Cubo A Mathematical Journal

Quarter-symmetric metric connection on a p-Kenmotsu manifold

Bhawana Chaube ${ }^{1, \boxtimes}$ (1)
S. K. Chanyal ${ }^{1}$ (id
${ }^{1}$ Department of Mathematics, D.S.B.
Campus, Kumaun University,
Nainital-263001, India.
bhawanachaube18@gmail.com
skchanyal.math@gmail.com

Abstract

In the present paper we study para-Kenmotsu (p-Kenmotsu) manifold equipped with quarter-symmetric metric connection and discuss certain derivation conditions.

\section*{RESUMEN}

En el presente artículo estudiamos variedades paraKenmotsu (p-Kenmotsu) equipadas con conexiones métricas cuarto-simétricas y discutimos ciertas condiciones derivadas.

Keywords and Phrases: Para-Kenmotsu manifold, quarter-symmetric metric connection, curvature tensor, η Einstein manifold.

2020 AMS Mathematics Subject Classification: 53C15, 53C25.

1 Introduction

Kenmotsu in 1971, introduced a class of almost contact Riemannian manifolds satisfying some special conditions, called Kenmotsu manifold [10]. Many researchers including U.C. De and R. N. Singh studied some properties of Kenmotsu manifolds endowed with various conditions $[2,3,9$, 15]. Sato [13] in 1976, introduced the notion of an almost para-contact structure on Riemannian manifolds which is similar to the almost contact structure on Riemannian manifolds. In 1995, B. B. Sinha and K. L. Sai Prasad [16] defined a class of almost para contact metric manifolds analogous to the class of Kenmotsu manifolds, known as para-Kenmotsu (p-Kenmotsu) manifolds. T. Satyanarayana et al. [14] studied curvature properties in a p-Kenmotsu manifold.

Friedmann and Schouten in 1924 [6], presented the idea of semi-symmetric connection on a differentiable manifold. Yano introduced semi-symmetric metric connection in 1970 using the idea of metric connection given by Hayden in 1932. M. M. Tripathi [19] and Tang et al. [18] studied semisymmetric metric connection in a Kenmotsu manifold. A linear connection $\bar{\nabla}$ on a Riemannian manifold M is said to be a semi- symmetric connection if the torsion tensor T given by

$$
T(X, Y)=\bar{\nabla}_{X} Y-\bar{\nabla}_{Y} X-[X, Y]
$$

satisfies

$$
T(X, Y)=\eta(Y) X-\eta(X) Y
$$

where η is a 1 -form and $g(X, \xi)=\eta(X), \xi$ is a vector field and for all vector fields $X, Y \in \chi(M)$, $\chi(M)$ is the set of all differentiable vector fields on M.

Gołąb [7] in 1975 studied quarter-symmetric metric connection in differentiable manifolds with affine connections. Further S. C. Biswas, U. C. De and many others $[1,4,5,17]$ studied quartersymmetric metric connection in Riemannian manifolds equipped with various structures. A quartersymmetric connection is considered as a generalisation of semi-symmetric connection since its torsion tensor T satisfies

$$
T(X, Y)=\eta(Y) \phi X-\eta(X) \phi Y
$$

where ϕ is a $(1,1)$ tensor field. If quarter-symmetric connection $\bar{\nabla}$ satisfies the condition

$$
\left(\bar{\nabla}_{X} g\right)(Y, Z)=0
$$

where $X, Y, Z \in \chi(M)$, then $\bar{\nabla}$ is said to be a quarter-symmetric metric connection. Let M be an n-dimensional Riemannian manifold and ∇ be its Levi-Civita connection. The Riemannian curvature tensor R, the concircular curvature tensor W, Weyl projective curvature tensor P of M
are defined by $[11,12]$

$$
\begin{align*}
R(X, Y) Z & =\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z \tag{1.1}\\
W(X, Y) Z & =R(X, Y) Z-\frac{r}{n(n-1)}[g(Y, Z) X-g(X, Z) Y] \tag{1.2}\\
P(X, Y) Z & =R(X, Y) Z-\frac{1}{n-1}[S(Y, Z) X-S(X, Z) Y] \tag{1.3}
\end{align*}
$$

where $X, Y, Z \in \chi(M)$ and r is the scalar curvature.
The paper is organised as follows: In section 2, a brief introduction of p-Kenmotsu manifolds is given. In section 3, the relation between the curvature tensors of Riemannian connection and the quarter-symmetric metric connection in a p-Kenmotsu manifold is obtained. The study of a p-Kenmotsu manifold with respect to the quarter-symmetric metric connection satisfying the curvature condition $\bar{R} \cdot \bar{S}$ is contained in section 4 . In section 5 , we study ϕ-concircularly flat pKenmotsu manifold with respect to quarter-symmetric metric connection. The curvature condition $\bar{P} \cdot \bar{S}=0$ and ϕ-Weyl projective flat p-Kenmotsu manifold with respect to quarter-symmetric metric connection are respectively studied in the sections 6 and 7. Finally we give an example of a 5 -dimensional p-Kenmotsu manifold.

