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ABSTRACT

In the present paper we study para-Kenmotsu (p-Kenmotsu)
manifold equipped with quarter-symmetric metric connec-
tion and discuss certain derivation conditions.

RESUMEN

En el presente artículo estudiamos variedades para-
Kenmotsu (p-Kenmotsu) equipadas con conexiones métricas
cuarto-simétricas y discutimos ciertas condiciones derivadas.

Keywords and Phrases: Para-Kenmotsu manifold, quarter-symmetric metric connection, curvature tensor, η-

Einstein manifold.

2020 AMS Mathematics Subject Classification: 53C15, 53C25.

Published: 10 April, 2024

Accepted: 27 February, 2024

Received: 13 September, 2023

©2024 B. Chaube et al. This open access article is licensed under a Creative Commons

Attribution-NonCommercial 4.0 International License.

http://cubo.ufro.cl/
https://doi.org/10.56754/0719-0646.2601.153
https://orcid.org/0009-0004-0975-5108
https://orcid.org/0000-0002-9342-4237
mailto:bhawanachaube18@gmail.com
mailto:skchanyal.math@gmail.com


154 B. Chaube & S. K. Chanyal CUBO
26, 1 (2024)

1 Introduction

Kenmotsu in 1971, introduced a class of almost contact Riemannian manifolds satisfying some

special conditions, called Kenmotsu manifold [10]. Many researchers including U.C. De and R.

N. Singh studied some properties of Kenmotsu manifolds endowed with various conditions [2,3,9,

15]. Sato [13] in 1976, introduced the notion of an almost para-contact structure on Riemannian

manifolds which is similar to the almost contact structure on Riemannian manifolds. In 1995,

B. B. Sinha and K. L. Sai Prasad [16] defined a class of almost para contact metric manifolds

analogous to the class of Kenmotsu manifolds, known as para-Kenmotsu (p-Kenmotsu) manifolds.

T. Satyanarayana et al. [14] studied curvature properties in a p-Kenmotsu manifold.

Friedmann and Schouten in 1924 [6], presented the idea of semi-symmetric connection on a differ-

entiable manifold. Yano introduced semi-symmetric metric connection in 1970 using the idea of

metric connection given by Hayden in 1932. M. M. Tripathi [19] and Tang et al. [18] studied semi-

symmetric metric connection in a Kenmotsu manifold. A linear connection ∇̄ on a Riemannian

manifold M is said to be a semi- symmetric connection if the torsion tensor T given by

T (X,Y ) = ∇̄XY − ∇̄YX − [X,Y ]

satisfies

T (X,Y ) = η(Y )X − η(X)Y,

where η is a 1-form and g(X, ξ) = η(X), ξ is a vector field and for all vector fields X,Y ∈ χ(M),

χ(M) is the set of all differentiable vector fields on M .

Gołąb [7] in 1975 studied quarter-symmetric metric connection in differentiable manifolds with

affine connections. Further S. C. Biswas, U. C. De and many others [1, 4, 5, 17] studied quarter-

symmetric metric connection in Riemannian manifolds equipped with various structures. A quarter-

symmetric connection is considered as a generalisation of semi-symmetric connection since its

torsion tensor T satisfies

T (X,Y ) = η(Y )ϕX − η(X)ϕY,

where ϕ is a (1, 1) tensor field. If quarter-symmetric connection ∇̄ satisfies the condition

(∇̄Xg)(Y, Z) = 0,

where X,Y, Z ∈ χ(M), then ∇̄ is said to be a quarter-symmetric metric connection. Let M be

an n-dimensional Riemannian manifold and ∇ be its Levi-Civita connection. The Riemannian

curvature tensor R, the concircular curvature tensor W , Weyl projective curvature tensor P of M
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are defined by [11,12]

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z, (1.1)

W (X,Y )Z = R(X,Y )Z − r

n(n− 1)
[g(Y, Z)X − g(X,Z)Y ], (1.2)

P (X,Y )Z = R(X,Y )Z − 1

n− 1
[S(Y,Z)X − S(X,Z)Y ], (1.3)

where X,Y, Z ∈ χ(M) and r is the scalar curvature.

