A note on the structure of the zeros of a polynomial and Sendov's conjecture

G. M. $\mathrm{SOFI}^{1, \bowtie(1)}$
W. M. SHAH 1 (D)
${ }^{1}$ Department of Mathematics, Central
University of Kashmir,191201 India.
gmsofi@cukashmir.ac.in ${ }^{\boxtimes}$
wali@cukashmir.ac.in

Abstract

In this note we prove a result that highlights an interesting connection between the structure of the zeros of a polynomial $p(z)$ and Sendov's conjecture.

\section*{RESUMEN}

En esta nota demostramos un resultado que da luces sobre una conexión interesante entre la estructura de los ceros de un polinomio $p(z)$ y la conjetura de Sendov.

Keywords and Phrases: Polynomials, zeros, critical points.
2020 AMS Mathematics Subject Classification: 30A10, 30C15

1 Introduction

Let $p(z):=\sum_{j=0}^{n} a_{j} z^{j}$, where $a_{j} \in \mathbb{C}$ be a polynomial with complex coefficients. If we plot the zeros of a polynomial $p(z)$ and the zeros of its derivative $p^{\prime}(z)$ (the critical points of $p(z)$) in the complex plane, there are interesting geometric relations between the two sets of points. To start with they have the same centroid. We also have the Gauss-Lucas Theorem which states that the critical points of a polynomial p lie in the convex hull of its zeros. Regarding the distribution of critical points of p within the convex hull of its zeros the well known Sendov's Conjecture asserts:
"If all the zeros of a polynomial p lie in $|z| \leq 1$ and if z_{0} is any zero of $p(z)$, then there is a critical point of p in the disk $\left|z-z_{0}\right| \leq 1$."

The conjecture was posed by Bulgarian mathematician Blagovest Sendov in 1958, but is often attributed to Ilieff because of a reference in Hayman's Research Problems in Function Theory [6] in 1967. A large number of papers have been published on this conjecture (for details see [9]) but the general conjecture remains open. Rubinstein [10] in 1968 proved the conjecture for all polynomials of degree 3 and 4. In 1969 Schmeisser [11] showed that, if the convex hull containing all zeros of p has its vertices on $|z|=1$, then p satisfies the conjecture (for the proof see [9, Theorem 7.3.4]). Later Schmeisser [12] also proved the conjecture for the Cauchy class of polynomials. In 1996 Borcea [2] showed that the conjecture holds true for polynomials with atmost six distinct zeros and in 1999 Brown and Xiang [3] proved the conjecture for polynomials of degree up to eight. Dégot [5] proved that for every zero (say) z_{0} of a polynomial p there exists lower bound N_{0} depending upon the modulus of z_{0} such that $\left|z-z_{0}\right| \leq 1$ contains a critical point of p if $\operatorname{deg}(p)>N_{0}$. Chalebgwa [4] gave an explicit formula for such a N_{0}. More recent work in this area includes that of Kumar [7], Sofi, Ahanger and Gardner [14], and Sofi and Shah [13]. As for the latest, Terence Tao [15] following on the work of Dégot [5], proved that the Sendov's conjecture holds for polynomials with sufficiently high degree.

In this paper we prove an interesting connection between the geometric structure of the zeros of a polynomial and Sendov's conjecture.

2 Statement and proof of the theorem

Theorem 2.1. Let $p(z):=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree $n \geq 2$ with all its zeros $z_{1}, z_{2}, \ldots, z_{n}$ lying inside the closed unit disk. Suppose that for all $j=1,2, \ldots, n$

$$
\begin{equation*}
\sum_{i=1, i \neq j}^{n}\left|1-\frac{1}{z_{j}-z_{i}}\right|^{2} \leq \sum_{i=1, i \neq j}^{n}\left|\frac{1}{z_{j}-z_{i}}\right|^{2} \tag{2.1}
\end{equation*}
$$

then $\left|z-z_{j}\right| \leq 1$ contains some critical point of p, that is, Sendov's conjecture holds for p.
[One prime (but not the only) example of polynomials satisfying the hypotheses of Theorem 2.1 are the polynomials whose zeros lie on a circle within the closed unit disk. In this case we may assume without loss of generality that $\left|z_{i}\right|=\left|z_{j}\right|$ for all $1 \leq i, j \leq n$ and that for a fixed but arbitrary $1 \leq j \leq n, 0<z_{j} \leq 1$. Hence for all $1 \leq i \leq n$

$$
\left|z_{i}-\left(z_{j}-1\right)\right| \leq\left|z_{i}\right|+\left|z_{j}-1\right|=\left|z_{i}\right|+1-z_{j}=1
$$

