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ABSTRACT

In this article, we have mainly focused on the uniqueness prob-
lem of an L-function L with an L-function or a meromorphic
function f under the condition of sharing the sets, generated
from the zero set of some strong uniqueness polynomials. We
have introduced two new definitions, which extend two exist-
ing important definitions of URSM and UPM in the literature
and the same have been used to prove one of our main results.
As an application of the result, we have exhibited a much im-
proved and extended version of a recent result of Khoai-An-
Phuong [13]. Our remaining results are about the uniqueness
of L-function under weighted sharing of sets generated from
the zeros of a suitable strong uniqueness polynomial, which
improve and extend some results in [12].

RESUMEN

En este arículo nos hemos enfocado principalmente en el
problema de unicidad de una L-función L con una L-función
o una función meromorfa f bajo la condición de compartir
los conjuntos, generados a partir del conjunto de ceros de
algunos polinomios de unicidad fuerte. Hemos introducido
dos definiciones nuevas, que extienden dos importantes defini-
ciones existentes en la literatura de URSM y UPM, y las mis-
mas han sido usadas para probar uno de nuestros resultados
principales. Como una aplicación del resultado, exhibimos
una versión mejorada y extendida de un resultado reciente
de Khoai-An-Phuong [13]. Nuestros resultados restantes son
sobre la unicidad de una L-función bajo la condición de com-
partir conjuntos pesados generados a partir de los ceros de un
polinomio de unicidad fuerte apropiado, que mejora y extiende
algunos resultados en [12].
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1 Introduction

Riemann hypothesis can be generalized by replacing Riemann’s zeta function by the formally

similar, but much more general L-functions. Considering ζ(s) =
∑∞

n=1
1
ns as a prototype in 1989,

Selberg defined a rather general class S of convergent Dirichlet series L(s) =
∑∞

n=1
a(n)
ns which

are absolutely convergent for Re(s) > 1. In the meantime, this so-called Selberg class L-function

became important object of research as it plays a pivotal role in analytic number theory. An

L-function in S need to satisfy the following axioms (see [18]):

(i) Ramanujan hypothesis: a(n) ≪ nϵ for every ϵ > 0.

(ii) Analytic continuation: There is a non-negative integer k such that (s− 1)kL(s) is an entire

function of finite order.

(iii) Functional equation: L satisfies a functional equation of type

ΛL(s) = ωΛL(1− s),

where

ΛL(s) = L(s)Qs
K∏
j=1

Γ(λjs+ νj)

with positive real numbers Q, λj and complex numbers νj , ω with Re νj ≥ 0 and |ω| = 1.

(iv) Euler product hypothesis: L can be written over prime as

L(s) =
∏
p

exp

( ∞∑
k=1

b(pk)/pks

)

with suitable coefficients b(pk) satisfying b(pk) ≪ pkθ for some θ < 1/2, where the product

is taken over all prime numbers p. The degree dL of an L-function L is defined to be

dL = 2

K∑
j=1

λj ,

where λj and K are respectively the positive real number and the positive integer as in axiom

(iii) above.

In this paper we are going to discuss some results under the periphery of value distribution of

L-functions in S. Throughout this paper by an L-function we will mean an L-function of non-zero

degree with the normalized condition a(1) = 1. On the other hand, by meromorphic function f

we mean meromorphic function in the whole complex plane C. Let C = C ∪ {∞}, C∗ = C \ {0}
and N = N ∪ {0}, where C and N denote the set of all complex numbers and natural numbers
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respectively and by Z we denote the set of all integers. Before entering into the detail literature,

let us assume M(C) as the field of meromorphic functions over C and assume f , g be two non-

constant meromorphic functions in M(C). The proofs of the theorems of the paper are heavily

depending on Nevanlinna theory and we assume that the readers are familiar with the standard

notations like the characteristic function T (r, f), the proximity function m(r, f), counting (reduced

counting) function N(r, f) (N(r, f)) that are also explained in [9, 20]. By S(r, f) we mean any

quantity that satisfies S(r, f) = O(log(rT (r, f))) when r → ∞, except possibly on a set of finite

Lebesgue measure. When f has finite order, then S(r, f) = O(log r) for all r. For any f ∈ M(C),

the order of f is defined as

ρ(f) := lim sup
r→∞

log T (r, f)

log r
.

2 Definitions

Before proceeding further, we require the following definitions.

Definition 2.1. For some a ∈ C ∪ {∞}, we define Ef (S) = ∪a∈S{z : f(z) − a = 0}, where

each point is counted according to its multiplicity. If we do not count the multiplicity then the set

∪a∈S{z : f(z)− a = 0} is denoted by Ef (S). If Ef (S) = Eg(S), then we say f and g share the set

S Counting Multiplicity (CM). On the other hand, if Ef (S) = Eg(S) then we say f and g share

the set S Ignoring Multiplicity (IM).