The paper is organised as follows: In section 2, a brief introduction of p-Kenmotsu manifolds is

given. In section 3, the relation between the curvature tensors of Riemannian connection and

the quarter-symmetric metric connection in a p-Kenmotsu manifold is obtained. The study of

a p-Kenmotsu manifold with respect to the quarter-symmetric metric connection satisfying the

curvature condition R̄ · S̄ is contained in section 4. In section 5, we study ϕ-concircularly flat p-

Kenmotsu manifold with respect to quarter-symmetric metric connection. The curvature condition

P̄ · S̄ = 0 and ϕ-Weyl projective flat p-Kenmotsu manifold with respect to quarter-symmetric

metric connection are respectively studied in the sections 6 and 7. Finally we give an example of

a 5-dimensional p-Kenmotsu manifold.

2 Preliminaries

Let M be a (2n + 1)-dimensional differentiabe manifold endowed with an almost para-contact

structure (ϕ, ξ, η), where ϕ is a (1, 1)-tensor field, ξ is a vector field, and η is a 1-form on M , then

ϕ2X = X − η(X)ξ, η(ξ) = 1. (2.1)

ϕ(ξ) = 0, η(ϕX) = 0, rank (ϕ) = 2n. (2.2)

where X is a vector field on M . The manifold M endowed with (ϕ, ξ, η) is called an almost

para-contact manifold [13].

Let g be a Riemannian metric on M compatible to the structure (ϕ, ξ, η), i.e., the following

equations are satisfied

g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ), g(X, ξ) = η(X), (2.3)

for all vector fields X and Y on M . Then the manifold M is said to admit an almost para-contact

Riemannian structure (ϕ, ξ, η, g).
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If moreover, (ϕ, ξ, η, g) satisfy the following conditions

(∇Xη)Y = g(X,Y )− η(X)η(Y ), (2.4)

∇Xξ = X − η(X)ξ = ϕ2(X), (2.5)

(∇Xϕ)Y = −g(ϕX, Y )ξ − η(Y )ϕX, (2.6)

then M is called a para-Kenmotsu (p-Kenmotsu) manifold [16].

In a p-Kenmotsu manifold the following relations hold [16]:

S(ϕX, ϕY ) = S(X,Y ) + (n− 1)η(X)η(Y ), (2.7)

S(X, ξ) = −(n− 1)η(X), where g(QX,Y ) = S(X,Y ), (2.8)

η(R(X,Y )Z) = g(X,Z)η(Y )− g(Y,Z)η(X), (2.9)

R(ξ,X)Y = η(Y )X − g(X,Y )ξ, (2.10)

R(X,Y )ξ = η(X)Y − η(Y )X, (2.11)

where S is the Ricci tensor and Q is the symmetric endomorphism of the tangent space at each

point corresponding to the Ricci tensor and R is the Riemannian curvature.

If the Ricci curvature tensor S is of the form

S(X,Y ) = ag(X,Y ) + bη(X)η(Y ), (2.12)

then M is called η-Einstein manifold and if b = 0 then it is said to be Einstein manifold. M is

called generalized η-Einstein manifold, if S is of the form

S(X,Y ) = ag(X,Y ) + bη(X)η(Y ) + cg(ϕX, Y ), (2.13)

where a, b, c are scalar functions on M .

In a p-Kenmotsu manifold M , the connection ∇̄ given by

∇̄XY = ∇XY + η(Y )ϕX − g(ϕX, Y )ξ (2.14)

is a quarter-symmetric metric connection [8].
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3 Curvature tensor of para-Kenmotsu manifold with respect

to the quarter-symmetric metric connection

Let M be a p-Kenmotsu manifold. The curvature tensor R̄ of a p-Kenmotsu manifold with respect

to the quarter-symmetric metric connection ∇̄ is defined by

R̄(X,Y )Z = ∇̄X∇̄Y Z − ∇̄Y ∇̄XZ − ∇̄[X,Y ]Z.

