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ABSTRACT

In this paper we examine some inequalities of Frame’s type
on the interval (0, π/2). By observing this domain we simply
obtain the results using the appropriate families of stratified
functions and MTP - Mixed Trigonometric Polynomials. Ad-
ditionally, from those families we specify a minimax approx-
imant as a function with some optimal properties.

RESUMEN

En este artículo examinamos algunas desigualdades de tipo
Frame en el intervalo (0, π/2). Observando este dominio
simplemente obtenemos los resultados usando las familias
apropiadas de funciones estratificadas y PTM - Polinomios
Trigonométricos Mezclados. Adicionalmente, a partir de esas
familias, especificamos un aproximante minimax como una
función con algunas propiedades optimales.
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1 Introduction

This paper deals with some inequalities that are discussed in [10, 19], see also the monograph

[11, part 3.4.20]. In [1, 13] is stated the Cusa-Huygens approximation:

x ≈ 3 sinx

2 + cosx
, for x ∈ (0, π),

which in the paper [9] is specified using families of stratified functions on the domain (0, π/2). L.

Zhu in [19] gives the following two inequalities:

x− 3 sinx

2 + cosx
>

1

180
x5, for x ∈ (0, π) (1.1)

and

x− 3 sinx

2 + cosx

(
1 +

(1− cosx)2

9(3 + 2 cosx)

)
>

1

2100
x7, for x ∈ (0, π), (1.2)

and names them Frame’s inequalities. In the monograph Analytic Inequalities by D.S. Mitrinović

[11, part 3.4.20.] inequalities (1.1) and (1.2) appear with the wrong relation, which L. Zhu corrects

in [19].

Based on inequality (1.1) the following assertion is proved in the paper [10].

Theorem 1.1. The following inequalities are true:

1

180
x5 ≤ x− 3 sinx

2 + cosx
≤ 1

m1
x5 , (1.3)

where x ∈ [0, π] and m1 = 92.96406 . . . = 1/f(x0) . The value f(x0) is determined for the function

f(x) =

(
x− 3 sinx

2 + cosx

)
/x5 : (0, π) −→ R

at the point x0 = 2.83982 . . . at which the function reaches its maximum f(x0) on the interval

(0, π). The equality in (1.3) holds for both sides when x = 0 and holds for the right hand side when

x = x0.

Inequality (1.3) is used to estimate the Cusa-Huygens function φ(x) = x − 3 sinx

2 + cosx
over (0, π)

[10].

The motivation for this paper is to improve the previous results, by finding the minimax approx-

imant for unconsidered values of parameters. We will observe the shorter interval (0, π/2), for a

more precise estimate in the origin’s neighbourhood. The used approach combines the concept of

stratification [9] with a method for proving MTP inequalities [8]. This way we can simply prove

the known results, and also establish novel ones. Analogously, this procedure can be applied to

consider other types of MTP inequalities. In addition, it is possible to apply this approach in
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solving concrete practical problems such as in [5] and [12].

This paper is organized as follows. The required theoretical background is presented in section

2. In subsection 2.1 are given definitions of stratification and the minimax approximant, as well

as Nike theorem in two forms. In subsection 2.2 is explained the used method for proving MTP

inequalities. In section 3 are analyzed two inequalities of Frame’s type using stratification and

MTP method. In subsection 3.1 are given improved results regarding the inequality (1.1). In

subsection 3.2 are given improved results regarding the inequality (1.2), obtained analogously to

subsection 3.1. Section 4 concludes the paper.

2 Preliminaries

2.1 Stratification and Nike theorem

In this subsection we state relevant concepts and assertions from the paper [9].

The functions φp(x), where x ∈ (a, b) ⊆ R and p ∈ D ⊆ R+, are increasingly stratified if p1 >

p2 ⇐⇒ φp1
(x) > φp2

(x) holds for each x ∈ (a, b), and conversely, decreasingly stratified if p1 >

p2 ⇐⇒ φp1
(x) < φp2

(x) holds for each x ∈ (a, b) (p1, p2 ∈ D).