The following definition is more generalized than Definition 2.1 and somehow been inspired from

the idea in [11].

Definition 2.2. Let S1, S2 ⊂ C and if Ef (S1) = Eg(S2) (Ef (S1) = Eg(S2)) holds then we say that

f , g have the same inverse image with respect to the sets S1 and S2 respectively, counting multiplic-

ity (ignoring multiplicity) and abbreviated it as IICM {(S1)(f), (S2)(g)} (IIIM{(S1)(f), (S2)(g)}).

Definition 2.3 ([14]). Let k be a positive integer, b ∈ C and Ek(0; f − b) be the set of all zeros

of f − b, where a zero of multiplicity p is counted p times if p ≤ k, and k + 1 times if p > k. If

Ek(0; f−b) = Ek(0; g−b), we say that f−b, g−b share the 0 with weight k and we write it as f−b

and g−b share (0, k) or f and g share (b, k). For S ⊂ C∪{∞}, we define Ef (S, k) = ∪a∈SEk(a; f),

where k is a non-negative integer or infinity. Clearly Ef (S) = Ef (S,∞). In particular, Ef (S, k) =

Eg(S, k) and Ef ({a}, k) = Eg({a}, k) implies f and g share the set S and the value a with weight

k.

Definition 2.4 ([14]). Let b ∈ C, by N(r, b; f |≥ s) (N(r, b; f |≤ s)) we denote the counting

function of those zeros of f − b of multiplicity ≥ s (≤ s). Also N(r, b; f |≥ s) (N(r, b; f |≤ s)) are

defined analogously.
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Definition 2.5 ([21]). If for some set S ⊂ C, Ef (S) = Eg(S) implies f = g, then we will say S

unique range set of meromorphic function and denote it as URSM.

Definition 2.6. If for two sets S1, S2 ⊂ C, Ef (S1) = Eg(S2) implies f = g, then we will say

{S1, S2} belong to the extended class unique range set of meromorphic function and we denote it

by ECURSM. Similarly we can define extended class unique range set of L-function and denote it

as ECURSL.

Definition 2.7 ([4]). A set S ⊂ C is called a unique range set for meromorphic (entire) functions

with weight k if for any two non-constant meromorphic (entire) functions f and g, Ef (S, k) =

Eg(S, k) implies f = g. We write S is URSMk (URSEk) in short. In case of L-function it is

reasonable to write it as URSLk.

Definition 2.8 ([1]). For a non-zero constant c, if P (f) = cP (g) implies f = g then P is called

a strong uniqueness polynomial for meromorphic function and denote it by SUPM.

Definition 2.9 ([15]). A polynomial P is called a uniqueness polynomial for meromorphic func-

tions if P (f) = P (g) implies f = g and we denote it as UPM.

Definition 2.10. Let P , Q be two polynomials of same degree. Now if f = g for all f , g satisfying

P (f) = Q(g) then, then we call {P,Q} belong to the the extended class of uniqueness polynomial

of meromorphic function and denote it as ECUPM. Similarly we can define extended class of

uniqueness polynomial of L-function and denote it as ECUPL.

Definition 2.11 ([4]). Let P (z) be a polynomial of derivative index k, i.e., P
′
(z) has mutually

k distinct zeros given by d1, d2, . . . , dk with multiplicities q1, q2, . . . , qk respectively. Then P (z) is

said to satisfy the critical injection property if P (di) ̸= P (dj) for i ̸= j, where i, j ∈ {1, 2, . . . , k}.

3 Background and main results

Recently the value distributions of L-functions have been studied exhaustively by many researchers

([10,16,19], etc.). The value distribution of L-function is all about the roots of L(s) = c. In 2007,

regarding uniqueness problem of two L functions, Steuding [19] proved that the number of shared

values can be reduced significantly than that happens in case of ordinary meromorphic function.

Below we invoke the result.

Theorem 3.1 ([19]). Let L1 and L2 be two non-constant L-functions and c ∈ C. If EL1(c) =

EL2(c) holds, then L1 = L2.

Since L-functions possess meromorphic continuations, it will be interesting to investigate under

which conditions an L-function can share a set with an arbitrary meromorphic function. Inspired
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by the question of Gross [8] for meromorphic functions, Yuan-Li-Yi [22] proposed the analogous

question for a meromorphic function f and an L-function L sharing one or two finite sets. Yuan-

Li-Yi [22] answered the question by themselves by proving the following uniqueness result.

Theorem 3.2 ([22]). Let f be a meromorphic function having finitely many poles in C and let

L ∈ S be a non-constant L-function. Let us consider the set S = {w : wn + awm + b = 0}, where

(n,m) = 1, n > 2m+ 4. If Ef (S) = EL(S), then we will have f = L.