Using equations (2.1)-(2.6) and (2.13) we get

R̄(X,Y )Z = R(X,Y )Z + g(X,Z)ϕY − g(Y,Z)ϕX + g(ϕX,Z)Y − g(ϕY,Z)X

+ g(ϕX,Z)ϕY − g(ϕY,Z)ϕX, (3.1)

where R is the Riemannian curvature tensor of the connection ∇ given in (1.1).

Now from (3.1), we have

R̄(X,Y )Z + R̄(Y,Z)X + R̄(Z,X)Y = 0, (3.2)

or equivalently

R̄(X,Y, Z,W ) + R̄(Y, Z,X,W ) + R̄(Z,X, Y,W ) = 0, (3.3)

where R̄(X,Y, Z,W ) = g(R̄(X,Y )Z,W ). Thus the curvature tensor with respect to the quarter-

symmetric metric connection satisfies the Bianchi first identity. Taking inner product of (3.1) with

respect to W , we get

R̄(X,Y, Z,W ) = R(X,Y, Z,W ) + g(X,Z)g(ϕY,W )− g(Y, Z)g(ϕX,W )

+ g(ϕX,Z)g(Y,W )− g(ϕY,Z)g(X,W ) (3.4)

+ g(ϕX,Z)g(ϕY,W )− g(ϕY,Z)g(ϕX,W ).

Contracting (3.4) over X and W , we get

S̄(Y,Z) = S(Y,Z) + (1− 2n− ψ)g(ϕY,Z) + (1− ψ)g(Y,Z)− η(Y )η(Z), (3.5)

where ψ = trace ϕ, S and S̄ are the Ricci tensors with respect to the connections ∇ and ∇̄
respectively on M . Now contracting (3.5), we have

r̄ = r + 2n(1− 2ψ)− ψ2, (3.6)

where r and r̄ denote the scalar curvatures with respect to the connections ∇ and ∇̄ respectively
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on M . Now we state the following theorem.

Theorem 3.1. For a p-Kenmotsu manifold M with respect to the quarter-symmetric metric con-

nection ∇̄

(1) The curvature tensor R̄ satisfies the Bianchi first identity and is given by

R̄(X,Y )Z = R(X,Y )Z + g(X,Z)ϕY − g(Y,Z)ϕX

+ g(ϕX,Z)Y − g(ϕY,Z)X + g(ϕX,Z)ϕY − g(ϕY,Z)ϕX.

(2) The Ricci tensor S̄ is given by

S̄(Y,Z) = S(Y,Z) + (1− 2n− ψ)g(ϕY,Z) + (1− ψ)g(Y, Z)− η(Y )η(Z).

(3) The relation between r and r̄, respectively the scalar curvatures with respect to ∇ and ∇̄, is

given by

r̄ = r + 2n(1− 2ψ)− ψ2.

Proof. The proof follows from the equations (3.1), (3.2), (3.3), (3.5) and (3.6).

Some properties of the curvature tensor with respect to the quarter- symmetric metric connection

are given in the following lemma.

Lemma 3.2. In a (2n + 1)-dimensional p-Kenmotsu manifold with the structure (ϕ, ξ, η, g) with

respect to the quarter-symmetric metric connection, the following hold

R̄(X,Y )ξ = η(X)Y − η(Y )X + η(X)ϕY − η(Y )ϕX, (3.7)

R̄(ξ, Y )Z = η(Z)Y + η(Z)ϕY − g(Y,Z)ξ − g(ϕY,Z)ξ, (3.8)

R̄(ξ, Y )ξ = Y + ϕY − η(Y )ξ, (3.9)

S̄(Y, ξ) = (1− n− ψ)η(Y ), (3.10)

S̄(ξ, ξ) = (1− n− ψ). (3.11)
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4 p-Kenmotsu manifold satisfying R̄ · S̄ = 0.