Our aim is to determine the maximal subset I ⊆ D such that, for p ∈ I, we have φp(x) > 0 for

each x ∈ (a, b). Likewise, we want to determine the maximal subset J ⊆ D such that, for p ∈ J ,

we have φp(x) < 0 for each x ∈ (a, b). We will assume that D = R+, I ∪ J ⫋ D, I ̸= ∅ and J ̸= ∅.
In that case, it is important to examine the sign of the function φp(x) in terms of the parameter

p ∈ D \ (I ∪ J), for x ∈ (a, b).

The value sup
x∈(a,b)

|φp(x)| is called the approximation error on the interval (a, b) and denoted by

d(p) = sup
x∈(a,b)

|φp(x)| , (2.1)

for p ∈ D. Our aim is to determine the unique value of the parameter p = p0 ∈ D for which the

infimum of the error d(p) is attained:

d0 = inf
p∈R+

sup
x∈(a,b)

|φp(x)| . (2.2)

For such a value p0 of the parameter p, the function φp0(x) is called the minimax approximant on

(a, b).
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If the family φp(x) allows us to consider x ∈ [a, b] and p ∈ D = [c, d] ⊂ R+, then we have

d0 = min
p∈[c,d]

max
x∈[a,b]

|φp(x)| .

The following assertions are proved in [9].

Theorem 2.1 ([9]). Let φp(x) be a family of functions that are continuous with respect to x ∈ (a, b)

for each p ∈ R+ and increasingly (decreasingly) stratified for p ∈ R+, and let c, d ∈ R+, where

c < d. If:

(a) φc(x) < 0 (φc(x) > 0) and φd(x) > 0 (φd(x) < 0) for each x ∈ (a, b), and at the endpoints

φc(a+) = φd(a+) = 0, φc(b−) = 0 (φd(b−) = 0) and φd(b−) ∈ R+ (φc(b−) ∈ R+) hold;

(b) the functions φp(x) are continuous with respect to p ∈ (c, d) for each x ∈ (a, b) and φp(b−)

are also continuous with respect to p ∈ (c, d);

(c) for each p ∈ (c, d), there is a right neighbourhood of the point a in which φp(x) < 0;

(d) for each p ∈ (c, d) the function φp(x) has exactly one extremum at t(p) on (a, b), which is

minimum;

then there is exactly one solution p0, for p ∈ R+, to the following equation:

|φp(t
(p))| = φp(b−),

and for d0 = |φp0
(t(p0))| = φp0

(b−) we have

d0 = inf
p ∈ R+

sup
x ∈ (a, b)

|φp(x)| .

Theorem 2.2 (Nike theorem, [7, 9]). Let φp(x) : (a, b) −→ R be at least m times differentiable

function, for some m ≥ 2, m ∈ N, which satisfies the following conditions:

(a) f (m) > 0 for x ∈ (0, c);

(b) there is a right neighbourhood of zero in which the following inequalities hold:

f < 0, f ′ < 0, . . . , f (m−1) < 0;

(c) there is a left neighbourhood of the point c in which the following inequalities hold:

f > 0, f ′ > 0, . . . , f (m−1) > 0 .
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Then the function f has exactly one root x0 ∈ (0, c) and f(x) < 0 for x ∈ (0, x0) and f(x) > 0

for x ∈ (x0, c). Additionally, the function f has exactly one local minimum on the interval (0, c).

More precisely, there is exactly one point t ∈ (0, x0) ⊂ (0, c) such that f(t) < 0 is the smallest

value of the function f on the interval (0, x0) ⊂ (0, c).

Theorem 2.3 (Nike theorem, II form, [9]). Let φp(x) : (a, b) −→ R be at least m times differen-

tiable function, for some m ≥ 2, m ∈ N, which satisfies the following conditions:

(a) f (m) has exactly one root xm on (0, c) such that f (m) > 0 on (0, xm) and f (m) < 0 on (xm, c);

(b) there is a right neighbourhood of zero in which the following inequalities hold:

f < 0, f ′ < 0, . . . , f (m−1) < 0;

(c) there is a left neighbourhood of the point c in which the following inequalities hold:

f > 0, f ′ > 0, . . . , f (m−1) > 0.

Then the function f has exactly one root x0 ∈ (0, c) and f(x) < 0 for x ∈ (0, x0) and f(x) > 0

for x ∈ (x0, c). Additionally, the function f has exactly one local minimum on the interval (0, c).