Motivated by the results of [22], Khoai-An-Phuong [13] considered a different polynomial, whose

zero set is not same with the set as in Theorem 3.2. Under the CM sharing of this set, they [13]

obtained a uniqueness relation between an L-function and an arbitrary meromorphic function. In

their paper, Khoai-An-Phuong ([13]) consider the polynomial.

P (z) = (m+ n+ 1)

(
n∑

i=0

(
m

i

)
(−1)i

m+ n+ 1− i
zm+n+1−iai

)
+ 1, (3.1)

and (m+ n+ 1)

(∑n
i=0

(
m

i

)
(−1)i

m+n+1−i

)
an+m+1 ̸= −1,−2. Then P ′(z) = (n+m+ 1)zn(z − a)m.

In their recent paper, Khoai-An-Phuong ([13]) obtained the following result.

Theorem 3.3 ([13]). Let f be a non-constant meromorphic function, L be an L-function, P (z)

be defined as in (3.1) and S = {z : P (z) = 0}. If n ≥ 2, m ≥ 2, n+m ≥ 8, then Ef (S) = EL(S)

implies f = L.

Now from Theorem 3.3, the following questions are inevitable:

(1) The considered set in Theorem 3.3 is a particular one and it is clear by Example 6.1 given in

the application part afterwards, that the set is actually a zero set of a particular SUPM. So

it is obvious to explore, whether the set can be generalized by the set of zeros of an arbitrary

SUPM.

(2) In Theorem 3.3, to obtain the uniqueness result between f and L, the authors considered

CM sharing of the set. So is it possible to relax the CM sharing of the set?

(3) The minimum cardinality of the set in Theorem 3.3 is nine. Is it possible to decrease the

cardinality of the set?

In this article, inspired by Theorem 3.3, we have tried to explore and provide the best possible

answer of the above questions. Before going to the result, let us consider the following polynomial,

P (z) = a0 + a1z + a2z
2 + · · ·+ atz

t, (3.2)

of simple zeros with P ′(z) = (z − d1)
q1(z − d2)

q2 · · · (z − dl)
qk , satisfying the following properties:
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(i) P (z) is a critically injective polynomial of degree t ≥ 5 with simple zeros and the derivative

index of it is k ≥ 2 and for k = 2, min{q1, q2} ≥ 2.

(ii) P (z) be a SUPM.

Theorem 3.4. Let f be a non-constant meromorphic function, L be a non-constant L-function,

and P (z) be defined as in (3.2) satisfying properties (i) and (ii) such that S = {z : P (z) = 0}.
Now if Ef (S, 2) = EL(S, 2) and t ≥ 2k + 4, then we have f = L.

In the application part of this article in Example 6.1 , we have considered a more general version

of polynomial (3.1) and by means of Example 6.1 , we have shown that our result Theorem 3.4

improves Theorem 3.3. Also in [12], the authors explored the things in a new direction. They found

some sufficient conditions for a general polynomial to be a uniqueness polynomial for L-function

and found a general unique range sets for L-functions as well. The following result extends the

perimeter of unique range sets for L-functions.

Theorem 3.5 ([12]). Let P (z) be a uniqueness polynomial for L-functions. Suppose that P (z)

has no multiple zeros, and P (1) ̸= 0. Then the set S = {z : P (z) = 0}, is a unique range set for

L-functions, counting multiplicities.

From the statement of Theorem 3.5, it will be interesting to ponder over the answer of the following

question:

Question 3.1. What happens in Theorem 3.5, if P (1) = 0?

In the following theorem, we will deal with the answer of the above question. In fact, in view of

Definition 2.6 and Definition 2.10, we will re-investigate Theorem 3.5 under a broader perspective,

so that the same theorem will automatically be included in our result and at the same time the

question will be answered. Now for the next theorem let us consider Z−(L) to denote the set of

trivial zeros of L in the negative half plane, where each zero is counted according to its multiplicity.

Theorem 3.6. Let S1 = {z : Po(z) = 0} and S2 = {z : Qo(z) = 0} where Po be a uniqueness

polynomial of L-function and Qo = k1Po + k2 and having no multiple zeros. If

(i) k2 = 0 and either Po(1) ̸= 0 or Po(0) ̸= 0 together with Z−(L1) = Z−(L2),

(ii) k2 ̸= 0 and Z−(L1) = Z−(L2), Po(1) ̸= Po(0). Also either Po(1)Qo(1) ̸= 0 or Po(0)Qo(0) ̸=
0; then {Po, Qo} belong to ECUPL and {S1, S2} belong to ECURSL.