In this section we consider a p-Kenmotsu manifold with respect to the quarter-symmetric metric

connection ∇̄ satisfying

R̄(X,Y ) · S̄ = 0.

This equation implies

S̄(R̄(X,Y )U, V ) + S̄(U, R̄(X,Y )V ) = 0 (4.1)

where X,Y, U, V ∈ χ(M). Putting X = ξ in (4.1), we have

S̄(R̄(ξ, Y )U, V ) + S̄(U, R̄(ξ, Y )V ) = 0 (4.2)

By the equations (3.5), (3.8) and (3.10), equation (4.2) yields

η(U)S̄(Y, V ) + η(U)S̄(ϕY, V )− (1− n− ψ)g(Y, U)η(V )− (1− n− ψ)g(ϕY,U)η(V )

+η(V )S̄(U, Y ) + η(V )S̄(ϕY,U)− (1− n− ψ)g(Y, V )η(U)− (1− n− ψ)g(ϕY, V )η(U) = 0.

Putting U = ξ and using (2.1) and (2.2), it follows that

S̄(Y, V ) + S̄(ϕY, V ) = (1− n− ψ)g(Y, V ) + (1− n− ψ)g(ϕY, V ). (4.3)

Making use of (3.5), (4.3) takes form

S(Y, V ) + S(ϕY, V ) = (ψ + n− 1)g(Y, V ) + (2− 2n− ψ)η(Y )η(V ) + (ψ + n− 1)g(ϕY, V ). (4.4)

Therefore we have the following theorem:

Theorem 4.1. If a p-Kenmotsu manifold with respect to the quarter-symmetric metric connection

satisfying the condition R̄ · S̄ = 0, then the Ricci tensor S of the manifold satisfies

S(X,Y ) + S(ϕX, Y ) = (ψ + n− 1)g(X,Y ) + (2− 2n− ψ)η(X)η(Y ) + (ψ + n− 1)g(ϕX, Y ).
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5 ϕ-concircularly flat p-Kenmotsu manifolds with respect to

the quarter-symmetric metric connection

Analogous to the definition of the concircular curvature given in (1.2), W̄ , the concircular curvature

with respect to quarter-symmetric metric connection is given by

W̄ (X,Y )Z = R̄(X,Y )Z − r̄

n(n− 1)
[g(Y, Z)X − g(X,Z)Y ]. (5.1)

A p-Kenmotsu manifold is said to be ϕ-concircularly flat with respect to the quarter-symmetric

metric connection if

W̄ (ϕX, ϕY, ϕZ, ϕW ) = 0, (5.2)

where X,Y, Z,W ∈ χ(M).

Taking inner-product of (5.1) with respect to U and replacing X by ϕX, Y by ϕY , Z by ϕZ and

U by ϕU , we get

R̄(ϕX, ϕY, ϕZ, ϕW ) =
r̄

n(n− 1)
[g(ϕY, ϕZ)g(ϕX, ϕW )− g(ϕX, ϕZ)g(ϕY, ϕW )].

In view of (3.1) and (3.6), (5.3) takes the form

R(ϕX, ϕY, ϕZ, ϕW ) = g(ϕY, ϕZ)g(X,ϕW )− g(ϕX, ϕZ)g(Y, ϕW ) + g(Y, ϕZ)g(ϕX, ϕW )

− g(X,ϕZ)g(ϕY, ϕW )− g(X,ϕZ)g(Y, ϕW ) + g(Y, ϕZ)g(X,ϕW ) (5.3)

+
r + 2n(1− 2ψ)− ψ2

n(n− 1)

[
g(ϕY, ϕZ)g(ϕX, ϕW )− g(ϕX, ϕZ)g(ϕY, ϕW )

]
.

