Energy transfer in open quantum systems weakly coupled with two reservoirs




We show that the energy transfer through an open quantum system with non-degenerate Hamiltonian weakly coupled with two reservoirs in equilibrium is approximately proportional to the difference of their temperatures unless both temperatures are small.


weak-coupling , quantum Markov semigroup , quantum transport , energy current
  • Franco Fagnola Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy.
  • Damiano Poletti Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy.
  • Emanuela Sasso Dipartimento di Matematica, Università di Genova, Via Dodecaneso 35, I - 16146 Genova, Italy.
  • Pages: 121–144
  • Date Published: 2021-04-14
  • Vol. 23 No. 1 (2021)

L. Accardi, F. Fagnola, and R. Quezada, “On three new principles in non-equilibrium statistical mechanics and Markov semigroups of weak coupling limit type”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., vol. 19, no. 2, 1650009, 2016. DOI: 10.1142/S0219025716500090.

L. Accardi, Y. G. Lu, and I. V. Volovich, Quantum theory and its stochastic limit, Springer- Verlag, Berlin, 2002.

I. Ya. Aref‘eva, I. V. Volovich, and S. V. Kozyrev, “Stochastic Limit Method and Interference in Quantum Many Particle Systems”, Teor. Mat. Fiz., vol. 185, pp. 388–408, 2015. DOI: 10.1007/s11232-015-0296-9

G. Basile, and S. Olla, “Energy diffusion in harmonic system with conservative noise”, J. Stat. Phys., vol. 155, pp. 1126–1142, 2014. DOI: 10.1007/s10955-013-0908-4

F. Benatti, R. Floreanini, and L. Memarzadeh, “Bath assisted transport in a three-site spin chain: global vs local approach”, Phys. Rev. A, vol. 102, 042219-1–042219-14, 2020. DOI: 10.1103/PhysRevA.102.042219

G. Benenti, G. Casati, T. Prosen, and D. Rossini, “Negative differential conductivity in far-from-equilibrium quantum spin chains”, EPL, vol. 85, 37001, 2009. DOI: 10.1209/0295- 5075/85/37001

C. Bernardin, and S. Olla, “Fourier‘s Law for a Microscopic Model of Heat Conduction”, J. Stat. Phys., vol. 121, pp. 271–289, 2005. DOI: 10.1007/s10955-005-7578-9

R. Carbone, E. Sasso, and V. Umanit`a, “Structure of generic quantum Markov semigroup”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., vol. 20, no. 2, 1750012, 2017. DOI: 10.1142/S0219025717500126

J. DereziÅ„ski, and W. Roeck, “Extended Weak Coupling Limit for Pauli-Fierz Operators”, Comm. Math. Phys., vol. 279, pp. 1–30, 2008. DOI: 10.1007/s00220-008-0419-3

J. DereziÅ„ski, W. Roeck, and C. Maes, “Fluctuations of quantum currents and unravelings of master equations”, J. Stat. Phys., vol. 131, pp. 341–356, 2008. DOI: 10.1007/s10955-008- 9500-8

J. Deschamps, F. Fagnola, E. Sasso, and V. Umanit`a, “Structure of uniformly continuous quantum Markov semigroups”, Rev. Math. Phys., vol. 28, no. 1, 1650003, 2016. DOI: 10.1142/S0129055X16500033

A. Dhar, and H. Spohn, “Fourier‘s law based on microscopic dynamics”, C. R. Phys., vol. 20, pp. 393–401, 2019. DOI: 10.1016/j.crhy.2019.08.004

E. B. Davies, “Markovian Master Equations”, Comm. Math. Phys., vol. 39, pp. 91–110, 1974.

G. S. Engel, T. R. Calhoun, E. L. Read, T. -K. Ahn, T. Mancal, Y. -C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for Wavelike Energy Transfer Through Quantum Coherence in Photosynthetic Systems”, Nature, vol. 446, pp. 782–786, 2007. DOI: 10.1038/na- ture05678

F. Fagnola, and R. Rebolledo, “Entropy Production for Quantum Markov Semigroups”, Commun. Math. Phys., vol. 335, pp. 547–570, 2015. DOI: 10.1007/s00220-015-2320-1

F. Fagnola, and R. Rebolledo, “Entropy production and detailed balance for a class of quantum Markov semigroups”, Open Syst. Inf. Dyn., vol. 22, no. 3, 1550013, 2015. DOI: 10.1142/S1230161215500134

V. Gorini, A. Kossakowski, and E.C.G. Sudarshan, “Completely positive dynamical semigroups of N-level systems”, J. Math. Phys., vol. 17, pp. 821–825, 1976. DOI: 10.1063/1.522979

J. M. Horowitz, and J. M. R. Parrondo, “Entropy production along nonequilibrium quantum jump trajectories”, New J. Phys. vol. 15, 085028, 2013. DOI: 10.1088/1367-2630/15/8/085028

V. Jakšić, C.-A. Pillet, and M. Westrich, “Entropic Fluctuations of Quantum Dynamical Semigroups”. J. Stat. Phys., vol. 154, pp. 153–187, 2014. DOI: 10.1007/s10955-013-0826-5

D. Karevski, and T. Platini, “Quantum nonequilibrium steady states induced by repeated interactions”. Phys. Rev. Lett., vol. 102, 207207-1–20207-4, 2009, DOI: 10.1103/Phys- RevLett.102.207207

E. Langmann, J. L. Lebowitz, V. Mastropietro, and P. Moosavi, “Steady States and Universal Conductance in a Quenched Luttinger Model”, Commun. Math. Phys., vol. 349, pp. 551–582, 2017. DOI: 10.1007/s00220-016-2631-x

G. Lindblad, “On the Generators of Quantum Dynamical Semigroups”, Commun. Math. Phys., vol. 48, pp. 119-130, 1976. DOI: 10.1007/BF01608499

M. Ohya, and D. Petz Quantum Entropy and its Use. Springer-Verlag, Berlin, 1993.

G. D. Scholes, G. R. Fleming, A. Olaya-Castro, and R. van Grondelle, “Lessons from Nature about Solar Light Harvesting”, Nature Chem., vol. 3, pp 763–774, 2011. DOI:

H. Spohn, and J. L. Lebowitz, “Irreversible Thermodynamics for Quantum Systems Weakly Coupled to Thermal Reservoirs”. In, Advances in Chemical Physics, S.A. Rice (Ed.) pp. 109–142, 1978. DOI:

A. S. Trusheckin, “On the General Definition of the Production of Entropy in Open Markov Quantum Systems”, J. Math. Sci. (N.Y.), vol. 241, pp. 191–209, 2019. DOI: 10.1007/s10958- 019-04417-4

M. Vanicat, L. Zadnik, and T. Prosen, “Integrable trotterization: local conservation laws and boundary driving”, Phys. Rev. Lett. vol.121, 030606-1–030606-6, 2018. DOI: 10.1103/Phys- RevLett.121.030606


Download data is not yet available.



How to Cite

F. Fagnola, D. Poletti, and E. Sasso, “Energy transfer in open quantum systems weakly coupled with two reservoirs”, CUBO, vol. 23, no. 1, pp. 121–144, Apr. 2021.