2 Preliminaries

Let M be a $(2 n+1)$-dimensional differentiabe manifold endowed with an almost para-contact structure (ϕ, ξ, η), where ϕ is a $(1,1)$-tensor field, ξ is a vector field, and η is a 1 -form on M, then

$$
\begin{align*}
& \phi^{2} X=X-\eta(X) \xi, \quad \eta(\xi)=1 \tag{2.1}\\
& \phi(\xi)=0, \quad \eta(\phi X)=0, \quad \operatorname{rank}(\phi)=2 n \tag{2.2}
\end{align*}
$$

where X is a vector field on M. The manifold M endowed with (ϕ, ξ, η) is called an almost para-contact manifold [13].

Let g be a Riemannian metric on M compatible to the structure (ϕ, ξ, η), i.e., the following equations are satisfied

$$
\begin{equation*}
g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y), \quad g(X, \xi)=\eta(X) \tag{2.3}
\end{equation*}
$$

for all vector fields X and Y on M. Then the manifold M is said to admit an almost para-contact Riemannian structure (ϕ, ξ, η, g).

If moreover, (ϕ, ξ, η, g) satisfy the following conditions

$$
\begin{align*}
\left(\nabla_{X} \eta\right) Y & =g(X, Y)-\eta(X) \eta(Y) \tag{2.4}\\
\nabla_{X} \xi & =X-\eta(X) \xi=\phi^{2}(X) \tag{2.5}\\
\left(\nabla_{X} \phi\right) Y & =-g(\phi X, Y) \xi-\eta(Y) \phi X \tag{2.6}
\end{align*}
$$

then M is called a para-Kenmotsu (p-Kenmotsu) manifold [16].
In a p-Kenmotsu manifold the following relations hold [16]:

$$
\begin{align*}
S(\phi X, \phi Y) & =S(X, Y)+(n-1) \eta(X) \eta(Y) \tag{2.7}\\
S(X, \xi) & =-(n-1) \eta(X), \quad \text { where } g(Q X, Y)=S(X, Y) \tag{2.8}\\
\eta(R(X, Y) Z) & =g(X, Z) \eta(Y)-g(Y, Z) \eta(X) \tag{2.9}\\
R(\xi, X) Y & =\eta(Y) X-g(X, Y) \xi \tag{2.10}\\
R(X, Y) \xi & =\eta(X) Y-\eta(Y) X \tag{2.11}
\end{align*}
$$

where S is the Ricci tensor and Q is the symmetric endomorphism of the tangent space at each point corresponding to the Ricci tensor and R is the Riemannian curvature.

If the Ricci curvature tensor S is of the form

$$
\begin{equation*}
S(X, Y)=a g(X, Y)+b \eta(X) \eta(Y) \tag{2.12}
\end{equation*}
$$

then M is called η-Einstein manifold and if $b=0$ then it is said to be Einstein manifold. M is called generalized η-Einstein manifold, if S is of the form

$$
\begin{equation*}
S(X, Y)=a g(X, Y)+b \eta(X) \eta(Y)+c g(\phi X, Y) \tag{2.13}
\end{equation*}
$$

where a, b, c are scalar functions on M.
In a p-Kenmotsu manifold M, the connection $\bar{\nabla}$ given by

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+\eta(Y) \phi X-g(\phi X, Y) \xi \tag{2.14}
\end{equation*}
$$

is a quarter-symmetric metric connection [8].

3 Curvature tensor of para-Kenmotsu manifold with respect to the quarter-symmetric metric connection

Let M be a p-Kenmotsu manifold. The curvature tensor \bar{R} of a p-Kenmotsu manifold with respect to the quarter-symmetric metric connection $\bar{\nabla}$ is defined by

$$
\bar{R}(X, Y) Z=\bar{\nabla}_{X} \bar{\nabla}_{Y} Z-\bar{\nabla}_{Y} \bar{\nabla}_{X} Z-\bar{\nabla}_{[X, Y]} Z .
$$

Using equations (2.1)-(2.6) and (2.13) we get

$$
\begin{align*}
\bar{R}(X, Y) Z & =R(X, Y) Z+g(X, Z) \phi Y-g(Y, Z) \phi X+g(\phi X, Z) Y-g(\phi Y, Z) X \\
& +g(\phi X, Z) \phi Y-g(\phi Y, Z) \phi X \tag{3.1}
\end{align*}
$$

where R is the Riemannian curvature tensor of the connection ∇ given in (1.1).
Now from (3.1), we have

$$
\begin{equation*}
\bar{R}(X, Y) Z+\bar{R}(Y, Z) X+\bar{R}(Z, X) Y=0 \tag{3.2}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\bar{R}(X, Y, Z, W)+\bar{R}(Y, Z, X, W)+\bar{R}(Z, X, Y, W)=0 \tag{3.3}
\end{equation*}
$$

where $\bar{R}(X, Y, Z, W)=g(\bar{R}(X, Y) Z, W)$. Thus the curvature tensor with respect to the quartersymmetric metric connection satisfies the Bianchi first identity. Taking inner product of (3.1) with respect to W, we get

$$
\begin{align*}
\bar{R}(X, Y, Z, W) & =R(X, Y, Z, W)+g(X, Z) g(\phi Y, W)-g(Y, Z) g(\phi X, W) \\
& +g(\phi X, Z) g(Y, W)-g(\phi Y, Z) g(X, W) \tag{3.4}\\
& +g(\phi X, Z) g(\phi Y, W)-g(\phi Y, Z) g(\phi X, W)
\end{align*}
$$