Clearly in the above theorem, when k2 = 0 and Po(1) ̸= 0, then Theorem 3.6 is actually Theorem

3.5. Hence this result is an extension of Theorem 3.5.

Considering the IM sharing of set, in [12] the following result was obtained.
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Theorem 3.7 ([12]). Let P (z) be a strong uniqueness polynomial for L-functions, and assume

that P (z) has no multiple zeros, and the degree q, the derivative index k of P satisfy inequality

q ≥ 2k+6. Then the zero set of P (z) is a unique range set, ignoring multiplicities, for L-functions.

As usual it will be interesting to further reduce the cardinality of the set. In the next theorem, we

will show that with the help of weighted sharing of weight two the cardinality of the range set can

significantly be reduced.

Theorem 3.8. Let P (z) be a strong uniqueness polynomial for L-functions with simple zeros, of

degree t and of derivative index k such that t ≥ 2k+3. Then the set S = {z : P (z) = 0} is URSL2.

4 Lemma

Next, we present some lemmas that will be needed in the sequel. Henceforth, we denote by H, the

following function :

H =

(
F ′′

F ′ − 2F ′

F

)
−
(
G′′

G′ − 2G′

G

)
,

Lemma 4.1 ([5]). Let F = P (f) and G = P (g) be non-constant meromorphic functions where

P (z) is defined same as in (3.2). Also let F , G share (0,m) Then,

N
1)
E (r, 0;F ) ≤ N(r,∞;H) + S(r, F ) + S(r,G).

Lemma 4.2. Let F and G be defined same as in Lemma 4.1 and share (0,m). Then,

N(r,∞;H) ≤ N∗(r, 0;F,G) +N(r,∞; f) +N(r,∞; g) +

k∑
i=1

N(r, αi; f) +

k∑
i=1

N(r, αi; g)

+N0(r, 0; f
′) +N0(r, 0; g

′) + S(r, f) + S(r, g),

where N0(r, 0; f
′) is the reduced counting function of those zeros of F ′ where F

∏k
i=1(f − αi) ̸= 0

and N0(r, 0; g
′) is similarly defined and αi , i = 1, 2, . . . , k are distinct zeros of P ′(z).

Proof. Here we are not giving the proof as the similar proof can be found in [14].

Lemma 4.3 ([3]). Let F and G be non-constant meromorphic functions and let F , G share (0,m).

Then,

N(r, 0;F ) +N(r, 0;G)−N
1)
E (r, 0;F ) +

(
m− 1

2

)
N∗(r, 0;F,G) ≤ 1

2
[N(r, 0;F ) +N(r, 0;G)].

Proof. Here we are not giving the proof as the similar proof can be found in [3].
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Lemma 4.4 ([6]). Let P (z) be a polynomial defined as in (3.2) with property (i). Also assume f

and g be two non-constant meromorphic functions such that,

1

P (f)
=

c0
P (g)

+ c1,

c0 ̸= 0. Then we will have c1 = 0.

Lemma 4.5 ([7]). Let P (z) be a polynomial defined as in (3.2) with property (i). Then P (z) will

be a UPM if and only if

∑
1≤l<m≤k

qlqm >

k∑
l=1

ql.

In particular, the above inequality is always satisfied whenever k ≥ 4. When k = 3 and max{q1, q2, q3} ≥
2 or when k = 2, min{q1, q2} ≥ 2 and q1 + q2 ≥ 5, then also the above inequality holds.

Lemma 4.6 ([17]). Let f be a non-constant meromorphic function and let

R(f) =

n∑
k=0

akf
k

m∑
j=0

bjf j

,

be an irreducible rational function in f with constant coefficients {ak} and {bj}, where an ̸= 0 and

bm ̸= 0. Then

T (r,R(f)) = dT (r, f) + S(r, f),

where d = max{n,m}.

Lemma 4.7 ([20]). Let f , g ∈ M(C) and let ρ(f), ρ(g) be the order of f and g, respectively. Then

ρ(f · g) ≤ max{ρ(f), ρ(g)}.

Lemma 4.8. Let L1 and L2 be two non-constant L-functions and for some A > 0, in σ < −A,

Z−(L1) = Z−(L2). Then we can find a infinite sequence of zeros in the same half plane of both

Li, i = 1, 2.

