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ABSTRACT

This paper is concerned with a class of fractional
p(x, y)−Kirchhoff type problems with Dirichlet boundary
data along with indefinite weight of the following form

M
(∫

Q
1

p(x,y)
|u(x)−u(y)|p(x,y)

|x−y|N+sp(x,y) dx dy
)

(
−∆p(x)

)s
u(x) + |u(x)|q(x)−2u(x)

= λV (x)|u(x)|r(x)−2u(x) in Ω,

u = 0, in RN\Ω.

By means of direct variational approach and Ekeland’s vari-
ational principle, we investigate the existence of nontrivial
weak solutions for the above problem in case of the competi-
tion between the growth rates of functions p and r involved
in above problem, this fact is essential in describing the set
of eigenvalues of this problem.

RESUMEN

Este artículo estudia una clase de problemas de tipo
p(x, y)−Kirchhoff fraccionarios con data Dirichlet en el
borde junto con un peso indefinido de la siguiente forma

M
(∫

Q
1

p(x,y)
|u(x)−u(y)|p(x,y)

|x−y|N+sp(x,y) dx dy
)

(
−∆p(x)

)s
u(x) + |u(x)|q(x)−2u(x)

= λV (x)|u(x)|r(x)−2u(x) in Ω,

u = 0, in RN\Ω.

A través del enfoque variacional directo y el principio varia-
cional de Ekeland, investigamos la existencia de soluciones
débiles no triviales para el problema anterior en el caso de
competencia entre las tasas de crecimiento de las funciones p
y r involucradas en el problema. Este hecho es esencial para
describir el conjunto de valores propios de este problema.
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1 Introduction

Fractional differential equations have been an area of great interest recently. This is because of

both the intensive development of the theory of fractional calculus itself and the applications of

such constructions in various scientific fields such as physics, mechanics, chemistry, engineering,

etc. In [5], a non-Kirchhoff equation was investigated, which had an indefinite weight function.

In [3], a Kirchhoff-type equation was surveyed, which lacked an indefinite weight function. We
combine these equations and, using the methods applied in [3] and [5], open a corridor to an
equation that is both Kirchhoff-type and equipped with an indefinite weight function. In this
paper, we aim to discuss the existence of a nontrivial solution for a fractional p(x, y)−Kirchhoff
type eigenvalue problemM

(∫
Q

1
p(x,y)

|u(x)−u(y)|p(x,y)

|x−y|N+sp(x,y) dx dy
) (

−∆p(x)

)s
u(x) + |u(x)|q(x)−2u(x) = λV (x)|u(x)|r(x)−2u(x), in Ω,

u = 0, in RN\Ω,
(1.1)

where Ω ⊂ RN is a Lipschitz bounded open domain and Q := R2N\ (CΩ× CΩ) with CΩ = RN\Ω,

N ≥ 3, p : Q → (1,+∞) is continuous, q, r ∈ C+

(
Ω
)
, V : Ω → R is an indefinite weight function

in the sense that it is allowed to change sign in Ω, λ is a positive constant and s ∈ (0, 1) and

M : R+ → R is a continuous function which satisfies the (polynomial growth condition)

(M1): There exist m2 ≥ m1 > 0 and α > 1 such that

m1t
α−1 ≤ M(t) ≤ m2t

α−1 for all t ∈ R+.

Here the operator
(
−∆p(x)

)s is the fractional p(x)−Laplacian operator defined as follows

(
−∆p(x)

)s
u(x) = p · v ·

∫
RN

|u(x)− u(y)|p(x,y)−2
(u(x)− u(y))

|x− y|N+sp(x,y)
dy, for all x ∈ RN ,

where p · v· is a commonly used abbreviation in the principal value sense.

Throughout this paper, we assume that

αp(x, x) < q(x) < p∗s(x) :=
Np(x, x)

N − sp(x, x)
, p(x, y) <

N

s
, ∀x, y ∈ Ω, (1.2)

where p∗s(x) is the so-called critical exponent in fractional Sobolev space with variable exponent.