and the required condition

$$
\sum_{i=1, i \neq j}^{n}\left|1-\frac{1}{z_{j}-z_{i}}\right|^{2} \leq \sum_{i=1, i \neq j}^{n}\left|\frac{1}{z_{j}-z_{i}}\right|^{2}
$$

is satisfied.]
Proof. Let $\zeta_{1}, \zeta_{2} \ldots, \zeta_{n-1}$ be the critical points of p and assume to the contrary. Then there exists a zero of p say z_{1} such that $\left|z_{1}-\zeta_{i}\right|>1$ for $1 \leq i \leq n-1$. We note that z_{1} cannot be a repeated zero of p and hence $z_{1}-z_{i} \neq 0$ for all $i=2,3, \ldots, n$ and

$$
\frac{1}{\left|z_{1}-\zeta_{i}\right|}<1 \quad \text { for all } 1 \leq i \leq n-1 .
$$

Also we can write

$$
p^{\prime}(z)=n a_{n} \prod_{i=1}^{n-1}\left(z-\zeta_{i}\right)
$$

so that

$$
\frac{p^{\prime \prime}(z)}{p^{\prime}(z)}=\sum_{i=1}^{n-1} \frac{1}{z-\zeta_{i}} .
$$

This gives

$$
\frac{p^{\prime \prime}\left(z_{1}\right)}{p^{\prime}\left(z_{1}\right)}=\sum_{i=1}^{n-1} \frac{1}{z_{1}-\zeta_{i}} .
$$

Hence

$$
\left|\frac{p^{\prime \prime}\left(z_{1}\right)}{p^{\prime}\left(z_{1}\right)}\right|=\left|\sum_{i=1}^{n-1} \frac{1}{z_{1}-\zeta_{i}}\right| \leq \sum_{i=1}^{n-1} \frac{1}{\left|z_{1}-\zeta_{i}\right|}<n-1 .
$$

That is

$$
\begin{equation*}
\left|\frac{p^{\prime \prime}\left(z_{1}\right)}{p^{\prime}\left(z_{1}\right)}\right|<n-1 . \tag{2.2}
\end{equation*}
$$

Now suppose

$$
p(z)=a_{n}\left(z-z_{1}\right) q(z), \quad \text { where } q(z)=\prod_{i=2}^{n}\left(z-z_{i}\right) .
$$

This gives

$$
\frac{q^{\prime}(z)}{q(z)}=\sum_{i=2}^{n} \frac{1}{z-z_{i}}
$$

so that

$$
\frac{q^{\prime}\left(z_{1}\right)}{q\left(z_{1}\right)}=\sum_{i=2}^{n} \frac{1}{z_{1}-z_{i}}
$$

Also

$$
p^{\prime}\left(z_{1}\right)=q\left(z_{1}\right) \quad \text { and } \quad p^{\prime \prime}\left(z_{1}\right)=2 q^{\prime}\left(z_{1}\right)
$$

Therefore from (2.2), we obtain

$$
\left|\frac{2 q^{\prime}\left(z_{1}\right)}{q\left(z_{1}\right)}\right|=\left|\frac{p^{\prime \prime}\left(z_{1}\right)}{p^{\prime}\left(z_{1}\right)}\right|<n-1
$$

and hence

$$
\left|\frac{q^{\prime}\left(z_{1}\right)}{q\left(z_{1}\right)}\right|<\frac{n-1}{2} .
$$

Thus

$$
\begin{equation*}
\left|\sum_{i=2}^{n} \frac{1}{z_{1}-z_{i}}\right|<\frac{n-1}{2} \tag{2.3}
\end{equation*}
$$

Now

$$
\mathfrak{R e}\left(\frac{1}{z_{1}-z_{i}}\right)=\frac{1}{2}+\frac{1-\left|z_{1}-z_{i}-1\right|^{2}}{2\left|z_{1}-z_{i}\right|^{2}}
$$

for all $i=2,3, \ldots, n$. This gives

$$
\begin{aligned}
\sum_{i=2}^{n} \mathfrak{R e}\left(\frac{1}{z_{1}-z_{i}}\right) & =\frac{n-1}{2}+\sum_{i=2}^{n} \frac{1-\left|z_{1}-z_{i}-1\right|^{2}}{2\left|z_{1}-z_{i}\right|^{2}} \\
& =\frac{n-1}{2}+\frac{1}{2}\left(\sum_{1=2}^{n}\left|\frac{1}{z_{1}-z_{i}}\right|^{2}-\sum_{i=2}^{n}\left|\frac{z_{1}-z_{i}-1}{z_{1}-z_{i}}\right|^{2}\right) \\
& =\frac{n-1}{2}+\frac{1}{2}\left(\sum_{i=2}^{n}\left|\frac{1}{z_{1}-z_{i}}\right|^{2}-\sum_{1=2}^{n}\left|1-\frac{1}{z_{1}-z_{i}}\right|^{2}\right)
\end{aligned}
$$