More precisely, there is exactly one point t ∈ (0, x0) ⊂ (0, c) such that f(t) < 0 is the smallest

value of the function f on the interval (0, x0) ⊂ (0, c).

2.2 A method for proving MTP inequalities

In this subsection we present relevant assertions from the paper [8] for proving inequalities of the

form

f(x) =

n∑
i=1

αix
pi cosqi x sinri x > 0 , (2.3)

where x ∈ (δ1, δ2), δ1 ≤ 0 ≤ δ2 and δ1 < δ2, where αi ∈ R \ {0}, pi, qi, ri ∈ N0 and n ∈ N. The

function f(x) we denote as MTP - Mixed Trigonometric Polynomial [4], and the corresponding

inequality (2.3) we denote as MTP inequality.

Let the function f(x) be approximated by Taylor polynomial Tk(x) of degree k in the neighbour-

hood of some point a. If there is η > 0 such that on the interval x ∈ (a − η, a + η), it holds that

Tk(x) ≥ f(x), then Tk(x) denotes the upward approximation of the function f(x) in the neigh-

bourhood of the point a. In this case, the polynomial Tk(x) is denoted by T
f,a

k (x), or short T k(x).

Analogously, if there is η > 0 such that on the interval x ∈ (a−η, a+η), it holds that Tk(x) ≤ f(x),

then Tk(x) denotes the downward approximation of the function f(x) in the neighbourhood of the

point a. In this case, the polynomial Tk(x) we also denote by T f,a
k (x), or short T k(x).
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The following assertions are proved in [8].

Lemma 2.4. (a) For the polynomial

Tn(t) =

(n−1)/2∑
i=0

(−1)it2i+1

(2i+ 1)!
,

where n = 4k + 1, k ∈ N0 , it holds:

Tn(t) ≥ Tn+4(t) ≥ sin t, ∀t ∈
[
0,
√

(n+ 3)(n+ 4)
]

Tn(t) ≤ Tn+4(t) ≤ sin t, ∀t ∈
[
−
√

(n+ 3)(n+ 4), 0
]
.

For t = 0 the inequalities turn into equalities. For t = ±
√

(n+ 3)(n+ 4) the equalities

Tn(t) = Tn+4(t) and Tn(t) = Tn+4(t) hold, respectively.

(b) For the polynomial

Tn(t) =

(n−1)/2∑
i=0

(−1)it2i+1

(2i+ 1)!
,

where n = 4k + 3, k ∈ N0 , it holds:

Tn(t) ≤ Tn+4(t) ≤ sin t, ∀t ∈
[
0,
√

(n+ 3)(n+ 4)
]
,

Tn(t) ≥ Tn+4(t) ≥ sin t, ∀t ∈
[
−
√

(n+ 3)(n+ 4), 0
]
.

For t = 0 the inequalities turn into equalities. For t = ±
√

(n+ 3)(n+ 4) the equalities

Tn(t) = Tn+4(t) and Tn(t) = Tn+4(t) hold, respectively.

(c) For the polynomial

Tn(t) =

n/2∑
i=0

(−1)it2i

(2i)!
,

where n = 4k, k ∈ N0 , it holds:

Tn(t) ≥ Tn+4(t) ≥ cos t, ∀t ∈
[
−
√
(n+ 3)(n+ 4),

√
(n+ 3)(n+ 4)

]
.

For t = 0 the inequalities turn into equalities. For t = ±
√

(n+ 3)(n+ 4) the equality Tn(t) =

Tn+4(t) holds.

(d) For the polynomial

Tn(t) =

n/2∑
i=0

(−1)it2i

(2i)!
,
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where n = 4k + 2, k ∈ N0 , it holds:

Tn(t) ≤ Tn+4(t) ≤ cos t, ∀t ∈
[
−
√
(n+ 3)(n+ 4),

√
(n+ 3)(n+ 4)

]
.

For t = 0 the inequalities turn into equalities. For t = ±
√

(n+ 3)(n+ 4) the equality Tn(t) =

Tn+4(t) holds.

The main idea of the method described in [8] is to, for a given MTP function f(x) defined on

(0, π/2), find a polynomial P (x) using Lemma 1, such that f(x) > P (x) and P (x) > 0 when

x ∈ (0, π/2). If such polynomial exists, then f(x) > 0 for x ∈ (0, π/2).