If s = 1 problem (1.1) becomes the p(·)−Kirchhoff Laplacian problem.
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Problem (1.1) is related to the stationary version of the Kirchhoff equation

ρ
∂2u

∂t2
−

(
ρ0
h

+
E

2L

∫ L

0

∣∣∣∣∂u∂x
∣∣∣∣2 dx

)
∂2u

∂x2
= 0, (1.3)

which extends the classical D’Alembert’s wave equation, by considering the effect of the changing

in the length of the string during the vibration. A distinguishing feature of Eq. (1.3) is that

the equation contains a nonlocal coefficient
ρ0
h

+
E

2L

∫ L

0

∣∣∣∣∂u∂x
∣∣∣∣2 dx which depends on the average

1

2L

∫ L

0

∣∣∣∣∂u∂x
∣∣∣∣2 dx, and hence the equation is no longer a pointwise identity. The parameters in (1.3)

have the following meanings: L is the length of the string, h is the area of the crosssection, E is

the Young modulus of the material, ρ is the mass density and ρ0 is the initial tension.

This paper is organised as follows. In Section 2, we give some definitions and fundamental proper-

ties of generalized Lebesgue spaces Lq(x)(Ω) and fractional Sobolev spaces with variable exponent

W s,q(x),p(x,y)(Ω), moreover, we compare the space W s,q(x),p(x,y)(Ω) with the fractional Sobolev

space X and we study the completeness, reflexivity and separability of these spaces. Furthermore,

we establish a continuous and compact embedding theorem of these spaces into variable exponent

Lebesgue spaces. In Section 3, we discuss the existence of nontrivial weak solutions of problem in

sublinear case, when 1 < r(x) < p− for all x ∈ Ω. We apply Ekeland’s variational principle.

2 Preliminaries

Consider the set

C+

(
Ω
)
= {h ∈ C

(
Ω
)
: h(x) > 1 for all x ∈ Ω}.

For all h ∈ C+

(
Ω
)
, we define

h+ = sup
x∈Ω

h(x) and h− = inf
x∈Ω

h(x) such that, 1 < h− ≤ h(x) ≤ h+ < +∞. (2.1)

For any h ∈ C+

(
Ω
)
, we define the variable exponent Lebesgue space as

Lh(x)(Ω) =

{
u : u is a measurable real-valued function,

∫
Ω

|u(x)|h(x)dx < +∞
}
.

This vector space endowed with the Luxemburg norm, which is defined by

∥u∥Lh(x)(Ω) = inf

{
λ > 0 :

∫
Ω

∣∣∣∣u(x)λ

∣∣∣∣h(x)dx ≤ 1

}
is a separable reflexive Banach space.
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Let ĥ ∈ C+

(
Ω
)

be the conjugate exponent of h, that is, 1/h(x) + 1/ĥ(x) = 1.

Then we have the following Hölder type inequality

∣∣∣∣∫
Ω

uv dx

∣∣∣∣ ≤ ( 1

h− +
1

ĥ−

)
∥u∥Lh(x)(Ω)∥v∥Lĥ(x)(Ω) ≤ 2∥u∥Lh(x)(Ω)∥v∥Lĥ(x)(Ω)

Moreover, if h1, h2, h3 ∈ C+

(
Ω
)

and 1/h1 + 1/h2 + 1/h3 = 1, then for any u ∈ Lh1(x)(Ω), v ∈
Lh2(x)(Ω) and w ∈ Lh3(x)(Ω) we have∣∣∣∣∫

Ω

uvw dx

∣∣∣∣ ≤ ( 1

h1
− +

1

h2
− +

1

h3
−

)
∥u∥Lh1(x)(Ω)∥v∥Lh2(x)(Ω)∥w∥Lh3(x)(Ω). (2.2)

Note that Lh1(x)(Ω) ↪→ Lh2(x)(Ω) for all functions h1 and h2 in C+

(
Ω
)

satisfying h1(x) ≤ h2(x)

for all x ∈
(
Ω
)
. In addition this embedding is continuous.

The modular of the Lh(x)(Ω) space is the mapping ρh(·) : L
h(x)(Ω) → R defined by

u 7→ ρh(·)(u) =

∫
Ω

|u(x)|h(x)dx.

Proposition 2.1. Let u ∈ Lh(x)(Ω), then we have

(i) ∥u∥Lh(x)(Ω) < 1 (resp. = 1, > 1) ⇐⇒ ρh(·)(u) < 1 (resp. = 1, > 1),

(ii) ∥u∥Lh(x)(Ω) < 1 =⇒ ∥u∥h
+

Lh(x)(Ω) ≤ ρh(·)(u) ≤ ∥u∥h
−

Lh(x)(Ω),

(iii) ∥u∥Lh(x)(Ω) > 1 =⇒ ∥u∥h
−

Lh(x)(Ω) ≤ ρh(·)(u) ≤ ∥u∥h
+

Lh(x)(Ω).