Contracting (3.4) over X and W, we get

$$
\begin{equation*}
\bar{S}(Y, Z)=S(Y, Z)+(1-2 n-\psi) g(\phi Y, Z)+(1-\psi) g(Y, Z)-\eta(Y) \eta(Z) \tag{3.5}
\end{equation*}
$$

where $\psi=$ trace ϕ, S and \bar{S} are the Ricci tensors with respect to the connections ∇ and $\bar{\nabla}$ respectively on M. Now contracting (3.5), we have

$$
\begin{equation*}
\bar{r}=r+2 n(1-2 \psi)-\psi^{2}, \tag{3.6}
\end{equation*}
$$

where r and \bar{r} denote the scalar curvatures with respect to the connections ∇ and $\bar{\nabla}$ respectively
on M. Now we state the following theorem.
Theorem 3.1. For a p-Kenmotsu manifold M with respect to the quarter-symmetric metric connection $\bar{\nabla}$
(1) The curvature tensor \bar{R} satisfies the Bianchi first identity and is given by

$$
\begin{aligned}
\bar{R}(X, Y) Z & =R(X, Y) Z+g(X, Z) \phi Y-g(Y, Z) \phi X \\
& +g(\phi X, Z) Y-g(\phi Y, Z) X+g(\phi X, Z) \phi Y-g(\phi Y, Z) \phi X
\end{aligned}
$$

(2) The Ricci tensor \bar{S} is given by

$$
\bar{S}(Y, Z)=S(Y, Z)+(1-2 n-\psi) g(\phi Y, Z)+(1-\psi) g(Y, Z)-\eta(Y) \eta(Z)
$$

(3) The relation between r and \bar{r}, respectively the scalar curvatures with respect to ∇ and $\bar{\nabla}$, is given by

$$
\bar{r}=r+2 n(1-2 \psi)-\psi^{2}
$$

Proof. The proof follows from the equations (3.1), (3.2), (3.3), (3.5) and (3.6).

Some properties of the curvature tensor with respect to the quarter- symmetric metric connection are given in the following lemma.

Lemma 3.2. In a $(2 n+1)$-dimensional p-Kenmotsu manifold with the structure (ϕ, ξ, η, g) with respect to the quarter-symmetric metric connection, the following hold

$$
\begin{align*}
\bar{R}(X, Y) \xi & =\eta(X) Y-\eta(Y) X+\eta(X) \phi Y-\eta(Y) \phi X \tag{3.7}\\
\bar{R}(\xi, Y) Z & =\eta(Z) Y+\eta(Z) \phi Y-g(Y, Z) \xi-g(\phi Y, Z) \xi \tag{3.8}\\
\bar{R}(\xi, Y) \xi & =Y+\phi Y-\eta(Y) \xi \tag{3.9}\\
\bar{S}(Y, \xi) & =(1-n-\psi) \eta(Y) \tag{3.10}\\
\bar{S}(\xi, \xi) & =(1-n-\psi) \tag{3.11}
\end{align*}
$$

4 p-Kenmotsu manifold satisfying $\bar{R} \cdot \bar{S}=0$.

In this section we consider a p-Kenmotsu manifold with respect to the quarter-symmetric metric connection $\bar{\nabla}$ satisfying

$$
\bar{R}(X, Y) \cdot \bar{S}=0
$$

This equation implies

$$
\begin{equation*}
\bar{S}(\bar{R}(X, Y) U, V)+\bar{S}(U, \bar{R}(X, Y) V)=0 \tag{4.1}
\end{equation*}
$$

where $X, Y, U, V \in \chi(M)$. Putting $X=\xi$ in (4.1), we have

$$
\begin{equation*}
\bar{S}(\bar{R}(\xi, Y) U, V)+\bar{S}(U, \bar{R}(\xi, Y) V)=0 \tag{4.2}
\end{equation*}
$$

By the equations (3.5), (3.8) and (3.10), equation (4.2) yields

$$
\begin{aligned}
& \eta(U) \bar{S}(Y, V)+\eta(U) \bar{S}(\phi Y, V)-(1-n-\psi) g(Y, U) \eta(V)-(1-n-\psi) g(\phi Y, U) \eta(V) \\
+ & \eta(V) \bar{S}(U, Y)+\eta(V) \bar{S}(\phi Y, U)-(1-n-\psi) g(Y, V) \eta(U)-(1-n-\psi) g(\phi Y, V) \eta(U)=0
\end{aligned}
$$