For example, all results from the paper [20] can be proved by reduction to the appropriate MTP

inequalities with the application of this method.

3 Main results

3.1 Improved results for inequality (1.1)

In this subsection we prove the results regarding the family of functions

φp(x) = x− 3 sinx

2 + cosx
− px5,

(
x ∈ (0, π/2) and p ∈ R+

)
,

with the aim of improving the results for Frame’s inequality (1.1) on the interval (0, π/2). The

following assertions are true.

Lemma 3.1. The family of functions

φp(x) = x− 3 sinx

2 + cosx
− p x5, for x ∈ (0, π/2)

is decreasingly stratified with respect to parameter p ∈ R+.

Proof. It holds that
∂φp(x)

∂p
= −x5 < 0, for each x ∈ (0, π/2).

Proposition 3.2. Let

A =
1

180
= 0.005 and B =

16 (π − 3)

π5
= 0.00740306 . . .

Then for x ∈ (0, π/2), it holds:

φA(x) > 0 and φB(x) < 0.
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Proof. Let us write φA(x) in the form:

φA(x) = x− 3 sinx

2 + cosx
− x5

180
=

fA(x)

180(2 + cosx)
,

where

fA(x) = −540 sinx+ (−x5 + 180x) cosx+ 2(−x5 + 180x)

is a MTP function defined on [0, π/2].

Since 180(2+cosx) > 0 for each x ∈ (0, π/2), it is sufficient to prove that fA(x) > 0 for x ∈ (0, π/2).

We will use a method given in subsection 2.2.

The following inequalities are true based on Lemma 2.4:

sin t < T
sin,0

5 (t) for t ∈ (0,
√
72) = (0, 8.485 . . .)

and

cos t > T cos,0
6 (t) for t ∈ (0,

√
90) = (0, 9.4868 . . .).

For each x ∈ (0, π/2) it holds:

fA(x) > P11(x) = −540︸ ︷︷ ︸
< 0

T
sin,0

5 (x) + (−x5 + 180x)︸ ︷︷ ︸
> 0

T cos,0
6 (x) + 2(−x5 + 180x)︸ ︷︷ ︸

> 0

.

The polynomial P11(x) can be written in the following way:

P11(x) =
1

720
x11 − 1

24
x9 +

1

4
x7 =

x7

720

(
x4 − 30x2 + 180

)
=

x7

720
P4(x).

The first positive root of the biquadratic equation P4(x) = 0 is x1 =
√

15− 3
√
5 = 2.879 . . . > π/2.

Since P4(x1/2) = P4(1.439) = 122.108 > 0, it follows that P4(x) > 0 for x ∈ (0, π/2). Furthermore,

fA(x) > P11(x) > 0 for x ∈ (0, π/2). Therefore, φA(x) > 0 for each x ∈ (0, π/2).

We prove φB(x) < 0 in a similar way. Let us write φB(x) in the form:

φB(x) = x− 3 sinx

2 + cosx
− 16(π − 3)x5

π5
=

fB(x)

π5(2 + cosx)
.

Since π5(2 + cosx) > 0 for each x ∈ (0, π/2), the requested inequality is equivalent to fB(x) < 0

for x ∈ (0, π/2), where

fB(x) = −3π5 sinx+ (16(3− π)x5 + π5x) cosx+ 2(16(3− π)x5 + π5x)

is a MTP function defined on [0, π/2]. Let us notice that fB(0) = fB(π/2) = 0. For that reason,
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we consider two cases:

(1) x ∈ (0, 1.199) : We have 16(3− π)x5 + π5x = x
(
16(3− π)x4 + π5

)
> 0 on (0, 1.199). The

following inequalities are true based on Lemma 2.4:

sin t > T sin,0
7 (t) for t ∈ (0,

√
110) = (0, 10.488 . . .)

and

cos t < T
cos,0

4 (t) for t ∈ (0,
√
56) = (0, 7.483 . . .).

For each x ∈ (0, 1.199) it holds:

fB(x) < Q9(x) = −3π5︸ ︷︷ ︸
< 0

T sin,0
7 (x) + (16(3− π)x5 + π5x)︸ ︷︷ ︸

> 0

T
cos,0

4 (x) + 2(16(3− π)x5 + π5x)︸ ︷︷ ︸
> 0

.