Proposition 2.2. If u, uk ∈ Lh(x)(Ω) and k ∈ N, then the following assertions are equivalent

(i) limk→+∞ ∥uk − u∥Lh(x)(Ω) = 0,

(ii) limk→+∞ρh(·)(uk − u) = 0,

(iii) uk → u in measure in Ω and limk→+∞ρh(·)(uk) = ρh(·)(u).

From [8, Theorems 1.6 and 1.10], we obtain the following proposition:

Proposition 2.3. Suppose that (2.1) is satisfied. If Ω is a bounded open domain, then (Lh(x)(Ω),

∥u∥Lh(x)(Ω)) is a reflexive uniformly convex and separable Banach space.

Proposition 2.4 (see [7]). Let h1 and h2 be measurable functions such that h1 ∈ L∞(RN ) and

1 ≤ h1(x)h2(x) ≤ +∞ for a.e. x ∈ RN . Let u ∈ Lh2(x)(RN ), u ̸= 0. Then we have the following

assertions

∥u∥Lh1(x)h2(x))(RN ) ≤ 1 =⇒ ∥u∥h
+
1

Lh1(x)h2(x))(RN )
≤ ∥|u|h1(x)∥Lh2(x))(RN ) ≤ ∥u∥h

−
1

Lh1(x)h2(x))(RN )
,
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∥u∥Lh1(x)h2(x))(RN ) ≥ 1 =⇒ ∥u∥h
−
1

Lh1(x)h2(x))(RN )
≤ ∥|u|h1(x)∥Lh2(x))(RN ) ≤ ∥u∥h

+
1

Lh1(x)h2(x))(RN )
.

In particular, if h1(x) = h1 is a constant, then it holds that

∥|u|h1∥Lh2(x)(RN ) = ∥u∥h1

Lh1(x)h2(x)(RN )
.

Let Ω be a Lipschitz bounded open set in RN and let p : Ω×Ω → (1,+∞) be a continuous bounded

function. We assume that

1 < p− := min
(x,y)∈Ω×Ω

p(x, y) ≤ p(x, y) ≤ p+ := max
(x,y)∈Ω×Ω

p(x, y) < +∞, (2.3)

and

p is symmetric, that is, p(x, y) = p(y, x) for all (x, y) ∈ Ω× Ω. (2.4)

Set

p(x) = p(x, x) for any x ∈ Ω.

Throughout this paper s is a fixed real number such that 0 < s < 1.

We define the fractional Sobolev space with variable exponent via Gagliardo approach as follows

W = W s,q(x),p(x,y)(Ω) =

{
u ∈ Lq(x)(Ω),

∫
Ω×Ω

|u(x)− u(y)|p(x,y)

λp(x,y)|x− y|N+sp(x,y)
dx dy < +∞ for some λ > 0

}
.

The space W s,q(x),p(x,y)(Ω) is a Banach space if it is equipped with the norm

∥u∥W = ∥u∥Lq(x)(Ω) + [u]s,p(x,y),

where [·]s,p(x,y) is a Gagliardo seminorm with variable exponent, which is defined by

[u]s,p(x,y) = [u]s,p(x,y)(Ω) := inf

{
λ > 0 :

∫
Ω×Ω

|u(x)− u(y)|p(x,y)

λp(x,y)|x− y|N+sp(x,y)
dx dy ≤ 1

}
.

Due to [9, Lemma 3.1], (W, ∥.∥W ) is a separable and reflexive Banach space.

Proposition 2.5 (see [9]). Let Ω ⊂ RN be a Lipschitz bounded domain and s ∈ (0, 1). Let

q(x), p(x, y) be continuous variable exponents with sp(x, y) < N for all (x, y) ∈ Ω× Ω and q(x) >

p(x, x) for all x ∈ Ω. Assume that r : Ω → (1,+∞) is a continuous function such that

p∗s(x) :=
Np(x, x)

N − sp(x, x)
> r(x) ≥ r− > 1

for all x ∈ Ω. Then, there exists a constant c = c(N, s, p, q, r,Ω) such that for every u ∈ W =
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W s,q(x),p(x,y)(Ω), it holds that

∥u∥Lr(x)(Ω) ≤ c∥u∥W .

