρ)∥2 = E∥pi(ρ, ϑ1(ρ−i ))− pi(ρ, ϑ2(ρ
−
i ))∥

2 ≤ Rpi∥ϑ2 − ϑ1∥2PC . (3.12)
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For any ϑ1, ϑ2 ∈ SM and ρ ∈ (si, ρi+1], i = 1, 2, . . . ,m, we have

E∥(Φ1ϑ1)(ρ)− (Φ1ϑ2)(ρ)∥2 ≤ 2M2Rpi∥ϑ2 − ϑ1∥2PC + 2M2∥B∥2Ruiρ
2
i+1∥ϑ2 − ϑ1∥2PC

= 2M2
(
Rpi + ∥B∥2Ruiρ

2
i+1

)
∥ϑ2 − ϑ1∥2PC . (3.13)

Equations (3.11)–(3.13) and hypothesis (C5) imply that Φ1 is a contraction. The operators

Φ1,Φ2 satisfy all the conditions of Theorem 2.12, then there exists a fixed point ϑ on SM.

Therefore, the system (1.2) has at least on mild solution on [0, b].

Theorem 3.3. Assume that hypotheses (C1)–(C6) hold and the functions F,G are uniformly

bounded on their respective domains. Then the system (1.2) is approximately controllable on [0, b].

Proof. Let ϑγ be a fixed point of Φ1 +Φ2. By using the stochastic Fubini theorem, we obtain

ϑ(γ)(ρi+1) = ϑρi+1
− γ(γId +Πρi+1

si )−1
{
Eϑρi+1

−Ψ(ρi+1 − si)pi(si, ϑ(ρ
−
i ))
}

− γ

∫ ρi+1

si

(γId +Πρi+1
si )−1Φi(s)dR

H(s) + γ

∫ b

0

(γId +Πρi+1
si )−1Ψ(ρi+1 − s) F(s, ϑ(s)) ds

+ γ

∫ ρi+1

si

(γId +Πρi+1
si )−1Ψ(ρi+1 − s)G(s, ϑ(s))dRH(s), i = 0, 1, 2, . . . ,m. (3.14)

Moreover, hypotheses F and G are uniformly bounded. Then there are subsequences, still denoted

by F(s, ϑγ) and G(s, ϑγ), which converge weakly to say F(s) and G(s) respectively in H and L0
2.

From the above equation, we obtain

E∥ϑ(γ)(ρi+1)− ϑρi+1
∥2 ≤ 7E

∥∥γ(γId +Πρi+1
si )−1Eϑρi+1

∥∥2
+ 7E

∥∥∥∥γ ∫ ρi+1

si

(γId +Πρi+1
si )−1Φi(s)dR

H(s)

∥∥∥∥2
+ 7E

∥∥γ(γId +Πρi+1
si )−1Ψ(ρi+1 − si)pi(si, ϑ(ρ

−
i ))
∥∥2

+ 7E

∥∥∥∥∥γ
∫ b

0

(γId +Πρi+1
si )−1Ψ(ρi+1 − s) F(s) ds

∥∥∥∥∥
2

+ 7E
∥∥∥∥γ ∫ ρi+1

si

(γId +Πρi+1
si )−1Ψ(ρi+1 − s)G(s)dRH(s)

∥∥∥∥2
+ 7E

∥∥∥∥∥γ
∫ b

0

(γId +Πρi+1
si )−1Ψ(ρi+1 − s) F(s, ϑγ(s)) ds

∥∥∥∥∥
2

+ 7E
∥∥∥∥γ ∫ ρi+1

si

(γId +Πρi+1
si )−1Ψ(ρi+1 − s)G(s, ϑγ(s))dRH(s)

∥∥∥∥2 .
It follows from (H0), for all 0 ≤ s ≤ b the operator γ(γId + Π

ρi+1
s )−1 → 0 as γ → 0+, and

∥(γId +Π
ρi+1
s )−1∥2 ≤ 1 and by using the Arzelà-Ascoli theorem, one can prove that the operator
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l̄(·) →
∫ ρi+1

si

Ψ(· − s)l̄(s)ds is compact, we obtain

E∥ϑ(γ)(ρi+1)− ϑρi+1
∥2 → 0 as γ → 0+.

This gives the approximate controllability of system (1.2) on [0, b].

Now, we are going to prove the approximate controllability of the stochastic system (1.2) by using

another method, namely Schauder’s fixed point theorem with some other hypotheses, which are

different from hypotheses of the Theorems 3.2 and 3.3. In order to establish the approximate

controllability results, we impose the following hypotheses.