The polynomial Q9(x) can be written in the following way:

Q9(x) =
x5

1680

(
− 1120(π − 3)x4 + (π5 + 13440π − 40320)x2 + 28π5 − 80640π + 241920

)
=

x5

1680
Q4(x) .

The first positive root of the biquadratic equation Q4(x) = 0 is x1 = 1.1993 . . . > 1.199.

Since Q4(x1/2) = Q4(0.599 . . .) = −2075.583 . . . < 0, it follows that Q4(x) < 0 on (0, 1.199).

Furthermore, fB(x) < Q9(x) < 0. Therefore, φB(x) < 0 for x ∈ (0, 1.199).

(2) x ∈ [1.199, π/2) : Let us define a function

gB(x) = fB

(π
2
− x

)
= −3π5 cosx+ r(x) sinx+ 2 r(x) ,

where r(x) is the polynomial

r(x) =
(π
2
− x

)(
16(3− π)

(π
2
− x

)4

+ π5

)
,

for x ∈ [1.199, π/2). It is easy to show that r(x) > 0 for each x ∈ [1.199, π/2).

Here we prove the inequality fB(x) < 0 for x ∈ [1.199, π/2), which is equivalent to the MTP

inequality gB(x) < 0 for x ∈ (0, c], where c = π/2− 1.199 = 0.371796 . . .

The following inequalities are true based on Lemma 2.4:

sin t < T
sin,0

5 (t) for t ∈ (0,
√
72) = (0, 8.485 . . .)
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and

cos t > T cos,0
2 (t) for t ∈ (0,

√
30) = (0, 5.477 . . .).

For each x ∈ (0, c], it holds:

gB(x) < −3π5︸ ︷︷ ︸
< 0

T cos,0
2 (x) + r(x)︸︷︷︸

> 0

T
sin,0

5 (x) + 2r(x)︸ ︷︷ ︸
> 0

= xR(x) ,

where R(x) is the polynomial

R(x) =

(
2π

15
− 2

5

)
x9 +

(
−π2

3
+ π

)
x8 +

(
π3

3
− π2 − 8π

3
+ 8

)
x7

+

(
−π4

6
+

π3

2
+

20π2

3
− 20π

)
x6 +

(
π5

30
− π4

8
− 20π3

3
+ 20π2 + 16π − 48

)
x5

+

(
π5

80
+

10π4

3
− 10π3 − 40π2 + 152π − 96

)
x4

+

(
−2π5

3
+

5π4

2
+ 40π3 − 200π2 + 240π

)
x3

+

(
−π5

4
− 20π4 + 140π3 − 240π2

)
x2 +

(
11π5

2
− 55π4 + 120π3

)
x+

(
19π5

2
− 30π4

)
.

It is sufficient to prove that R(x) < 0 for x ∈ (0, c]. Let us denote the coefficients of the

polynomial R(x) respectively by a9, . . . , a0 :

R(x) = a9x
9 + a8x

8 + a7x
7 + a6x

6 + a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x+ a0

= (a9x+ a8)x
8 + (a7x

2 + a6x+ a5)x
5 + (a4x

4 + a3x
3 + a2x

2 + a1x+ a0)

= (a9x+ a8)x
8 + (a7x

2 + a6x+ a5)x
5 + S(x).

It holds:

a9x+ a8 =

(
2π

15
− 2

5

)
x+

(
−π2

3
+ π

)
< 0

and

a7x
2 + a6x+ a5 = −

(
π2 +

8π

3

)
x2 −

(
π4

6
− π3

2
− 20π2

3
+ 20π

)
x

+

(
11π5

2
− 55π4 + 120π3

)
< 0,

for each x ∈ (0, c]. Let us prove that

S(x) = a4x
4 + a3x

3 + a2x
2 + a1x+ a0

=
(π5

80
+

10π4

3
− 10π3 − 40π2 + 152π − 96

)
x4
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+
(
− 2π5

3
+

5π4

2
+ 40π3 − 200π2 + 240π

)
x3 +

(
− π5

4
− 20π4 + 140π3 − 240π2

)
x2

+
(11π5

2
− 55π4 + 120π3

)
x+

(19π5

2
− 30π4

)
< 0

for each x ∈ (0, c]. The third derivative of the polynomial S(x) is

S′′′(x) =

(
3

10
π5 + 80π4 − 240π3 − 960π2 + 3648π − 2304

)
x− 4π5 + 15π4

+ 240π3 − 1200π2 + 1440π.