Putting $U=\xi$ and using (2.1) and (2.2), it follows that

$$
\begin{equation*}
\bar{S}(Y, V)+\bar{S}(\phi Y, V)=(1-n-\psi) g(Y, V)+(1-n-\psi) g(\phi Y, V) \tag{4.3}
\end{equation*}
$$

Making use of (3.5), (4.3) takes form

$$
\begin{equation*}
S(Y, V)+S(\phi Y, V)=(\psi+n-1) g(Y, V)+(2-2 n-\psi) \eta(Y) \eta(V)+(\psi+n-1) g(\phi Y, V) \tag{4.4}
\end{equation*}
$$

Therefore we have the following theorem:
Theorem 4.1. If a p-Kenmotsu manifold with respect to the quarter-symmetric metric connection satisfying the condition $\bar{R} \cdot \bar{S}=0$, then the Ricci tensor S of the manifold satisfies

$$
S(X, Y)+S(\phi X, Y)=(\psi+n-1) g(X, Y)+(2-2 n-\psi) \eta(X) \eta(Y)+(\psi+n-1) g(\phi X, Y)
$$

5ϕ-concircularly flat p-Kenmotsu manifolds with respect to the quarter-symmetric metric connection

Analogous to the definition of the concircular curvature given in (1.2), \bar{W}, the concircular curvature with respect to quarter-symmetric metric connection is given by

$$
\begin{equation*}
\bar{W}(X, Y) Z=\bar{R}(X, Y) Z-\frac{\bar{r}}{n(n-1)}[g(Y, Z) X-g(X, Z) Y] \tag{5.1}
\end{equation*}
$$

A p-Kenmotsu manifold is said to be ϕ-concircularly flat with respect to the quarter-symmetric metric connection if

$$
\begin{equation*}
\bar{W}(\phi X, \phi Y, \phi Z, \phi W)=0 \tag{5.2}
\end{equation*}
$$

where $X, Y, Z, W \in \chi(M)$.
Taking inner-product of (5.1) with respect to U and replacing X by $\phi X, Y$ by $\phi Y, Z$ by ϕZ and U by ϕU, we get

$$
\bar{R}(\phi X, \phi Y, \phi Z, \phi W)=\frac{\bar{r}}{n(n-1)}[g(\phi Y, \phi Z) g(\phi X, \phi W)-g(\phi X, \phi Z) g(\phi Y, \phi W)]
$$

In view of (3.1) and (3.6), (5.3) takes the form

$$
\begin{align*}
R(\phi X, \phi Y, \phi Z, \phi W) & =g(\phi Y, \phi Z) g(X, \phi W)-g(\phi X, \phi Z) g(Y, \phi W)+g(Y, \phi Z) g(\phi X, \phi W) \\
& -g(X, \phi Z) g(\phi Y, \phi W)-g(X, \phi Z) g(Y, \phi W)+g(Y, \phi Z) g(X, \phi W) \tag{5.3}\\
& +\frac{r+2 n(1-2 \psi)-\psi^{2}}{n(n-1)}[g(\phi Y, \phi Z) g(\phi X, \phi W)-g(\phi X, \phi Z) g(\phi Y, \phi W)]
\end{align*}
$$

Let $\left\{e_{1}, e_{2}, \ldots, e_{2 n}, e_{2 n+1}=\xi\right\}$ be a local orthonormal ϕ-basis of vector fields in M, so that $\left\{\phi e_{1}, \phi e_{2}, \ldots, \phi e_{2 n}, \xi\right\}$ is also a local orthonormal basis in M. Putting $X=W=e_{i}$ in the last equation and summing over i, we get

$$
\begin{align*}
S(Y, Z) & =\frac{\left(r+2 n(1-2 \psi)-\psi^{2}\right)(2 n-1)+n(n-1) \psi}{n(n-1)} g(Y, Z) \\
& -\frac{\left(r+2 n(1-2 \psi)-\psi^{2}\right)(2 n-1)+n(n-1)(n-1+\psi)}{n(n-1)} \eta(Y) \eta(Z) \tag{5.4}\\
& -(2-2 n-\psi) g(\phi Y, Z)
\end{align*}
$$

Thus we state the following theorem:
Theorem 5.1. A ϕ-concircularly flat p-Kenmotsu manifold with respect to the quarter-symmetric metric connection is a generalized η-Einstein manifold with the scalar curvature r given by (5.4).

6 p-Kenmotsu manifold satisfying $\bar{P} \cdot \bar{S}=0$ with respect to quarter-symmetric metric connection.