That is, if 1 < r(x) < p∗s(x) for all x ∈ Ω then the space W is continuously embedded in Lr(x)(Ω).

Moreover, this embedding is compact.

It is important to encode the boundary condition u = 0 in RN\Ω in the weak formulation. For

this purpose, we introduce the new fractional Sobolev space as follows u : RN → R measurable, such that u|Ω ∈ Lq(x)(Ω) with∫
Q

|u(x)−u(y)|p(x,y)

λp(x,y)|x−y|N+sp(x,y) dx dy < +∞ for some λ > 0

 ,

where p : Q → (1,+∞) satisfies (2.3) and (2.4) on Q. The space X is endowed with the following

norm

∥u∥X = ∥u∥Lq(x)(Ω) + [u]X ,

where [u]X is a Gagliardo seminorm with variable exponent, defined by

[u]X = [u]s,p(x,y)(Q) := inf

{
λ > 0 :

∫
Q

|u(x)− u(y)|p(x,y)

λp(x,y)|x− y|N+sp(x,y)
dx dy ≤ 1

}
.

Similar to the space (W, ∥.∥W ) we have that (X, ∥.∥X) is a separable reflexive Banach space.

Remark 2.6. Note that the norms ∥.∥X and ∥.∥W are not the same, because Ω×Ω is strictly con-

tained in Q. This makes the fractional Sobolev space with variable exponent W = W s,q(x),p(x,y)(Ω)

not sufficient for studying the nonlocal problems.

Now let X0 denote the following linear subspace of X

X0 =
{
u ∈ X : u = 0 a.e. in RN\Ω

}
,

with the norm

∥u∥X0
= ∥u∥X = inf

{
λ > 0 :

∫
Q

|u(x)− u(y)|p(x,y)

λp(x,y)|x− y|N+sp(x,y)
dx dy ≤ 1

}
.

It is easy to check that ∥.∥X0
is a norm onX0.

Similar to [3, Theorem 2.2] we have

Theorem 2.7. Let Ω be a Lipschitz bounded domain in RN and let s ∈ (0, 1). Let p : Q →
(1,+∞) be a continuous function satisfying (2.3) and (2.4) on Q with sp+ < N. Then the following

assertions hold:
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(i) If u ∈ X, then u ∈ W. Moreover,

∥u∥W ≤ ∥u∥X ,

(ii) If u ∈ X0, then u ∈ W s,q(x),p(x,y)(RN ). Moreover,

∥u∥W ≤ ∥u∥W s,q(x),p(x,y)(RN ) = ∥u∥X ,

(iii) If r : Ω → (1,+∞) be a continuous variable exponent such that

1 < r− ≤ r(x) < p∗s(x) =
Np(x)

N − sp(x)
for all x ∈ Ω,

then, there exists a constant C = C(N, s, p, q, r,Ω) > 0 such that, for any u ∈ W,

∥u∥Lr(x)(Ω) ≤ C∥u∥X .

That is, the space X is continuously embedded in Lr(x)(Ω). Moreover, this embedding is

compact.

Remark 2.8. (i) The assertion (iii) in Theorem 2.7 remains true if we replace X by X0.

(ii) Since by (1.2) we have 1 < q− ≤ q(x) < p∗s(x) for all x ∈ Ω. then by Theorem 2.7 (iii) we

have that ∥ · ∥X0
= [·]X and ∥ · ∥X are equivalent on X0.

Definition 2.9. Let p : Q → (1,+∞) be a continuous variable exponent and let s ∈ (0, 1), we

define the modular ρp(.,.) : X0 → R, by

ρp(.,.)(u) =

∫
Q

|u(x)− u(y)|p(x,y)

|x− y|N+sp(x,y)
dx dy.

Then ∥u∥ρp(.,.)
= inf

{
λ > 0 : ρp(.,.)

(
u
λ

)
≤ 1
}
= [u]X .

The modular ρp(.,.) checks the following result, which is similar to [2, Proposition 2.1 and Lemma

2.2].

Lemma 2.10. Let p : Q → (1,+∞) be a continuous variable exponent and let s ∈ (0, 1), for any

u ∈ X0, we have

(i) 1 ≤ ∥u∥X0
=⇒ ∥u∥p

−

X0
≤ ρp(.,.)(u) ≤ ∥u∥p

+

X0
,

(ii) ∥u∥X0
≤ 1 =⇒ ∥u∥p

+

X0
≤ ρp(.,.)(u) ≤ ∥u∥p

−

X0
.