It holds that S′′′(x) > 0 for x ∈ (0, c]. Thus, S′′(x) is a monotonically increasing function

for x ∈ (0, c]. Furthermore, S′′(x) is a quadratic function with roots x1 = −6.034 . . . and

x2 = 0.279 . . . This implies that S′(x) has exactly one extremum on (0, c] which is minimum

at the point x2. Since we have S′(x2) = 31.480 . . . > 0 at the point of minimum, it follows

that S′(x) > 0 for each x ∈ (0, c]. Thus, the function S(x) is monotonically increasing for

each x ∈ (0, c]. Since S(c) = −1.933 . . . < 0, it follows that S(x) < 0 for each x ∈ (0, c].

Therefore:

R(x) < 0 , for x ∈ (0, c] =⇒ gB(x) < 0 , for x ∈ (0, c]

=⇒ fB(x) < 0, for x ∈ [1.199, π/2)

=⇒ φB(x) < 0 , for x ∈ [1.199, π/2).

This completes the proof that φB(x) < 0 for each x ∈ (0, π/2).

Proposition 3.3. Let

A =
1

180
= 0.005 and B =

16 (π − 3)

π5
= 0.00740306 . . .

(i) If p ∈ (0, A], then

x ∈ (0, π/2) =⇒ x− 3 sinx

2 + cosx
> Ax5 ≥ p x5 .

(ii) If p ∈ (A,B), then φp(x) = x− 3 sinx

2 + cosx
− p x5 has a unique root x(p)

0 on (0, π/2). Also,

x ∈ (0, x
(p)
0 ) =⇒ x− 3 sinx

2 + cosx
< px5

and

x ∈ (x
(p)
0 , π/2) =⇒ x− 3 sinx

2 + cosx
> px5 .

Every function φp(x) has exactly one minimum t
(p)
0 ∈ (0, x

(p)
0 ), for p ∈ (A,B).
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(iii) If p ∈ [B,∞), then

x ∈ (0, π/2) =⇒ x− 3 sinx

2 + cosx
< B x5 ≤ p x5 .

(iv) There is exactly one solution to the equation

|φp(t
(p)
0 )| = φp (π/2−)

with respect to parameter p ∈ (A,B), determined numerically as

p0 = 0.0072274 . . .

For the value

d0 = φp0
(π/2−) = 0.0016797 . . .

it holds:

d0 = min
p∈[0,∞)

max
x∈[0,π/2]

|φp(x)|.

(v) For the value p0 = 0.0072274 . . . the minimax approximant of the family φp(x) is

φp0
(x) = x− 3 sinx

2 + cosx
− p0 x

5,

which determines the appropriate minimax approximation

x− 3 sinx

2 + cosx
≈ 0.0072274x5.

Proof. It has been shown in Proposition 3.2 that the inequalities φA(x) > 0 and φB(x) < 0 hold

for each x ∈ (0, π/2). Since the family of functions φp(x) is decreasingly stratified, it follows that

φp(x) ≥ φA(x) > 0 for p ∈ (0, A) and φp(x) ≤ φB(x) < 0 for p ∈ (B,∞), for each x ∈ (0, π/2).

That proves the assertions (i) and (iii).

In order to prove the assertion (ii), we will use the Theorem 2.3 (Nike theorem, II form). Namely,

for p ∈ (A,B), the functions φp(x) satisfy the conditions of Theorem 2.3:

(a) For m = 6, we have

φ(vi)
p (x) =

d6φp

d x6
=

6 sinx

(2 + cosx)7
h(x) , (3.1)

where h(x) is the following MTP function:

h(x) = −(cos5 x− 98 cos4 x+ 886 cos3 x− 892 cos2 x− 1216 cosx+ 104) .
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Since
6 sinx

(2 + cosx)7
> 0 for each x ∈ (0, π/2), functions φ(vi)

p (x) and h(x) have the same roots

and sign on (0, π/2).

By introducing the substitute t = cosx , we get

H(t) = h(arccos t) = −(t5 − 98t4 + 886t3 − 892t2 − 1216t+ 104) .