Analogous to (1.3), the Weyl projective curvature \bar{P} with respect to quarter-symmetric metric connection is given by

$$
\bar{P}(X, Y) Z=\bar{R}(X, Y) Z-\frac{1}{n-1}[\bar{S}(Y, Z) X-\bar{S}(X, Z) Y]
$$

Using (3.1) and (3.5), this equation implies

$$
\begin{align*}
\bar{P}(X, Y) Z & =R(X, Y) Z+g(X, Z) \phi Y-g(Y, Z) \phi X+g(\phi X, Z) Y \\
& -g(\phi Y, Z) X+g(\phi X, Z) \phi Y-g(\phi Y, Z) \phi X-\frac{1}{n-1}[S(Y, Z) X \\
& +(1-2 n-\psi) g(\phi Y, Z) X+(1-\psi) g(Y, Z) X-\eta(Y) \eta(Z) X \tag{6.1}\\
& -S(X, Z) Y-(1-2 n-\psi) g(\phi X, Z) Y-(1-\psi) g(X, Z) Y+\eta(X) \eta(Z) Y]
\end{align*}
$$

From the equation (6.1), we have the following properties of the Weyl projective curvature \bar{P}.

$$
\begin{align*}
\bar{P}(\xi, Y) Z & =\eta(Y) Z-g(Y, Z) \xi+\eta(Z) \phi Y-g(\phi Y, Z) \xi-\frac{1}{n-1}[S(Y, Z) \xi \\
& +(1-2 n-\psi) g(\phi Y, Z) \xi+(1-\psi) g(Y, Z) \xi-\eta(Y) \eta(Z) \xi-S(\xi, Z) Y \tag{6.2}\\
& -(1-\psi) \eta(Z) Y+\eta(Z) Y]
\end{align*}
$$

and

$$
\begin{equation*}
\bar{P}(\xi, Y) \xi=Y-\eta(Y) \xi+\phi Y-\frac{1}{n-1}[(1-\psi-n) \eta(Y) \xi+(\psi+n-1) Y] \tag{6.3}
\end{equation*}
$$

Now, we consider a p-Kenmotsu manifold satisfying the curvature condition

$$
\bar{P}(X, Y) \cdot \bar{S}=0
$$

which is equivalent to

$$
\bar{S}(\bar{P}(X, Y) U, V)+\bar{S}(U, \bar{P}(X, Y) V)=0
$$

The last equation implies

$$
\begin{equation*}
\bar{S}(\bar{P}(\xi, Y) \xi, V)+\bar{S}(\xi, \bar{P}(\xi, Y) V)=0 \tag{6.4}
\end{equation*}
$$

Using equation (6.2) and (6.3) in (6.4), we once again get the equation (4.4). Therefore we have the following theorem:

Theorem 6.1. For $a(2 n+1)$-dimensional p-Kenmotsu manifold with respect to the quartersymmetric metric connection satisfying the condition $\bar{P} \cdot \bar{S}=0$, the Ricci tensor S satisfies

$$
S(X, Y)+S(\phi X, Y)=(\psi+n-1) g(\phi X, Y)+(\psi+n-1) g(X, Y)+(2-2 n-\psi) \eta(X) \eta(Y)
$$

$7 \quad \phi$-Weyl projective flat p-Kenmotsu manifolds with respect to the quarter-symmetric metric connection.

A p-Kenmotsu manifold is said to be ϕ-Weyl projective flat with respect to the quarter-symmetric metric connection if

$$
\begin{equation*}
\bar{P}(\phi X, \phi Y, \phi Z, \phi U)=0 \tag{7.1}
\end{equation*}
$$

where $X, Y, Z, U \in \chi(M)$. Taking inner-product of (6.1) with respect to U and replacing X by $\phi X, Y$ by $\phi Y, Z$ by ϕZ and U by ϕU, we get

$$
\begin{align*}
\bar{P}(\phi X, \phi Y, \phi Z, \phi U) & =\bar{R}(\phi X, \phi Y, \phi Z, \phi U)-\frac{1}{n-1}[S(\phi Y, \phi Z) g(\phi X, \phi U) \\
& +(1-2 n-\psi) g(Y, \phi Z) g(\phi X, \phi U)+(1-\psi) g(\phi X, \phi Z) \\
& -S(\phi X, \phi Z) g(\phi Y, \phi U)-(1-2 n-\psi) g(X, \phi Z) g(\phi Y, \phi U) \tag{7.2}\\
& +g(\phi X, \phi U)-(1-\psi) g(\phi X, \phi Z) g(\phi Y, \phi U)]
\end{align*}
$$

Using (3.1), (7.1) in (7.2), we obtain

$$
\begin{aligned}
R(\phi X, \phi Y, \phi Z, \phi W) & =-g(\phi X, \phi Z) g(Y, \phi W)+g(\phi Y, \phi Z) g(X, \phi W)-g(X, \phi Z) g(\phi Y, \phi W) \\
& +g(Y, \phi Z) g(\phi X, \phi W)-g(X, \phi Z) g(Y, \phi W)+g(Y, \phi Z) g(X, \phi W) \\
& +\frac{1}{n-1}[S(\phi Y, \phi Z) g(\phi X, \phi U)+(1-2 n-\psi) g(Y, \phi Z) g(\phi X, \phi U) \\
& +(1-\psi) g(\phi X, \phi Z) g(\phi X, \phi U)-S(\phi X, \phi Z) g(\phi Y, \phi U) \\
& -(1-2 n-\psi) g(X, \phi Z) g(\phi Y, \phi U)-(1-\psi) g(\phi X, \phi Z) g(\phi Y, \phi U)]
\end{aligned}
$$