(C7) T(ρ) is compact for ρ > 0.

(C8) The function F : J ×H → H satisfy the following conditions

(a) for each ρ ∈ J the function F(ρ, ·) : H → H is continuous for each ϑ ∈ H the function

F(·, ϑ) : J → H is strongly measurable,

(b) for each positive number M, there exists µM ∈ L1(J ,R+) such that

sup
E∥ϑ∥2≤M

E∥F(ρ, ϑ)∥2 ≤ µM(ρ)

and there exists a Λ1 > 0 such that

lim
M−→∞

∫ ρ

0

µM(s)dρ

M
= Λ1 <∞.

(C9) The function G : J × L0
2 satisfies the following conditions

(a) for each ρ ∈ J the function G(ρ, ·) : H → L0
2 is continuous for each ϑ ∈ H the function

G(·, ϑ) : J → L0
2 is strongly measurable,

(b) for each positive number M, there exists vM ∈ L1(J ,R+) such that

sup
E∥ϑ∥2≤M

E∥G(ρ, ϑ)∥2L0
2
≤ vM(ρ)

and there exists a Λ2 > 0 such that

lim
M−→∞

∫ ρ

0

vM(s)dρ

M
= Λ2 <∞.
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Theorem 3.4. Assume that hypotheses (C2) and (C7)–(C9) hold. Then, the system (1.2) has at

least one mild solution on [0, b], provided that

max
1≤i≤m

[
Dpi

(
4∥B∥2M4b2

γ2

)(
4M2Dpi + 4M2bΛ1 + 8M2cHb

2H−1Λ2

)]
< 1. (3.15)

Proof. Consider a set

S′
M = {ϑ ∈ Cb : ∥ϑ∥2PC ≤ M} ⊆ Cb,

where M is constant. The set S′
M is a bounded closed and convex set in Cb.

Now, we define an operator F on Cb by

(Fϑ)(ρ) =



Ψ(ρ)ϑ0 +

∫ ρ

0

Ψ(ρ− s)Buγ(s, ϑ)ds

+

∫ ρ

0

Ψ(ρ− s)F(s, ϑ(s))ds+

∫ ρ

0

Ψ(ρ− s)G(s, ϑ(s))dRH(s), ρ ∈ [0, ρ1],

pi(ρ, ϑ(ρ
−
i )), ρ ∈ (ρi, si],

Ψ(ρ− si)pi(si, ϑ(ρ
−
i )) +

∫ ρ

si

Ψ(ρ− s)Buγ(s, ϑ)ds

+

∫ ρ

si

Ψ(ρ− s)F(s, ϑ(s))ds+

∫ ρ

si

Ψ(ρ− s)G(s, ϑ(s))dRH(s), ρ ∈ (si, ρi+1].

Next, we prove that the operator F satisfies all Schauder’s fixed point theorem conditions.

Now, we prove that there exists M > 0 such that F(S′
M) ⊆ S′

M. If we assume that this assertion is

false, then for any M > 0, we can choose ϑM ∈ S′
M and ρ ∈ [0, b] such that E∥F(ϑM)(ρ)∥2 >M.

For any ρ ∈ [0, ρ1], we have

M < E∥F(ϑM)(ρ)∥2 ≤ 16∥B∥2M4ρ21
γ2

E∥ϑρ1
∥2 +

(
1 +

4∥B∥4M4ρ41
γ2

){
4M2E∥ϑ0∥2

+ 4M2ρ1

∫ ρ

0

µM(s)ds+ 8M2cHρ
2H−1
1

∫ ρ

0

vM(s)ds

}
.

For any ρ ∈ (ρi, si], i = 1, 2, . . . ,m, we have

M < E∥F(ϑM)(ρ)∥2 = E∥pi(ρ, ϑM(ρ−i ))∥
2 ≤ Dpi(1 +M).

Similarly, for ρ ∈ (si, ρi+1], i = 1, 2, . . . ,m, we have

M < E∥F(ϑM)(ρ)∥2 ≤ 16∥B∥2M4ρ21
γ2

E∥ϑρ1
∥2 +

(
1 +

4∥B∥4M4ρ2i+1

γ2

){
4M2Dpi(1 +M)

+ 4M2ρi+1

∫ ρ

0

µM(s)ds+ 8M2ρ2H−1
i+1

∫ ρ

0

vM(s)ds

}
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From the above equations we have for ρ ∈ [0, b]

M < E∥(FϑM)(ρ)∥2 ≤ Q+DpiM+

(
1 +

4∥B∥4M4b2

γ2

){
4M2DpiM

+ 4M2b

∫ ρ

0

µM(s)ds+ 8M2cHb
2H−1

∫ ρ

0

vM(s)ds

}
,

where

Q = max
1≤i≤m

[
16∥B∥2M2

γ2
[ρ21E∥ϑρ1

∥2 + ρ2i+1E∥ϑρi+1
∥2] + 4c0M

2E∥ϑ0∥2 +Dpi + 4ciM
2Dpi

]
.