Remark 2.11. Note that ρp(.,.) satisfies the results of Proposition 2.2.

Similar to [3, Lemma 2.3] we have
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Lemma 2.12. (X0, ∥.∥X0) is a separable, reflexive, and uniformly convex Banach space.

Let denote by L the operator associated to the
(
−∆p(x)

)s defined as

L : X0 → X∗
0 , u 7→ L(u) : X0 → R, φ 7→ ⟨L(u), φ⟩

such that

⟨L(u), φ⟩ =
∫
Q

|u(x)− u(y)|p(x,y)−2(u(x)− u(y))(φ(x)− φ(y))

|x− y|N+sp(x,y)
dx dy,

where X∗
0 is the dual space of X0.

Lemma 2.13 (see [4]). Under the conditions of Proposition 2.5, the following assertions hold true:

(i) L is a bounded and strictly monotone operator.

(ii) L is a mapping of type (s+), that is, if uk ⇀ u in X0 and lim supk→+∞⟨L(uk)−L(u), uk−u⟩ ≤
0, then uk → u in X0.

(iii) L is a homeomorphism.

Throughout this paper, for simplicity, we use ci to denote the general nonnegative or positive

constant (the exact value may change from line to line).

3 The main result and proof of the theorem

Definition 3.1. We say that u ∈ X0 is a weak solution of problem (1.1) if

M(σp(x,y)(u))

∫
Q

|u(x)− u(y)|p(x,y)−2((u(x)− u(y))(φ(x)− φ(y))

|x− y|N+sp(x,y)
dx dy (3.1)

+

∫
Ω

|u(x)|q(x)−2u(x)φ(x)dx− λ

∫
Ω

V (x)|u(x)|r(x)−2u(x)φ(x)dx = 0

for all φ ∈ X0, where

σp(x,y)(u) =

∫
Q

1

p(x, y)

|u(x)− u(y)|p(x,y)

|x− y|N+sp(x,y)
dx dy.
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Let us consider the Euler-Lagrange functional associated to (1.1), defined by

Jλ : X0 → R, Jλ(u) = M̂

(∫
Q

1

p(x, y)

|u(x)− u(y)|p(x,y)

|x− y|N+sp(x,y)
dx dy

)
+

∫
Ω

1

q(x)
|u(x)|q(x)dx− λ

∫
Ω

V (x)

r(x)
|u(x)|r(x)dx

= M̂
(
σp(x,y)(u)

)
+

∫
Ω

1

q(x)
|u(x)|q(x)dx− λ

∫
Ω

V (x)

r(x)
|u(x)|r(x)dx,

where M̂(t) =
∫ t

0
M(τ)dτ.

Theorem 3.2. Under the same assumptions of Theorem 2.7, if we assume that (M1) holds and

σ, r ∈ C+(Ω) satisfy the following conditions:

(H1) 1 < r− ≤ r(x) ≤ r+ < p− ≤ p+ < N
s < σ(x) for all x ∈ Ω,

(H2) V ∈ Lσ(x)(Ω) and there exists a measurable set Ω0 ⊂⊂ Ω of positive measure such that

V (x) > 0 for all x ∈ Ω0.

Then there exists λ̄ > 0 such that any λ ∈ (0, λ̄) is an eigenvalue of problem (1.1).

Proof. For each λ > 0, let us consider the functional Jλ : X0 → R associated with problem (1.1)

by the formula

Jλ(u) = Φ(u)− λΨ(u),

where

Φ(u) = M̂(σp(x,y)(u)) +

∫
Ω

1

q(x)
|u(x)|q(x)dx, Ψ(u) =

V (x)

r(x)
|u(x)|r(x)dx.

From conditions (H1)− (H2) and Proposition 2.4, for all u ∈ X0, we get

|Φ(u)| ≤ 2

r−
∥V ∥Lσ(x)(Ω)∥|u|r(x)∥Lσ(x)/(σ(x)−1)(Ω)

≤


2
r− ∥V ∥Lσ(x)(Ω)∥u∥r

−

Lσ(x)r(x)/(σ(x)−1)(Ω)
if ∥u∥Lσ(x)r(x)/(σ(x)−1)(Ω) ≤ 1,

2
r− ∥V ∥Lσ(x)(Ω)∥u∥r

+

Lσ(x)r(x)/(σ(x)−1)(Ω)
if ∥u∥Lσ(x)r(x)/(σ(x)−1)(Ω) ≥ 1.