Let {e1, e2, . . . , e2n, e2n+1 = ξ} be a local orthonormal ϕ-basis of vector fields in M , so that

{ϕe1, ϕe2, . . . , ϕe2n, ξ} is also a local orthonormal basis in M . Putting X = W = ei in the last

equation and summing over i, we get

S(Y, Z) =
(r + 2n(1− 2ψ)− ψ2)(2n− 1) + n(n− 1)ψ

n(n− 1)
g(Y,Z)

− (r + 2n(1− 2ψ)− ψ2)(2n− 1) + n(n− 1)(n− 1 + ψ)

n(n− 1)
η(Y )η(Z) (5.4)

− (2− 2n− ψ)g(ϕY,Z).

Thus we state the following theorem:

Theorem 5.1. A ϕ-concircularly flat p-Kenmotsu manifold with respect to the quarter-symmetric

metric connection is a generalized η-Einstein manifold with the scalar curvature r given by (5.4).
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6 p-Kenmotsu manifold satisfying P̄ · S̄ = 0 with respect to

quarter-symmetric metric connection.

Analogous to (1.3), the Weyl projective curvature P̄ with respect to quarter-symmetric metric

connection is given by

P̄ (X,Y )Z = R̄(X,Y )Z − 1

n− 1
[S̄(Y,Z)X − S̄(X,Z)Y ].

Using (3.1) and (3.5), this equation implies

P̄ (X,Y )Z = R(X,Y )Z + g(X,Z)ϕY − g(Y,Z)ϕX + g(ϕX,Z)Y

− g(ϕY,Z)X + g(ϕX,Z)ϕY − g(ϕY,Z)ϕX − 1

n− 1

[
S(Y,Z)X

+ (1− 2n− ψ)g(ϕY,Z)X + (1− ψ)g(Y,Z)X − η(Y )η(Z)X (6.1)

− S(X,Z)Y − (1− 2n− ψ)g(ϕX,Z)Y − (1− ψ)g(X,Z)Y + η(X)η(Z)Y
]
.

From the equation (6.1), we have the following properties of the Weyl projective curvature P̄ .

P̄ (ξ, Y )Z = η(Y )Z − g(Y, Z)ξ + η(Z)ϕY − g(ϕY,Z)ξ − 1

n− 1

[
S(Y,Z)ξ

+ (1− 2n− ψ)g(ϕY,Z)ξ + (1− ψ)g(Y,Z)ξ − η(Y )η(Z)ξ − S(ξ, Z)Y (6.2)

− (1− ψ)η(Z)Y + η(Z)Y
]
.

and

P̄ (ξ, Y )ξ = Y − η(Y )ξ + ϕY − 1

n− 1

[
(1− ψ − n)η(Y )ξ + (ψ + n− 1)Y

]
. (6.3)

Now, we consider a p-Kenmotsu manifold satisfying the curvature condition

P̄ (X,Y ) · S̄ = 0,

which is equivalent to

S̄(P̄ (X,Y )U, V ) + S̄(U, P̄ (X,Y )V ) = 0.

The last equation implies

S̄(P̄ (ξ, Y )ξ, V ) + S̄(ξ, P̄ (ξ, Y )V ) = 0. (6.4)

Using equation (6.2) and (6.3) in (6.4), we once again get the equation (4.4). Therefore we have

the following theorem:
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Theorem 6.1. For a (2n + 1)-dimensional p-Kenmotsu manifold with respect to the quarter-

symmetric metric connection satisfying the condition P̄ · S̄ = 0, the Ricci tensor S satisfies

S(X,Y ) + S(ϕX, Y ) = (ψ + n− 1)g(ϕX, Y ) + (ψ + n− 1)g(X,Y ) + (2− 2n− ψ)η(X)η(Y ).

7 ϕ-Weyl projective flat p-Kenmotsu manifolds with respect

to the quarter-symmetric metric connection.