Let $\left\{e_{1}, e_{2}, \ldots, e_{2 n}, \xi\right\}$ be a local orthonormal ϕ-basis of vector fields in M, putting $X=W=e_{i}$ in the last equation and summing over i, we get

$$
S(Y, Z)=\frac{(2 n-\psi n-1)}{2(1-n)} g(Y, Z)-\frac{\left(n^{2}-3 n+n \psi+1\right)}{2(n-1)} \eta(Y) \eta(Z)+\frac{\left(2 n^{2}+3 n+2 \psi-3\right)}{2(n-1)} g(\phi Y, Z)
$$

Thus we state the following theorem:
Theorem 7.1. If a p-Kenmotsu manifold is ϕ-Weyl projective flat with respect to the quartersymmetric metric connection, it is a generalized η-Einstein manifold.

8 Example

Example 8.1. Consider the 5-dimensional manifold $M=\left\{(u, v, x, y, z) \in R^{5}\right\}$ with standard coordinates (u, v, x, y, z) in R^{5}. Then the following vector fields

$$
e_{1}=z \frac{\partial}{\partial u}, \quad e_{2}=z \frac{\partial}{\partial v}, \quad e_{3}=z \frac{\partial}{\partial x}, \quad e_{4}=z \frac{\partial}{\partial y}, \quad e_{5}=-\frac{\partial}{\partial z}
$$

are linearly independent at each point of M. Suppose g be the Riemannian metric defined by,

$$
g\left(e_{i}, e_{j}\right)=\delta_{i j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j ; i, j=1,2,3,4,5\end{cases}
$$

Let ϕ be the tensor field of type $(1,1)$ defined by

$$
\phi\left(e_{1}\right)=e_{2}, \quad \phi\left(e_{2}\right)=e_{1}, \quad \phi\left(e_{3}\right)=e_{4}, \quad \phi\left(e_{4}\right)=e_{3}, \quad \phi\left(e_{5}\right)=0
$$

and η be the 1-form defined by $\eta(X)=g\left(X, e_{5}\right)$. Using the linearity of ϕ and g, we have

$$
\eta\left(e_{5}\right)=1, \quad \phi^{2} X=X-\eta(X) e_{5}, \quad g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y)
$$

for any vector fields $X, Y \in \chi(M)$. If we take $e_{5}=\xi$, the structure (ϕ, ξ, η, g) is an almost para-contact Riemannian structure on M. Then we have,

$$
\begin{array}{llll}
{\left[e_{1}, e_{2}\right]=0,} & {\left[e_{1}, e_{3}\right]=0,} & {\left[e_{1}, e_{4}\right]=0,} & {\left[e_{1}, e_{5}\right]=e_{1},}
\end{array} \quad\left[e_{2}, e_{3}\right]=0, ~\left[e_{2}\right]=0, \quad\left[e_{2}, e_{5}\right]=e_{2}, \quad\left[e_{3}, e_{4}\right]=0, \quad\left[e_{3}, e_{5}\right]=e_{3}, \quad\left[e_{4}, e_{5}\right]=e_{4} .
$$

Using Koszul's formula, we obtain the Levi-Civita connection ∇ of the metric tensor g as follows:

$$
\begin{array}{lllll}
\nabla_{e_{1}} e_{1}=-e_{5}, & \nabla_{e_{1}} e_{2}=0, & \nabla_{e_{1}} e_{3}=0, & \nabla_{e_{1}} e_{4}=0, & \nabla_{e_{1}} e_{5}=e_{1}, \\
\nabla_{e_{2}} e_{1}=0, & \nabla_{e_{2}} e_{2}=-e_{5}, & \nabla_{e_{2}} e_{3}=0, & \nabla_{e_{2}} e_{4}=0, & \nabla_{e_{2}} e_{5}=e_{2}, \\
\nabla_{e_{3}} e_{1}=0, & \nabla_{e_{3}} e_{2}=0, & \nabla_{e_{3}} e_{3}=-e_{5}, & \nabla_{e_{3}} e_{4}=0, & \nabla_{e_{3}} e_{5}=e_{3}, \\
\nabla_{e_{4}} e_{1}=0, & \nabla_{e_{4}} e_{2}=0, & \nabla_{e_{4}} e_{3}=0, & \nabla_{e_{4}} e_{4}=-e_{5}, & \nabla_{e_{4}} e_{5}=e_{4}, \\
\nabla_{e_{5}} e_{1}=0, & \nabla_{e_{5}} e_{2}=0, & \nabla_{e_{5}} e_{3}=0, & \nabla_{e_{5}} e_{4}=0, & \nabla_{e_{5}} e_{5}=0 .
\end{array}
$$

Above relations show that equations (2.4)-(2.6) are satisfied. Therefore the manifold is a pKenmotsu manifold with the structure (ϕ, ξ, η, g).