It can be shown by numerical methods that H(t) has a root t1 = 0.081088 . . . Since H(t) is

a polynomial with rational coefficients on the interval with rational endpoints (0, 1), using

Sturm’s algorithm [3, 14], we can conclude that H(t) has exactly one root t1 = 0.081088 . . .

on the interval (0, 1). Thus, h(x) also has exactly one root x1 = arccos t1 = 1.489619 . . . on

the interval (0, π/2).

Let us notice again that h(x) has only one root x1 = 1.489619 . . . on (0, π/2). Since h(1) =

681.964 . . . > 0 and h(1.5) = −13.831 . . . < 0, it follows that

h(x) > 0 on (0, x1) and h(x) < 0 on (x1, π/2).

Considering (3.1), the previous conclusion is equivalent to

φ(vi)
p (x) > 0 on (0, x1) and φ(vi)

p (x) < 0 on (x1, π/2),

which satisfies the first condition of Theorem 2.3.

(b) Taylor approximations of functions φp(x) around x = 0 are:

φp(x) =

(
1

180
− p

)
x5 +

1

1512
x7 +O(x9) .

Since we consider p ∈ (A,B) =
(

1
180 ,

16(π−3)
π5

)
, the coefficient next to x5 in the approximation

is negative, so we conclude that there is a right neighbourhood U0 of the point 0 such that

φp(x), φ
′
p(x), φ

′′
p(x), φ

′′′
p (x), φ(iv)

p (x), φ(v)
p (x) < 0, x ∈ U0.

(c) Taylor approximations of functions φp(x) around x =
π

2
are:

φp(x) =

(
−π5p

32
+

π − 3

2

)
+

(
−5π4p

16
+

1

4

)(
x− π

2

)
+

(
−5π3p

4
+

3

8

)(
x− π

2

)2

+

(
−5π2p

2
+

5

16

)(
x− π

2

)3

+

(
−5πp

2
+

5

32

)(
x− π

2

)4

+

(
−p+

13

320

)(
x− π

2

)5

− 13

1920

(
x− π

2

)6

+O

((
x− π

2

)7
)

.
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Since we consider p ∈ (A,B), it is easy to show that in the approximation all coefficients

next to
(
x− π

2

)n, 0 ≤ n ≤ 5, are positive, so we conclude that there is a left neighbourhood

Uπ/2 of the point π

2
such that

φp(x), φ
′
p(x), φ

′′
p(x), φ

′′′
p (x), φ(iv)

p (x), φ(v)
p (x) > 0, x ∈ Uπ/2.

Since the conditions of Theorem 2.3 are satisfied, the function φp(x) has exactly one ex-

tremum t(p), which is minimum, on (0, π/2)
(
and one root x

(p)
0 on (0, π/2)

)
, and it holds

that φp(x) < 0 for x ∈ (0, x
(p)
0 ) and φp(x) > 0 for x ∈ (x

(p)
0 , π/2). That proves the assertion

(ii).

(iv), (v): The family of functions φp(x), for values p ∈ (A,B), satisfies the conditions of Theorem

2.1, which means that the minimax approximant exists. The minimax approximant and its error

(infimum of the approximation error) can be numerically determined using Maple software. Let

f(x, p) := φp(x). Based on Maple code

fsolve({diff(f(x,p),x)=0,abs(f(x,p)=f(Pi/2,p)},{x=0..Pi/2,p=A..B});

we get numerical values

{p = 0.007227413, x = 1.272430755}.

For the value p0 = 0.0072274 . . . we obtain the minimax approximant of the family

φp0(x) = x− 3 sinx

2 + cosx
− p0 x

5

and numerical value of the minimax error

d0 = f(π/2, p0) = 0.0016797 . . . .

This completes the proof.

The following statement holds based on previous conclusions.

Proposition 3.4. For each 0 < x < π/2, it holds:

1

180
x5 < x− 3 sinx

2 + cosx
<

16 (π − 3)

π5
x5 , (3.2)

where the constants A =
1

180
= 0.005 and B =

16 (π − 3)

π5
= 0.00740306 . . . are the best possible.
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3.2 Improved results for inequality (1.2)

In this subsection we present the appropriate results for the family of functions

φp(x) = x− 3 sinx

2 + cosx

(
1 +

(1− cosx)2

9(3 + 2 cosx)

)
− p x7, x ∈ (0, π/2) and p ∈ R+,

with the aim of improving the results for the Frame’s inequality (1.2) on the interval (0, π/2). The

following statements are proved analogously to statements from the previous subsection.