A p-Kenmotsu manifold is said to be ϕ-Weyl projective flat with respect to the quarter-symmetric

metric connection if

P̄ (ϕX, ϕY, ϕZ, ϕU) = 0, (7.1)

where X,Y, Z, U ∈ χ(M). Taking inner-product of (6.1) with respect to U and replacing X by

ϕX, Y by ϕY , Z by ϕZ and U by ϕU , we get

P̄ (ϕX, ϕY, ϕZ, ϕU) = R̄(ϕX, ϕY, ϕZ, ϕU)− 1

n− 1

[
S(ϕY, ϕZ)g(ϕX, ϕU)

+ (1− 2n− ψ)g(Y, ϕZ)g(ϕX, ϕU) + (1− ψ)g(ϕX, ϕZ)

− S(ϕX, ϕZ)g(ϕY, ϕU)− (1− 2n− ψ)g(X,ϕZ)g(ϕY, ϕU) (7.2)

+ g(ϕX, ϕU)− (1− ψ)g(ϕX, ϕZ)g(ϕY, ϕU)
]
.

Using (3.1), (7.1) in (7.2), we obtain

R(ϕX, ϕY, ϕZ, ϕW ) = −g(ϕX, ϕZ)g(Y, ϕW ) + g(ϕY, ϕZ)g(X,ϕW )− g(X,ϕZ)g(ϕY, ϕW )

+ g(Y, ϕZ)g(ϕX, ϕW )− g(X,ϕZ)g(Y, ϕW ) + g(Y, ϕZ)g(X,ϕW )

+
1

n− 1

[
S(ϕY, ϕZ)g(ϕX, ϕU) + (1− 2n− ψ)g(Y, ϕZ)g(ϕX, ϕU)

+ (1− ψ)g(ϕX, ϕZ)g(ϕX, ϕU)− S(ϕX, ϕZ)g(ϕY, ϕU)

− (1− 2n− ψ)g(X,ϕZ)g(ϕY, ϕU)− (1− ψ)g(ϕX, ϕZ)g(ϕY, ϕU)
]
.

Let {e1, e2, . . . , e2n, ξ} be a local orthonormal ϕ-basis of vector fields in M , putting X = W = ei

in the last equation and summing over i, we get

S(Y, Z) =
(2n− ψn− 1)

2(1− n)
g(Y,Z)− (n2 − 3n+ nψ + 1)

2(n− 1)
η(Y )η(Z) +

(2n2 + 3n+ 2ψ − 3)

2(n− 1)
g(ϕY,Z).

Thus we state the following theorem:

Theorem 7.1. If a p-Kenmotsu manifold is ϕ-Weyl projective flat with respect to the quarter-

symmetric metric connection, it is a generalized η-Einstein manifold.
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8 Example

Example 8.1. Consider the 5-dimensional manifold M = {(u, v, x, y, z) ∈ R5} with standard

coordinates (u, v, x, y, z) in R5. Then the following vector fields

e1 = z
∂

∂u
, e2 = z

∂

∂v
, e3 = z

∂

∂x
, e4 = z

∂

∂y
, e5 = − ∂

∂z

are linearly independent at each point of M . Suppose g be the Riemannian metric defined by,

g(ei, ej) = δij =

1 if i = j

0 if i ̸= j; i, j = 1, 2, 3, 4, 5.

Let ϕ be the tensor field of type (1, 1) defined by

ϕ(e1) = e2, ϕ(e2) = e1, ϕ(e3) = e4, ϕ(e4) = e3, ϕ(e5) = 0,

and η be the 1-form defined by η(X) = g(X, e5). Using the linearity of ϕ and g, we have

η(e5) = 1, ϕ2X = X − η(X)e5, g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ),

for any vector fields X,Y ∈ χ(M). If we take e5 = ξ, the structure (ϕ, ξ, η, g) is an almost

para-contact Riemannian structure on M . Then we have,

[e1, e2] = 0, [e1, e3] = 0, [e1, e4] = 0, [e1, e5] = e1, [e2, e3] = 0,

[e2, e4] = 0, [e2, e5] = e2, [e3, e4] = 0, [e3, e5] = e3, [e4, e5] = e4.