Using (2.14), we get the quarter symmetric metric connection

$$
\begin{array}{lllll}
\bar{\nabla}_{e_{1}} e_{1}=-e_{5}, & \bar{\nabla}_{e_{1}} e_{2}=-e_{5}, & \bar{\nabla}_{e_{1}} e_{3}=0, & \bar{\nabla}_{e_{1}} e_{4}=0, & \bar{\nabla}_{e_{1}} e_{5}=e_{1}+e_{2}, \\
\bar{\nabla}_{e_{2}} e_{1}=-e_{5}, & \bar{\nabla}_{e_{2}} e_{2}=-e_{5}, & \bar{\nabla}_{e_{2}} e_{3}=0, & \bar{\nabla}_{e_{2}} e_{4}=0, & \bar{\nabla}_{e_{2}} e_{5}=e_{1}+e_{2} \\
\bar{\nabla}_{e_{3}} e_{1}=0, & \bar{\nabla}_{e_{3}} e_{2}=0, & \bar{\nabla}_{e_{3}} e_{3}=-e_{5}, & \bar{\nabla}_{e_{3}} e_{4}=-e_{5}, & \bar{\nabla}_{e_{3}} e_{5}=e_{3}+e_{4}, \\
\bar{\nabla}_{e_{4}} e_{1}=0, & \bar{\nabla}_{e_{4}} e_{2}=0, & \bar{\nabla}_{e_{4}} e_{3}=-e_{5}, & \bar{\nabla}_{e_{4}} e_{4}=-e_{5}, & \bar{\nabla}_{e_{4} e_{5}=e_{3}+e_{4}}, \\
\bar{\nabla}_{e_{5}} e_{1}=0, & \bar{\nabla}_{e_{5}} e_{2}=0, & \bar{\nabla}_{e_{5}} e_{3}=0, & \bar{\nabla}_{e_{5}} e_{4}=0, & \bar{\nabla}_{e_{5}} e_{5}=0
\end{array}
$$

Now we obtain non-zero components of their curvature tensors:

$$
\begin{array}{llll}
R\left(e_{1}, e_{2}\right) e_{1}=e_{2}, & R\left(e_{1}, e_{3}\right) e_{1}=e_{3}, & R\left(e_{1}, e_{4}\right) e_{1}=e_{4}, & R\left(e_{1}, e_{5}\right) e_{1}=e_{5}, \\
R\left(e_{2}, e_{1}\right) e_{2}=e_{1}, & R\left(e_{2}, e_{3}\right) e_{2}=e_{3}, & R\left(e_{2}, e_{4}\right) e_{2}=e_{4}, & R\left(e_{2}, e_{5}\right) e_{2}=e_{5}, \\
R\left(e_{3}, e_{1}\right) e_{3}=e_{1}, & R\left(e_{3}, e_{2}\right) e_{3}=e_{2}, & R\left(e_{3}, e_{4}\right) e_{3}=e_{4}, & R\left(e_{3}, e_{5}\right) e_{3}=e_{5}, \\
R\left(e_{4}, e_{1}\right) e_{4}=e_{2}, & R\left(e_{4}, e_{2}\right) e_{4}=e_{2}, & R\left(e_{4}, e_{3}\right) e_{4}=e_{3}, & R\left(e_{4}, e_{5}\right) e_{4}=e_{5} .
\end{array}
$$

and

$$
\begin{array}{llll}
\bar{R}\left(e_{1}, e_{3}\right) e_{1}=e_{3}+e_{4}, & \bar{R}\left(e_{1}, e_{4}\right) e_{1}=e_{3}+e_{4}, & \bar{R}\left(e_{1}, e_{5}\right) e_{1}=e_{5}, \\
\bar{R}\left(e_{2}, e_{3}\right) e_{2}=e_{3}+e_{4}, & \bar{R}\left(e_{2}, e_{4}\right) e_{2}=e_{3}+e_{4}, & \bar{R}\left(e_{2}, e_{5}\right) e_{2}=e_{5}, \\
\bar{R}\left(e_{3}, e_{1}\right) e_{3}=e_{1}+e_{2}, & \bar{R}\left(e_{3}, e_{2}\right) e_{3}=e_{1}+e_{2}, & & \bar{R}\left(e_{3}, e_{5}\right) e_{3}=e_{5} \\
\bar{R}\left(e_{4}, e_{1}\right) e_{2}=e_{1}+e_{2}, & \bar{R}\left(e_{4}, e_{2}\right) e_{4}=e_{1}+e_{2}, & & \bar{R}\left(e_{4}, e_{5}\right) e_{4}=e_{5}, \\
\bar{R}\left(e_{5}, e_{1}\right) e_{5}=e_{1}+e_{2}, & \bar{R}\left(e_{5}, e_{2}\right) e_{5}=e_{1}+e_{2}, & & \bar{R}\left(e_{5}, e_{3}\right) e_{5}=e_{3}+e_{4}, \\
\bar{R}\left(e_{5}, e_{4}\right) e_{5}=e_{3}+e_{4} . & &
\end{array}
$$