Dividing both sides of above by M and taking M → ∞, we obtain

1 < Dpi +

(
1 +

4∥B∥4M4b2

γ2

)(
4M2Dpi + 4M2bΛ1 + 8M2cHb

2H−1Λ2

)
.

This contradicts (3.15). Hence, there exists M > 0 such that F(S′
M) ⊆ S′

M.

Adopting the method used in the Theorem 3.1 of the paper [31], one can easily show that F is

a continuous operator. Hence, operator F satisfies all the conditions of the Theorem 2.13, then

there exists a fixed point ϑ on S′
M. Therefore, the system (1.2) has at least one mild solution on

[0, b].

Theorem 3.5. Assume that hypotheses (C2), (C7)–(C9) hold and the functions F,G are uniformly

bounded on their respective domains. Then the stochastic system (1.2) is approximately controllable

on [0, b].

Proof. Using the same arguments as in the Theorem 3.3, one can prove the approximate control-

lability of stochastic system (1.2).

Remark 3.6. We can see that the hypotheses of the Theorem (1.2) and Theorem (3.5) are sufficient

conditions but not necessary to prove the approximate controllability of the stochastic system (1.2).
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4 Application

For an illustration of the obtained theory, we consider the following stochastic integrodifferential

system

d z(ρ, ξ) =

[
∂2z(ρ, ξ)

∂ξ2
+

∫ ρ

0

γ(ρ− s)
∂2z(s, ξ)

∂ξ2
ds+ f1(ρ, z(ρ, ξ)) + u(ρ, ξ)

+g1(ρ, z(ρ, ξ))
dRH(ρ)

dρ

]
dρ, 0 ≤ ξ ≤ π, ρ ∈ (2i, 2i+ 1], i = 0, 1, . . . ,m,

z(ρ, 0) = z(ρ, π) = 0, ρ ≥ 0,

z(ρ, ξ) = sin it.z((2i− 1)−, ξ), ρ ∈ (2i− 1, 2i], i = 1, 2, . . . ,m,

z(0, ξ) = z0(ξ), ξ ∈ [0, π].

(4.1)

where 0 = s0 = ρ0 < ρ1 < s1 < · · · < sm < ρm+1 = b <∞ with ρ1 = 1, si = 2i, ρi = 2i− 1, RH is

a Rosenblatt process. The functions f1, g1 and γ will be described below.

Let H = Y = U = L2([0, π]) with the norm ∥ · ∥. Define A : D(A) ⊂ H → H by Aϑ = ϑ′′ with

domain

D(A) = H2(0, π) ∩H1
0 (0, π).

The spectrum of A consists of the eigenvalues −n2 for n ∈ N⋆, with associated eigenvectors

en :=
√

2
π sin(nϑ), (n = 1, 2, 3, . . . ). Furthermore, the set {en : n ∈ N⋆} is an orthogonal basis in

H. Then

Aϑ =

∞∑
n=1

−n2⟨ϑ, en⟩en, ϑ ∈ H.

It is well known that A is the infinitesimal generator of a strongly continuous semigroup {T(ρ)}ρ≥0

on H, which is compact and is given by

T(ρ)ϑ =

∞∑
n=1

e−n2ρ⟨ϑ, en⟩en, ϑ ∈ H.

In order to define the operator Q : Y → Y, we choose a sequence {vn}n≥1 ⊂ R+, set Qen = vnen

and assume that Tr(Q) =
∑∞

n=1

√
vn <∞. Define the process RH

Q(s) by

RH
Q(s) =

∞∑
n=1

√
vnβ

H
n (ρ)en

where H ∈ ( 12 , 1) and {βH
n}n∈N is a sequence of mutually independent two-sided one-dimensional

fBm and an infinite dimensional space.
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Let Γ : D(A) ⊂ H → H be the operator defined by

Γ(ρ)(z̃) = γ(ρ)Az̃ for ρ ≥ 0 and z̃ ∈ D(A).