(3.2)

We also deduce from (H1) that β(x) = σ(x)r(x)/(σ(x)−r(x)) < p∗s(x) and γ(x) = σ(x)r(x)/(σ(x)−
1) < p∗s(x) for all x ∈ Ω. In view of (Theorem 2.7 (iii) and Remark 2.8 (i)) the embeddings

X0 ↪→ Lβ(x)(Ω) and X0 ↪→ Lγ(x)(Ω) are continuous and compact. Thus, the functional Jλ is

well-defined on X0. The proof of Theorem 3.2 is divided into following four steps.



116 S. M. Sajjadi & G. A. Afrouzi CUBO
26, 1 (2024)

Step 1. We show that Jλ ∈ C1(X0,R) and its derivative is

⟨J ′
λ(u), φ⟩ = M(σp(x,y)(u))

∫
Q

|u(x)− u(y)|p(x,y)−2((u(x)− u(y))(φ(x)− φ(y))

|x− y|N+sp(x,y)
dx dy

+

∫
Ω

|u(x)|q(x)−2u(x)φ(x)dx− λ

∫
Ω

V (x)|u(x)|r(x)−2u(x)φ(x)dx

for all u, φ ∈ X0. This means that weak solutions for problem (1.1) can be found as the

critical points of the functional Jλ in the space X0.

Using the same method as in the proof of [1, Lemma 4.1] and [6, Lemma 3.1] and the

continuity of M, we can show that Φ ∈ C1(X0,R) and

⟨Φ′(u), φ⟩ = M(σp(x,y)(u))

∫
Q

|u(x)− u(y)|p(x,y)−2((u(x)− u(y))(φ(x)− φ(y))

|x− y|N+sp(x,y)
dx dy

+

∫
Ω

|u(x)|q(x)−2u(x)φ(x)dx

for all u, φ ∈ X0.

Also it has been proved by Chung in [5] that Ψ ∈ C1(X0,R) and

⟨Ψ′(u), φ⟩ =
∫
Ω

V (x)|u(x)|r(x)−2u(x)φ(x)dx, ∀u, φ ∈ X0

and thus Step 1 is completed.

Step 2. We prove that there exists λ̄ > 0 such that for any λ ∈ (0, λ̄), there exist constants

R, ρ > 0 such that Jλ(u) ≥ R for all u ∈ X0 with ∥u∥X0 = ρ.

Indeed, since γ(x) = σ(x)r(x)/(σ(x) − 1) < p∗s(x) for all x ∈ Ω, the embedding X0 ↪→
Lγ(x)(Ω) is continuous and there exists c2 > 0 such that

∥u∥Lγ(x)(Ω) ≤ c2∥u∥x0
, ∀u ∈ X0.

Hence, by relation (3.2), for any u ∈ X0 with ∥u∥ = ρ small enough,

Jλ(u) = M̂(σp(x,y)(u)) +

∫
Ω

1

q(x)
|u(x)|q(x)dx− λ

∫
Ω

V (x)

r(x)
|u(x)|r(x)dx

≥ m1

α(p+)α
∥u∥αp

+

X0
− λ

2cr
−

2

r−
∥V ∥Lσ(x)(Ω)∥u∥r

−

X0
=

m1

α(p+)α
ραp

+

− λ
2cr

−

2

r−
∥V ∥Lσ(x)(Ω)ρ

r−

= ρr
−

(
m1

α(p+)α
ραp

+−r− − λ
2cr

−

2

r−
∥V ∥Lσ(x)(Ω)

)
.

Putting

λ̄ =
m1

2α(p+)α
ραp

+−r− · r−

2cr
−

2 ∥V ∥Lσ(x)(Ω)

> 0,
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for any λ ∈ (0, λ̄) and u ∈ X0 with ∥u∥ = ρ, there exists R = m1ρ
αp+

2α(p+)α such that Jλ(u) ≥
R > 0.

Step 3. We prove that there exists φ0 ∈ X0 such that φ0 ≥ 0, φ0 ̸= 0 and Jλ(tφ0) < 0 for all

t > 0 small enough.