Using Koszul’s formula, we obtain the Levi-Civita connection ∇ of the metric tensor g as follows:

∇e1e1 = −e5, ∇e1e2 = 0, ∇e1e3 = 0, ∇e1e4 = 0, ∇e1e5 = e1,

∇e2e1 = 0, ∇e2e2 = −e5, ∇e2e3 = 0, ∇e2e4 = 0, ∇e2e5 = e2,

∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = −e5, ∇e3e4 = 0, ∇e3e5 = e3,

∇e4e1 = 0, ∇e4e2 = 0, ∇e4e3 = 0, ∇e4e4 = −e5, ∇e4e5 = e4,

∇e5e1 = 0, ∇e5e2 = 0, ∇e5e3 = 0, ∇e5e4 = 0, ∇e5e5 = 0.

Above relations show that equations (2.4)-(2.6) are satisfied. Therefore the manifold is a p-

Kenmotsu manifold with the structure (ϕ, ξ, η, g).
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Using (2.14), we get the quarter symmetric metric connection

∇̄e1e1 = −e5, ∇̄e1e2 = −e5, ∇̄e1e3 = 0, ∇̄e1e4 = 0, ∇̄e1e5 = e1 + e2,

∇̄e2e1 = −e5, ∇̄e2e2 = −e5, ∇̄e2e3 = 0, ∇̄e2e4 = 0, ∇̄e2e5 = e1 + e2,

∇̄e3e1 = 0, ∇̄e3e2 = 0, ∇̄e3e3 = −e5, ∇̄e3e4 = −e5, ∇̄e3e5 = e3 + e4,

∇̄e4e1 = 0, ∇̄e4e2 = 0, ∇̄e4e3 = −e5, ∇̄e4e4 = −e5, ∇̄e4e5 = e3 + e4,

∇̄e5e1 = 0, ∇̄e5e2 = 0, ∇̄e5e3 = 0, ∇̄e5e4 = 0, ∇̄e5e5 = 0.

Now we obtain non-zero components of their curvature tensors:

R(e1, e2)e1 = e2, R(e1, e3)e1 = e3, R(e1, e4)e1 = e4, R(e1, e5)e1 = e5,

R(e2, e1)e2 = e1, R(e2, e3)e2 = e3, R(e2, e4)e2 = e4, R(e2, e5)e2 = e5,

R(e3, e1)e3 = e1, R(e3, e2)e3 = e2, R(e3, e4)e3 = e4, R(e3, e5)e3 = e5,

R(e4, e1)e4 = e2, R(e4, e2)e4 = e2, R(e4, e3)e4 = e3, R(e4, e5)e4 = e5.

and
R̄(e1, e3)e1 = e3 + e4, R̄(e1, e4)e1 = e3 + e4, R̄(e1, e5)e1 = e5,

R̄(e2, e3)e2 = e3 + e4, R̄(e2, e4)e2 = e3 + e4, R̄(e2, e5)e2 = e5,

R̄(e3, e1)e3 = e1 + e2, R̄(e3, e2)e3 = e1 + e2, R̄(e3, e5)e3 = e5,

R̄(e4, e1)e2 = e1 + e2, R̄(e4, e2)e4 = e1 + e2, R̄(e4, e5)e4 = e5,

R̄(e5, e1)e5 = e1 + e2, R̄(e5, e2)e5 = e1 + e2, R̄(e5, e3)e5 = e3 + e4,

R̄(e5, e4)e5 = e3 + e4.

From the above results, it is easy to find the following non-zero components of Ricci tensors:

S(e1, e1) = S(e2, e2) = S(e3, e3) = S(e4, e4) = S(e5, e5) = −4,

and

S̄(e1, e1) = S̄(e1, e2) = S̄(e2, e2) = S̄(e3, e3) = S̄(e3, e4) = −3, S̄(e4, e4) = −3, S̄(e5, e5) = −4.

Therefore, we get r = −20 and r̄ = −16. Hence the statement of Theorem 3.1 is verified. Also by

the relations mentioned above, the results in sections 5 and 6 are easily verified.
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