Lemma 3.5. The family of functions:

φp(x) = x− 3 sinx

2 + cosx

(
1 +

(1− cosx)2

9(3 + 2 cosx)

)
− p x7, for x ∈ (0, π/2)

is decreasingly stratified with respect to parameter p ∈ R+.

Proposition 3.6. Let:

A =
1

2100
= 0.000476190 and B =

64(9π − 28)

9π7
= 0.0006459 . . .

Then for x ∈ (0, π/2), it holds:

φA(x) > 0 and φB(x) < 0 .

Proposition 3.7. Let:

A =
1

2100
= 0.000476190 and B =

64(9π − 28)

9π7
= 0.0006459 . . .

(i) If p ∈ (0, A], then

x ∈ (0, π/2) =⇒ x− 3 sinx

2 + cosx

(
1 +

(1− cosx)2

9(3 + 2 cosx)

)
> Ax7 ≥ p x7 .

(ii) If p ∈ (A,B), then φp(x) = x− 3 sinx

2 + cosx

(
1 +

(1− cosx)2

9(3 + 2 cosx)

)
− p x7 has a unique root x(p)

0

on (0, π/2). Also:

x ∈ (0, x
(p)
0 ) =⇒ x− 3 sinx

2 + cosx

(
1 +

(1− cosx)2

9(3 + 2 cosx)

)
< px7

and

x ∈ (x
(p)
0 , π/2) =⇒ x− 3 sinx

2 + cosx

(
1 +

(1− cosx)2

9(3 + 2 cosx)

)
> px7 .

Every function φp(x) has exactly one minimum t
(p)
0 ∈ (0, x

(p)
0 ), for p ∈ (A,B).
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(iii) If p ∈ [B,∞), then:

x ∈ (0, π/2) =⇒ x− 3 sinx

2 + cosx

(
1 +

(1− cosx)2

9(3 + 2 cosx)

)
< B x7 ≤ p x7 .

(iv) There is exactly one solution to the equation:

|φp(t
(p)
0 )| = φp (π/2−)

with respect to parameter p ∈ (A,B), determined numerically as:

p0 = 0.000632762 . . .

For the value:

d0 = φp0 (π/2−) = 0.000310091 . . .

it holds:

d0 = min
p∈[0,∞)

max
x∈[0,π/2]

|φp(x)|.

(v) For the value p0 = 0.000632762 . . . the minimax approximant of the family φp(x) is:

φp0
(x) = x− 3 sinx

2 + cosx

(
1 +

(1− cosx)2

9(3 + 2 cosx)

)
− p0 x

7,

which determines the appropriate minimax approximation:

x− 3 sinx

2 + cosx

(
1 +

(1− cosx)2

9(3 + 2 cosx)

)
≈ 0.000632762x7.

The following statement holds based on previous conclusions.

Proposition 3.8. For each 0 < x < π/2, it holds:

1

2100
x7 < x− 3 sinx

2 + cosx

(
1 +

(1− cosx)2

9(3 + 2 cosx)

)
<

64(9π − 28)

9π7
x7, (3.3)

where the constants A =
1

2100
= 0.000476190 and B =

64(9π − 28)

9π7
= 0.0006459 . . . are the best

possible.

4 Conclusion

Inequalities that we study in this paper are mainly used to estimate the precision of the Cusa-

Huygens approximation. The Cusa-Huygens inequality and the estimate of the quality of approx-
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imation may be relevant to concrete applications such as [5, 12], see also the monograph [2]. The

known results related to Frame’s inequalities are obtained for special cases of parameters only. In

this paper, we achieve the previous results based on the concept of stratification, and also expand

the conclusions for unconsidered values of parameters. In analogy with this approach over families

of stratified functions, it is possible to examine other types of inequalities and get new results in

the Theory of Analytic Inequalities.

It should be noted that one part of the given method is limited to MTP inequalities (subsection

2.2). The aim of future research is to consider other classes of inequalities in a similar way, by

combining different methods with the concept of stratification. In that regard, we refer the reader

to papers [6, 15–18] for understanding the latest progress in the field.
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