From the above results, it is easy to find the following non-zero components of Ricci tensors:

$$
S\left(e_{1}, e_{1}\right)=S\left(e_{2}, e_{2}\right)=S\left(e_{3}, e_{3}\right)=S\left(e_{4}, e_{4}\right)=S\left(e_{5}, e_{5}\right)=-4
$$

and

$$
\bar{S}\left(e_{1}, e_{1}\right)=\bar{S}\left(e_{1}, e_{2}\right)=\bar{S}\left(e_{2}, e_{2}\right)=\bar{S}\left(e_{3}, e_{3}\right)=\bar{S}\left(e_{3}, e_{4}\right)=-3, \quad \bar{S}\left(e_{4}, e_{4}\right)=-3, \quad \bar{S}\left(e_{5}, e_{5}\right)=-4
$$

Therefore, we get $r=-20$ and $\bar{r}=-16$. Hence the statement of Theorem 3.1 is verified. Also by the relations mentioned above, the results in sections 5 and 6 are easily verified.

Acknowledgement

The first author is thankful to the Department of Science and Technology (DST), New Delhi for the financial support in the form of JRF (IF200486).

References

[1] S. C. Biswas and U. C. De, "Quarter-symmetric metric connection in an SP-Sasakian manifold," Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 46, no. 1-2, pp. 49-56, 1997.
[2] A. De, "On Kenmotsu manifold," Bull. Math. Anal. Appl., vol. 2, no. 3, pp. 1-6, 2010.
[3] U. C. De and G. Pathak, "On 3-dimensional Kenmotsu manifolds," Indian J. Pure Appl. Math., vol. 35, no. 2, pp. 159-165, 2004.
[4] U. C. De and J. Sengupta, "Quater-symmetric metric connection on a Sasakian manifold," Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 49, no. 1-2, pp. 7-13, 2000.
[5] U. C. De, D. Mandal, and K. Mandal, "Some characterizations of Kenmotsu manifolds admitting a quarter-symmetric metric connection," Bull. Transilv. Univ. Braşov Ser. III, vol. 9(58), no. 1, pp. 39-52, 2016.
[6] A. Friedman and J. A. Schouten, "Über die Geometrie der halbsymmetrischen Übertragungen," Math Z, vol. 21, pp. 211-223, 1924, doi: 10.1007/BF01187468.
[7] S. Gołąb, "On semi-symmetric and quarter-symmetric linear connections," Tensor (N.S.), vol. 29, no. 3, pp. 249-254, 1975.
[8] A. Haseeb and R. Prasad, "Certain results on Lorentzian para-Kenmotsu manifolds," Bol. Soc. Parana. Mat. (3), vol. 39, no. 3, pp. 201-220, 2021.
[9] J.-B. Jun, U. C. De, and G. Pathak, "On Kenmotsu manifolds," J. Korean Math. Soc., vol. 42, no. 3, pp. 435-445, 2005, doi: 10.4134/JKMS.2005.42.3.435.
[10] K. Kenmotsu, "A class of almost contact Riemannian manifolds," Tohoku Math. J. (2), vol. 24, pp. 93-103, 1972, doi: $10.2748 / \mathrm{tmj} / 1178241594$.
[11] M. Kon and K. Yano, Structures on manifolds, ser. Series in Pure Mathematics. Chandrama Prakashan, Allahabad, 1985, vol. 3, doi: 10.1142/0067.
[12] R. S. Mishra, Structures on a differentiable manifold and their applications. Chandrama Prakashan, Allahabad, 1984.
[13] I. Sato, "On a structure similar to the almost contact structure," Tensor (N.S.), vol. 30, no. 3, pp. 219-224, 1976.
[14] T. Satyanarayana and K. L. S. Prasad, "On a type of para-Kenmotsu manifold," Pure Mathematical Sciences, vol. 2, no. 4, pp. 165-170, 2013.
[15] R. N. Singh, S. K. Pandey, and G. Pandey, "On a type of Kenmotsu manifold," Bull. Math. Anal. Appl., vol. 4, no. 1, pp. 117-132, 2012.
[16] B. B. Sinha and K. L. Sai Prasad, "A class of almost para contact metric manifold," Bull. Calcutta Math. Soc., vol. 87, no. 4, pp. 307-312, 1995.
[17] S. Sular, C. Özgür, and U. C. De, "Quarter-symmetric metric connection in a Kenmotsu manifold," SUT J. Math., vol. 44, no. 2, pp. 297-306, 2008.
[18] W. Tang, P. Majhi, P. Zhao, and U. C. De, "Legendre curves on 3-dimensional Kenmotsu manifolds admitting semisymmetric metric connection," Filomat, vol. 32, no. 10, pp. 36513656 , 2018, doi: 10.2298/fil1810651t.
[19] M. M. Tripathi, "On a semi symmetric metric connection in a Kenmotsu manifold," J. Pure Math., vol. 16, pp. 67-71, 1999.