Proof. It is given that in σ < −A, Z−(L1) = Z−(L2). From axiom (iii), let us assume

Li(s) = χi(s)Li(1− s), where

χi(s) = ωiQ
1−2s
i

∏ki

j=1 Γ(λij(1− s) + νij)∏ki

j=1 Γ(λijs+ νij)
, for i = 1, 2.
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In particular, in σ < −A, the poles of
∏k1

j=1 Γ(λ1js+ν1j) and
∏k2

j=1 Γ(λ2js+ν2j) must match, also

the poles of
∏k1

j=1 Γ(λ1j(1− s) + ν1j) and
∏k2

j=1 Γ(λ2j(1− s) + ν2j) must match in σ > A. Also in

−A < σ < 0,
∏k1

j=1 Γ(λ1js+ ν1j) and
∏k2

j=1 Γ(λ2js+ ν2j) can have finitely many poles. It follows

that χ1

χ2
is a meromorphic function with finitely many poles and zeros. So here we can write it as

χ1(s)
χ2(s)

= R(s)eas, where R is a rational function and a is a complex constant. Therefore here we

have,

L1(s) = χ1(s)L1(1− s),

L2(s) = χ1(s)R(s)easL2(1− s).

Then in some σ < −B, where B ≥ A, it is possible to find a sequence {sn(= −n+ν1j

λ1j
)} for some

fixed j, of zeros of χ1(s), which are also zeros of Li(s) and Li(1− s) never vanish in σ > B for

i = 1, 2. Also it can be seen that Re(sn) → −∞ as n → ∞.

5 Proofs of the theorems

Proof of Theorem 3.4. Let us consider the following cases.

Case 1: First assume H = 0. Then integrating we have,

1

P (L)
=

c

P (f)
+ d, (5.1)

where c (̸= 0), d are constants. Clearly from Lemma 4.4 we have, d = 0. As from the

hypothesis of the theorem we know P (z) is a SUPM, from P (f) = cP (L), we have f = L.

Case 2: Next assume H ̸= 0. Using the Second Fundamental Theorem we have,

(t− 1)T (r,L) ≤ N(r, 0;P (L)) +N(r,∞;L) + S(r,L) (5.2)

≤ N(r, 0;P (f)) +O(log r) + S(r,L)

≤ nT (r, f) + S(r,L).

Similarly, we can have,

(t− 2)T (r, f) ≤ nT (r,L) + S(r, f). (5.3)

Clearly (5.2) and (5.3) we have, ρ(f) = ρ(L) = 1 and hence S(r, f) = S(r,L) = S(r) (say).
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Using the Second Fundamental theorem we have,

(t+ k − 1)(T (r, f) + T (r,L)) ≤ N(r, 0;P (f)) +N(r, 0;P (L)) +N(r,∞; f) +N(r,∞;L)

+

k∑
i=1

(N(r, αi; f)) +N(r, αi;L))−N0(r, 0; f
′)−N0(r, 0;L′) + S(r).

i.e.,

(t− 1)T (r,L) + (t− 2)T (r, f) ≤ N(r, 0;P (f))N(r, 0;P (L))−N0(r, 0; f
′) (5.4)

−N0(r, 0;L′) + S(r).

Using Lemmas 4.3, 4.1, 4.2 and 4.6, from (5.4) we have,

(t− 1)T (r,L) + (t− 2)T (r, f) ≤ n

2
{T (r, f) + T (r,L)}+N(r,∞; f) +N(r,∞;L)

+

k∑
i=1

(N(r, αi, f) +N(r, αi;L)) + S(r),

i.e., (
t

2
− 2

)
T (r, f) +

(
t

2
− 1

)
T (r,L) + S(r) ≤ kT (r,L) + (k + 1)T (r, f) + S(r),

(t− 2k − 6)T (r, f) + (t− 2− 2k)T (r,L) ≤ S(r). (5.5)

Using (5.2) we have

(t− 2k − 6)
t− 1

t
T (r,L) + (t− 2− 2k)T (r,L) ≤ S(r). (5.6)

From (5.6) for t ≥ 2k + 4 we arrive at a contradiction.

Proof of Theorem 3.8. Let us consider two non-constant L-functions L1 and L2 such that EL1
(S, 2) =

EL2
(S, 2) where S is the zero set of strong uniqueness polynomial for L-function. Also assume,

F = P (L1) and G = P (L2).

If H = 0, then from Case 1 of Theorem 3.4 we will have, L1 = L2. If H ̸= 0, then proceeding

similarly as done in (5.4), (5.5) we will have a contradiction for t ≥ 2k + 3. Hence finally we will

have L1 = L2.



CUBO
25, 3 (2023)

On uniqueness of L-functions ... 507

Proof of Theorem 3.6. Let us assume for two non-constant L-functions, L1, L2; EL1(S1) = EL2(S2).

Clearly then we can set the auxiliary function

G =
Po(L1)

Qo(L2)
= (s− 1)lep1(s), (5.7)

for some integer l and from Lemma 4.7 we will have p1(s) = as+ b, for some complex constants a,

b. Now let us consider the following cases.

Case 1: First let k2 = 0, i.e., Qo = k1Po.