Now from (2.1)

$$
\left(\sum_{i=2}^{n}\left|\frac{1}{z_{1}-z_{i}}\right|^{2}-\sum_{i=2}^{n}\left|1-\frac{1}{z_{1}-z_{i}}\right|^{2}\right) \geq 0
$$

Therefore

$$
\mathfrak{R e}\left(\sum_{i=2}^{n} \frac{1}{z_{1}-z_{i}}\right)=\sum_{i=2}^{n} \mathfrak{R e}\left(\frac{1}{z_{1}-z_{i}}\right) \geq \frac{n-1}{2}
$$

and hence

$$
\left|\sum_{i=2}^{n} \frac{1}{z_{1}-z_{i}}\right| \geq \frac{n-1}{2}
$$

which contradicts (2.3) and the contradiction proves the result.

3 Declarations

Ethical Approval:

Not Applicable.

Conflict of Interest:

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Funding:

No Funding received.

Availability of Data and Materials:

Not applicable to this article as no datasets were generated or analysed during the current study.

References

[1] B. D. Bojanov, Q. I. Rahman, and J. Szynal, "On a conjecture of Sendov about the critical points of a polynomial," Math. Z., vol. 190, no. 2, pp. 281-285, 1985, doi: 10.1007/BF01160464.
[2] I. Borcea, "On the Sendov conjecture for polynomials with at most six distinct roots," J. Math. Anal. Appl., vol. 200, no. 1, pp. 182-206, 1996, doi: 10.1006/jmaa.1996.0198.
[3] J. E. Brown and G. Xiang, "Proof of the Sendov conjecture for polynomials of degree at most eight," J. Math. Anal. Appl., vol. 232, no. 2, pp. 272-292, 1999, doi: 10.1006/jmaa.1999.6267.
[4] T. P. Chalebgwa, "Sendov's conjecture: a note on a paper of Dégot," Anal. Math., vol. 46, no. 3, pp. 447-463, 2020, doi: 10.1007/s10476-020-0050-x.
[5] J. Dégot, "Sendov conjecture for high degree polynomials," Proc. Amer. Math. Soc., vol. 142, no. 4, pp. 1337-1349, 2014, doi: 10.1090/S0002-9939-2014-11888-0.
[6] W. K. Hayman, Research problems in function theory. The Athlone Press [University of London], London, 1967.
[7] P. Kumar, "A remark on Sendov conjecture," C. R. Acad. Bulgare Sci., vol. 71, no. 6, pp. 731-734, 2018.
[8] M. J. Miller, "Maximal polynomials and the Ilieff-Sendov conjecture," Trans. Amer. Math. Soc., vol. 321, no. 1, pp. 285-303, 1990, doi: 10.2307/2001603.
[9] Q. I. Rahman and G. Schmeisser, Analytic theory of polynomials, ser. London Mathematical Society Monographs. New Series. The Clarendon Press, Oxford University Press, Oxford, 2002, vol. 26.
[10] Z. Rubinstein, "On a problem of Ilyeff," Pacific J. Math., vol. 26, pp. 159-161, 1968.
[11] G. Schmeisser, "Bemerkungen zu einer Vermutung von Ilieff." Math Z., vol. 111, pp. 121-125, 1969, doi: 10.1007/BF01111192.
[12] G. Schmeisser, "Zur Lage der kritischen Punkte eines Polynoms," Rendiconti del Seminario Matematico della Università di Padova, vol. 46, pp. 405-415, 1971.
[13] G. M. Sofi and W. M. Shah, "On Sendov's conjecture," Rend. Circ. Mat. Palermo (2), vol. 72, no. 1, pp. 493-497, 2023, doi: 10.1007/s12215-021-00690-y.
[14] G. M. Sofi, S. A. Ahanger, and R. B. Gardner, "Some classes of polynomials satisfying Sendov's conjecture," Studia Sci. Math. Hungar., vol. 57, no. 4, pp. 436-443, 2020, doi: 10.1556/012.2020.57.4.1475.
[15] T. Tao, "Sendov's conjecture for sufficiently-high-degree polynomials," Acta Math., vol. 229, no. 2, pp. 347-392, 2022.