Indeed, condition (H1) implies that r(x) < min{p−, q−} = p− for all x ∈ Ω0. In the sequel,

we use the notation r−0 = infx∈Ω0
r(x). Let ε0 > 0 be such that r−0 + ε0 < p−. We also have

since r ∈ C(Ω0) that there exists an open subset Ω1 ⊂ Ω0 such that

|r(x)− r−0 | < ε0, ∀x ∈ Ω1

and thus

r(x) ≤ r−0 + ε0 < p− < αp−, ∀x ∈ Ω1.

Let φ0 ∈ C∞
0 (Ω0) such that Ω1 ⊂ supp(φ0), φ0(x) = 1 for all x ∈ Ω1 and 0 ≤ φ0 ≤ 1 in Ω0.

Then, using the above information and assumption(M1), for any t ∈ (0, 1) we have

Jλ(tφ0) = M̂
(
σp(x,y)(tφ0)

)
+

∫
Ω

1

q(x)
|tφ0|q(x)dx− λ

∫
Ω

V (x)

r(x)
|tφ0|r(x)dx

≤ m2

α

(
σp(x,y)(tφ0)

)α
+

tq
−

q−

∫
Ω0

|φ0|q(x)dx− λ

∫
Ω0

V (x)

r(x)
tr(x)|φ0|r(x)dx

≤ m2

α(p−)
α t

αp− (
ρp(.,.)(φ0)

)α
+

tq
−

q−

∫
Ω0

|φ0|q(x)dx− λtr
−
0 +ε0

r+0

∫
Ω1

V (x)|φ0|r(x)dx

≤ ktαp
−
((

ρp(.,.)(φ0)
)α

+

∫
Ω0

|φ0|q(x)dx
)
− λtr

−
0 +ε0

r+0

∫
Ω1

V (x)|φ0|r(x)dx

where

k = max

{
m2

α(p−)
α ,

1

q−

}
.

Therefore

Jλ(tφ0) < 0 for 0 < t < δ1/(αp
−−r−0 −ε0)

with

0 < δ < min

{
1,

λ

kr+0
·

∫
Ω1

V (x)|φ0|r(x)dx(
ρp(.,.)(φ0)

)α
+
∫
Ω
|φ0|q(x)dx

}
.

The above fraction is meaningful if we can show that

(
ρp(.,.)(φ0)

)α
+

∫
Ω

|φ0|q(x)dx > 0.

Since φ0(x) = 1 for all x ∈ Ω1, we have∫
Ω

|φ0|q(x)dx > 0.



118 S. M. Sajjadi & G. A. Afrouzi CUBO
26, 1 (2024)

Thus, the above fraction is meaningful.

Indeed, it is clear that ∫
Ω1

|φ0|r(x)dx ≤
∫
Ω

|φ0|r(x)dx ≤
∫
Ω

|φ0|r
−
dx.

On the other hand, the space X0 is continuously embedded in Lr−(Ω) and thus, there exists

c3 > 0 such that ∥φ0∥Lr− (Ω) ≤ c3∥φ0∥X0
, which implies that ∥φ0∥X0

> 0. Thus, Step 3 is

completed.

By Step 2 we have

inf
u∈∂Bρ(0)

Jλ(u) > 0.

We also deduce from Step 2 that, the functional Jλ is bounded from below on Bρ(0). Moreover,

by Step 3, there exists φ ∈ X such that Jλ(tφ) < 0 for all t > 0 small enough.

It follows from Step 2 that

Jλ(u) ≥
m1

α(p+)α
∥u∥αp

+

X0
− λ

2cr
−

2

r−
∥V ∥Lσ(x)(Ω)∥u∥r

−

X0
,

which yields

−∞ < cλ = inf
u∈Bρ(0)

Jλ(u) < 0.

Let us choose ε > 0 such that

0 < ε < inf
u∈∂Bρ(0)

Jλ(u)− inf
u∈Bρ(0)

Jλ(u).

Applying the Ekeland variational principle [7] to the functional Jλ : Bρ(0) → R, it follows that

there exists uε ∈ Bρ(0)

Jλ(uε) < inf
u∈Bρ(0)

Jλ(u) + ε, Jλ(uε) < Jλ(u) + ε∥u− uε∥X0
, u ̸= uε,

then we infer that

Jλ(uε) < inf
u∈∂Bρ(0)

Jλ(u)

and thus

uε ∈ Bρ(0).