Subcase 1.1: Po(1) ̸= 0. Then,

G =
(L1 − α1)(L1 − α2) · · · (L1 − αt)

(L2 − α1)(L2 − α2) · · · (L2 − αt)
= k1(s− 1)leas+b, (5.8)

from (5.8) taking limit σ → +∞ we have,

lim
σ→+∞

k1(s− 1)leas+b = 1,

which implies a = l = 0 and then simply k1e
b = 1. Finally we have, Po(L1)

Po(L2)
= 1 and

hence L1 = L2.

Subcase 1.2: Let us assume Po(1) = 0 but Po(0) ̸= 0. Without loss of generality assume

α1 = 1. Again Li can be represented by a Dirichlet series, i.e., Li(s) =
∑∞

n=1
ai(n)
ns , i =

1, 2, absolutely convergent for σ > 1, where ai(1) = 1. Also let n1, n2 be two integers

such that ni = min{n (≥ 2) : ai(n) ̸= 0, i = 1, 2}. So,

L1 − 1

L2 − 1
=

1
ns
1

(
a1(n1) +

∑∞
n>n1

a1(n)(
n1

n )s
)

1
ns
2

(
a2(n2) +

∑∞
n>n2

a2(n)(
n2

n )s
) =

(
n2

n1

)s

G0(s), (5.9)

where,

G0(s) =
a1(n1) +

∑∞
n>n1

a1(n)(
n1

n )s

a2(n2) +
∑∞

n>n2
a2(n)(

n2

n )s
.

By the construction of G0(s) we note that limσ→+∞ G0(s) =
a1(n1)
a2(n2)

. In view of (5.7),

let us consider the following function

G1 = G0(s) ·
(L1 − α2) · · · (L1 − αt)

(L2 − α2) · · · (L2 − αt)
=

L1 − 1

L2 − 1
· qs · (L1 − α2) · · · (L1 − αt)

(L2 − α2) · · · (L2 − αt)
(5.10)

= qs
(L1 − 1)(L1 − α2) · · · (L1 − αt)

(L2 − 1)(L2 − α2) · · · (L2 − αt)
= qsG = k1q

s(s− 1)leas+b,

for some q = n1

n2
(∈ Q+). We can write q = elog q = eq

′
, then we can write it as,



508 Abhijit Banerjee & Arpita Kundu CUBO
25, 3 (2023)

G1 = k1q
s(s− 1)leas+b = k1(s− 1)le(q

′+a)s+b = k1(s− 1)lea
′s+b where a′ = q′ + a. Let

us consider a′ = a1 + ia2 and b = b1 + ib2. With respect to the first equality of (5.10),

taking limit σ → +∞, we have limσ→+∞ G1 = C1, for some constant C1 ∈ C∗. Next

from the second and last equality of (5.10), taking limit σ → +∞, we have

lim
σ→+∞

∣∣∣∣qs (L1 − 1)

(L2 − 1)
· (L1 − α2) · · · (L1 − αt)

(L2 − α2) · · · (L2 − αt)

∣∣∣∣ = |C1| = lim
σ→+∞

|(s− 1)lea
′s+b̂|

= Constant = lim
σ→+∞

|σ − 1 + it|lea1σ−a2t+b1 .

Therefore we must have a1 = 0 = l, otherwise limσ→+∞ |σ− 1+ it|lea1σ−a2t+b1 = ∞ or

0 according as a1 > or < 0 and with the same argument it can be shown that l = 0.

Also,

lim
σ→+∞

e−a2t+b1 = |C1|, ∀t ∈ R,

implies a2 = 0. Hence we have a = a1 + ia2 = 0 and l = 0. Therefore, G1 = k1e
b and

from the last equality of (5.10), we get G = q−sk1e
b, i.e., from (5.8) we have

(L1 − 1)

(L2 − 1)
· (L1 − α2) · · · (L1 − αt)

(L2 − α2) · · · (L2 − αt)
= q−sk1e

b. (5.11)

Now from Lemma 4.8, it is possible to find a sequence sn of trivial zeros in σ < −A,

whose real part diverges, i.e., Re(sn) → −∞, as n → ∞. From (5.11) putting s = sn

we have qRe(−sn)|k1|eRe(b) = 1, taking limit as n → ∞ we will have qRe(−sn) → ∞ or

0, according as q > 1 or < 1. So we must have q = 1 and hence k1e
b = 1. Therefore

Po(L1) = Po(L2) =⇒ L1 = L2.

Case 2: Next let k2 ̸= 0. Then we can write G as,

G =
Po(L1)

k1Po(L2) + k2
=

(L1 − α1)(L1 − α2) · · · (L1 − αt)

(L2 − β1)(L2 − β2) · · · (L2 − βt)
= (s− 1)leas+b. (5.12)

Subcase 2.1: Let us assume Po(1).Qo(1) ̸= 0. From (5.11) taking σ → +∞, we will have,

G = C = non-zero constant. Hence we have, Po(L1) = k′1Po(L2) + k′2. In view of

Lemma 4.8, Putting s = sn we have, k′2 = Po(0)(1− k′1).