In order to rewrite system (4.1) in an abstract form inH, we introduce the following notations ϑ(ρ) = z(ρ, ξ) for ρ ≥ 0 and ξ ∈ [0, π],

ϑ(0) = z(0, ξ) for ξ ∈ [0, π],

and the bounded linear operator B : L2([0, π]) → L2([0, π]) as

Bu(ρ)(ξ) = u(ρ, ξ), ρ ∈ [0, b], ξ ∈ [0, π].

Next, we define the functions F : b0 ×H → H and G : b0 ×H → L2(X,H) as

F(ρ, ϑ(ρ))(ξ) = f1(ρ, ϑ(ρ))(ξ), ϑ ∈ H, ξ ∈ [0, π], (4.2)

G(ρ, ϑ)(ξ) = g1(ρ, ϑ(ρ))(ξ), ϑ ∈ H, ξ ∈ [0, π]. (4.3)

The functions pi : bi × H → H are given by pi(ρ, ϑ(t
−
i ))(ξ) = sin it.z((2i − 1)−, ξ). From the

above choices of the functions and operator Γ(ρ) with B = Id, the system (4.1) takes the following

abstract form
dϑ(ρ) = Aϑ(ρ) +

∫ ρ

0

Γ(ρ− s)ϑ(s)ds+ F(ρ, ϑ(ρ)) + Bu(ρ) + G(s, ϑ(s))
dRH(ρ)

dρ
, ρ ∈ ∪m

i=0(si, ρi+1),

ϑ(ρ) = pi(ρ, ϑ(ρ
−
i )), ρ ∈ ∪m

i=1(ρi, si],

ϑ(0) = ϑ0.

(4.4)

Moreover, Γ(ρ) satisfies (R2) and hence, by Theorem 2.4, Eq. (2.5) has a resolvent operator

(Ψ(ρ))ρ≥0 on H. In particular, if we take F(ρ, ϑ(ρ))(ξ) =
sin ρ

1 + sin ρ
ϑ(ρ)(ξ), and G(ρ, ϑ)(ξ) =

ϑ(ρ)(ξ)

e(1 + eρ)
, we see that, F and G satisfy assumptions (C1) and (C2). Therefore all conditions of

Theorem 3.2 are satisfied. Since the semigroup T(ρ) is compact for ρ > 0, it is clear from Theorem

2.5 that the resolvent operator Ψ(ρ) is compact for all ρ > 0. Therefore, the associated linear

system of (4.1) can not be exactly controllable but may be approximately controllable.

It remains now to verify that (H0) is fulfilled. To this end, we have the following result:

Lemma 4.1 ([30]). Let γ(ρ) ∈ L1(R+) ∩ C1(R+) with primitive O(ρ) ∈ L1
loc(R+) such that O(ρ)

is non-positive, non-decreasing and O(0) = −1. If operator A is self-adjoint and positive semi-

definite, then the resolvent operator Ψ(ρ) associated to (2.5) is self-adjoint as well.
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By Lemma 4.1 above, the resolvent operator Ψ(ρ) of (2.5) is self-adjoint. Thus

Ψ∗(ρ)y = Ψ(ρ)y, y ∈ H.

If Ψ∗(ρ)y = 0, for all ρ ∈ J , thus

Ψ∗(ρ)y = Ψ(ρ)y = 0, ρ ∈ J .

It follows from the fact Ψ(0) = Id that y = 0, so by virtue of Theorem 2.10, (H0) holds. Therefore,

in view of Theorem 3.2 and Theorem 3.3, the stochastic integrodifferential system (4.4) is approx-

imately controllable on J .

Remark 4.2. In this above example, if we choose F(ρ, ϑ) =
1

ρ1/3
sinϑ, we observe that F (ρ, ϑ)

does not satisfy the Lipschitz condition (C3) − b near 0, but it satisfies the hypotheses (C8) (see

[36]). With this setting, Theorem 3.2 can not be applied to the system (4.4), but we can apply the

Theorem 3.3 to the (4.4).

5 Conclusion

In this research, we investigated the approximate controllability for a class of non-instantaneous

impulsive integrodifferential equations driven by the Rosenblatt process. The proposed results

have been carried out using Grimmer resolvent operator, stochastic analysis theory, and fixed

point techniques (Krasnoselskii’s and Schauder’s fixed point theorem). Finally, an example is

provided to illustrate the applicability of our results. We believe our study can open new research

routes in stochastic integrodifferential systems with state-dependent delay and fractional cases.

This article will initiate future work in the above categories.
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