Let us consider the functional

Iλ : Bρ(0) → R by Iλ(u) = Jλ(u) + ε∥u− uε∥X0 .
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Then uε is a minimum point of Iλ and thus

Iλ(uε + τφ)− Iλ(uε)

τ
≥ 0

for all τ > 0 small enough and φ ∈ Bρ(0). The above information shows that

Jλ(uε + τφ)− Jλ(uε)

τ
+ ε∥φ∥X0

≥ 0.

Letting τ → 0+, we deduce that

⟨J ′
λ(uε), φ⟩+ ε∥φ∥X0

≥ 0

and we infer that

∥J ′
λ(uε)∥X∗

0
≤ ε.

Therefore, there exists a sequence {un} ⊂ Bρ(0) such that

Jλ(un) → cλ = inf
u∈Bρ(0)

Jλ(u) < 0 and J ′
λ(un) → 0 in X∗

0 as n → ∞. (3.3)

It is clear that the sequence {un} is bounded in X0. Now, since X0 is a reflexive Banach space,

there exists u ∈ X0 such that passing to a subsequence, still denoted by {un}, it converges weakly

to u in X0.

Step 4. We prove that {un} which is given by (3.3) converges strongly to u in X0, i.e., lim
n→+∞

∥un−
u∥X0 = 0.

By conditions (H1) − (H2), using Hölder’s inequality (2.2) and Propositions 2.4 and 2.5 we

deduce that∣∣∣∣∫
Ω

|un|q(x)−2un(un − u)dx

∣∣∣∣ ≤ 2∥|un|q(x)−2un∥Lq(x)/(q(x)−1)(Ω)∥un − u∥Lq(x)(Ω)

≤ 2∥un∥q
+−1

Lq(x)(Ω)
∥un − u∥Lq(x)(Ω) → 0 as n → ∞,

and∣∣∣∣∣
∫
Ω

V (x)|un|r(x)−2un(un − u)dx

∣∣∣∣∣ ≤ 3∥V ∥Lσ(x)(Ω)∥|un|r(x)−2un∥Lr(x)/(r(x)−1)(Ω)∥un − u∥Lβ(x)(Ω)

≤ 3∥V ∥Lσ(x)(Ω)

(
1 + ∥un∥r

+−1
Lr(x)(Ω)

)
∥un − u∥Lβ(x)(Ω) → 0 as n → ∞,

where β(x) = σ(x)r(x)/(σ(x)−r(x)). Moreover, by (3.3) we have limn→∞⟨J ′
λ(un), un−u⟩ =

0, i.e.,
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M(σp(x,y)(un))IQ(un) +

∫
Ω

|un|q(x)−2un(un − u)dx

− λ

∫
Ω

V (x)|un|r(x)−2un(un − u)dx → 0 as n → ∞,

which yields

M(σp(x,y)(un))IQ(un) → 0 (3.4)

where

IQ(un) =

∫
Q

|un(x)− un(y)|p(x,y)−2((un(x)− un(y))((un(x)− u(x))− (un(y)− u(y)))

|x− y|N+sp(x,y)
dx dy

Since {un} is bounded in X0, passing to subsequence, if necessary, we may assume that

σp(x,y)(un)
n→+∞−→ t1 ≥ 0.

If t1 = 0, then {un} converge strongly to u = 0 in X0, then by (3.3), we obtain

lim
n→+∞

Jλ(un) = Jλ(u) = Jλ(0) = 0 = cλ < 0.

That is a contradiction, thus t1 > 0.

Since the function M is continuous, we have

M
(
σp(x,y)(un)

) n→+∞−→ M (t1) > 0.

Hence, by (M1), for n large enough, we get

0 < c4 < M
(
σp(x,y)(un)

)
< c5. (3.5)

Combining (3.4) and (3.5), we deduce

lim
n→+∞

IQ(un) = 0.

Using the above information, Lemma 2.13 (ii) and the fact that un ⇀ u in X0, we get
lim supn→+∞⟨L(un), un − u⟩ ≤ 0,

un ⇀ u in X0, =⇒ un → u in X0.

L is a mapping of type (S+).
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Thus, in view of (3.3), we obtain

Jλ(u) = cλ < 0 and J ′
λ(u) = 0.

This means that u is a non-trivial weak solution of (1.1), i.e., any λ ∈ (0,+∞) is an eigenvalue

of problem (1.1). Theorem 3.2 is completely proved.
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