Subcase 2.1.1: First let Po(0) = 0, then k′2 = 0. Using the fact Po(1) ̸= 0, with the

same argument as in Subcase 1.1 we will have, Po(L1) = Po(L2) and hence L1 = L2.

Subcase 2.1.2: Next let Po(0) ̸= 0. Then we have Po(L1)−Po(0) = k′1(Po(L2)−Po(0)).

Taking σ → +∞ and noting that Po(0) ̸= Po(1), we have, k′1 = 1 and hence k′2 = 0.

And the from Subcase 1.1 we will have the result.
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Subcase 2.2: Assume Po(1)Qo(1) = 0 but Po(0)Qo(0) ̸= 0.

Subcase 2.2.1: Let us assume Po(1) = 0 = Qo(1). Without loss of generality assume

α1 = β1 = 1. Then proceeding similarly as done in Subcase 1.2 we will have
Po(L1)
Qo(L2)

= constant. Noting that Po(0) ̸= 0, like Subcase 2.1 we can show that the

constant is 1 and so we have L1 = L2.

Subcase 2.2.2: Next let Po(1) = 0 but Qo(1) ̸= 0. Then let α1 = 1 and we can have,

L1 − 1 =
1

ns
1

(
a1(n1) +

∞∑
n>n1

a1(n)
(n1

n

)s)
=

1

ns
1

G1(s),

where G1(s) = ns
1(L1−1) = a1(n1)+

∑∞
n>n1

a1(n)(
n1

n )s and limσ→+∞ G1 = a1(n1).

Now, G =
(L1 − 1)(L1 − α2) · · · (L1 − αn)

(L2 − β1)(L2 − β2) · · · (L2 − βn)
= (s− 1)leas+b.

Let us set a function

G2 = G1
(L1 − α2) · · · (L1 − αn)

(L2 − β1)(L2 − β2) · · · (L2 − βn)
(5.13)

= ns
1

(L1 − 1)(L1 − α2) · · · (L1 − αn)

(L2 − β1)(L2 − β2) · · · (L2 − βn)
= ns

1G = (s− 1)lns
1e

as+b.

Therefore we can write, G2 = (s − 1)lea
′′seb, where a′′ = a + log n1. Next the

first equality of (5.13) implies, limσ→+∞ G2 = Constant. But limσ→+∞ |(s −
1)lea

′′s+b| = 0 or ∞, according as Re(a′′) < or > 0, it follows that Re(a′′) = 0.

Since the limit is independent of t, we will have Im(a′′) = 0. With similar argu-

ments we will have l = 0. Therefore a′′ = 0 = l and we will have from the last

equality of (5.13),

G2 = eb =⇒ G = n−s
1 eb

i.e.,
(L1 − 1)(L1 − α2) · · · (L1 − αn)

(L2 − β1)(L2 − β2) · · · (L2 − βn)
= n−s

1 eb.

Proceeding similarly as in (5.11) we will have, n1 = 1 and then we have G = eb =

Constant. With the help of Subcase 2.1 we will have L1 = L2.

Subcase 2.2.3: Next let Po(1) ̸= 0 but Qo(1) = 0, proceeding in a same way as done

in Subcase 2.2.2 and then using Subcase 2.1 we will have L1 = L2.

Hence {Po, Qo} belong to ECUPL and {S1, S2} belong to ECURSL.
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6 Application

In this section, we show the application of Theorem 3.4. Not only that, next we are going to show

that the much improved version of Theorem 3.3 falls under a special case of our Theorem 3.4.

Below we explain this fact via the following example.

Example 6.1. We are going to consider a new polynomial of degree m+n+1 recently introduced

in [2] as follows:

P (z) =

n∑
j=0

(
n

j

)
(−1)j

m+ n+ 1− j
zm+n+1−jaj (6.1)

+

m∑
i=1

n∑
j=0

(
m

i

)(
n

j

)
(−1)i+j

m+ n+ 1− i− j
zm+n+1−i−jajbi − c = Q(z)− c,

where a and b be distinct such that a, b ∈ C, c ̸= 0, Q(a), Q(b) and m ≥ n + 2 and n ≥ 2. It is

easy to verify that,

P ′(z) = (z − a)n(z − b)m.

Clearly from the choice of c, P (z) has only simple zeros. First we will show that (6.1) is critically

injective, strong uniqueness polynomial with derivative index 2 with m ≥ n+ 2 and n ≥ 2. From

Remark 1 [2, p. 506] it can be shown that P (z) is critically injective polynomial. Next, let us

assume for some constant A ̸= 0 and for two non-constant meromorphic functions f , g with finitely

many poles we have

P (f) = AP (g). (6.2)

By Lemma 4.4, we get,

T (r, f) = T (r, g) +O(1). (6.3)

Also here, N(r,∞; f) = S(r, f) = N(r,∞; g) = S(r, g).

Now, consider the cases,

Case 1: Suppose A ̸= 1. Then

P (f) + c = A(P (g) + c)− c(A− 1), (6.4)

i.e.,

Q(f) = AQ(g)− c(A− 1) =⇒ Q(f)−Q(b) = AQ(g)− (Q(b) + c(A− 1)).

Recall that the only zeros of Q′(z) are a and b. So only possible multiple zeros of ϕ(z) =
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AQ(z) − (Q(b) + c(A − 1)) could be a and b. First assume b is one multiple zero of ϕ(z).

Thus ϕ(b) = 0, i.e.,

AQ(b)− (Q(b) + c(A− 1)) = 0 =⇒ (Q(b)− c)(A− 1) = 0 =⇒ Q(b) = c,

a contradiction as Q(b) ̸= c.

Next assume a is the multiple zero of ϕ(z). It is easy to see that ϕ(z) = (z − a)n+1ϕ1(z),

where ϕ1(a) ̸= 0 and all zeros of ϕ1(z) are simple, namely µj , j = 1, 2, . . . ,m. Notice that

Q(z) − Q(b) = (z − b)m+1ϕ2(z), where ϕ2(b) ̸= 0 and all zeros of ϕ2(z) are simple, namely

νj , j = 1, 2, . . . , n. From (6.4) we have,

N(r, b; f) +

n∑
i=1

N(r, νj ; f) = N(r, a; g) +

m∑
i=1

N(r, µj ; g). (6.5)

Now using the Second Fundamental Theorem we have,

mT (r, g) ≤ N(r, a; g) +

m∑
i=1

N(r, µj ; g) +N(r,∞; g) + S(r, g)

≤ N(r, b; f) +

n∑
i=1

N(r, νj ; f) + S(r, g)

≤ (n+ 1)T (r, f) = (n+ 1)T (r, g) + S(r, g),

this contradicts the fact m ≥ n+ 2.

Hence we see neither a nor b be the multiple zeros of ϕ(z) and hence all the zeros of ϕ(z) are

simple, say δj , j = 1, 2, . . . ,m+ n+ 1. From (6.4) we have,

(m+ n)T (r, g) ≤
m+n+1∑

j=1

N(r, δj ; g) +N(r,∞; g) + S(r, g)

≤ N(r, b; f) +

n∑
i=1

N(r, νj ; f) + S(r, g)

≤ (n+ 1)T (r, f) = (n+ 1)T (r, g) + S(r, g),

a contradiction as m ≥ n+ 2 and n ≥ 2.

Case 2: Assume A = 1.

P (f) = P (g).

Now the zeros of P ′(z) has multiplicities m ≥ 4, n ≥ 2 and m+ n ≥ 6. Hence from Lemma

4.5 we have from above, f = g. Now if we take m = 5, n = 2, then P (z) becomes a
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polynomial of degree 8. So clearly from the above discussion if f be a meromorphic function

and L be an L-function satisfying Ef (S, 2) = EL(S, 2) such that the degree of P (z) becomes

m+n+1 ≥ 8, then by Theorem 3.4, we have f = L. As putting b = 0 in (6.1), we obtain the

polynomial (3.1), for m + n ≥ 7, the result in Theorem 3.3 holds as well. Clearly Theorem

3.4 is a three step improvements of Theorem 3.3:

(1) In Theorem 3.4, we have considered the zero set of an arbitrary SUPM satisfying prop-

erties (i) and (ii). By means of Example 6.1 we know that the polynomial (3.1) is itself

a critically injective SUPM, so in terms of choice of SUPM, Theorem 3.4 is quite a

generalization of Theorem 3.3.

(2) In the light of relaxation of sharing of the zero set Theorem 3.4 improves Theorem 3.3.

(3) Most importantly, it can be verified that the minimum cardinality of the considered set

in Theorem 3.3 is nine, where as we have been able to show that in Theorem 3.3 still

holds for the cardinality of the range set as n +m + 1 ≥ 8. That is the cardinality of

the range set in Theorem 3.3 can further be diminished.

Again since L can be analytically continued as a meromorphic function with only one pole,

then from the above discussion it can be observed that if L1 and L2 share the zero set S of

the polynomial (6.1) with weight two, i.e., EL1(S, 2) = EL2(S, 2) where n+m+ 1 ≥ 7, then

according to Theorem 3.8 we will have L1 = L2.
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