Quasi bi-slant submersions in contact geometry





The aim of the paper is to introduce the concept of quasi bi-slant submersions from almost contact metric manifolds onto Riemannian manifolds as a generalization of  semi-slant and hemi-slant submersions. We mainly focus on quasi bi-slant submersions from cosymplectic manifolds. We give some non-trivial examples and study the geometry of leaves of distributions which are involved in the definition of the submersion. Moreover, we find some conditions for such submersions to be integrable and totally geodesic.


Riemannian submersion , semi-invariant submersion , bi-slant submersion , quasi bi-slant submersion , horizontal distribution
  • Rajendra Prasad Department of Mathematics and Astronomy, University of Lucknow, Lucknow, India.
  • Mehmet Akif Akyol Department of Mathematics, Faculty of Sciences and Arts, Bingöl University, 12000, Bingöl, Turkey.
  • Sushil Kumar Department of Mathematics, Shri Jai Narain Post Graduate College, Lucknow, India.
  • Punit Kumar Singh Department of Mathematics and Astronomy, University of Lucknow, Lucknow, India.
  • Pages: 01–20
  • Date Published: 2022-04-04
  • Vol. 24 No. 1 (2022)

M. A. Akyol, “Conformal anti-invariant submersions from cosymplectic manifolds”, Hacet. J. Math. Stat., vol. 46, no. 2, pp. 177–192, 2017.

M. A. Akyol and B. Åžahin, “Conformal slant submersions”, Hacet. J. Math. Stat., vol. 48, no.1, pp. 28–44, 2019.

M. A. Akyol, “Conformal semi-slant submersions”, Int. J. Geom. Methods Mod. Phys., vol. 14, no. 7, 1750114, 25 pages, 2017.

P. Baird and J. C. Wood, Harmonic morphism between Riemannian manifolds, Oxford science publications, Oxford, 2003.

D. E. Blair, Riemannian geometry of contact and symplectic manifolds. Progress in Mathematics. 203, Birkhäuser Boston, Basel, Berlin, 2002.

M. Cengizhan and I. K. Erken, “Anti-invariant Riemannian submersions from cosymplectic manifolds onto Riemannian submersions”, Filomat, vol. 29, no. 7, pp. 1429–1444, 2015.

J.-P. Bourguignon and H. B. Lawson, “Stability and isolation phenomena for Yang-Mills fields”, Comm. Math. Phys., vol. 79, no. 2, pp.189–230, 1981.

J.-P. Bourguignon, “A mathematician‘s visit to Kaluza-Klein theory”, Rend. Sem. Mat. Univ. Politec. Torino, Special Issue, pp. 143–163, 1989.

D. Chinea, “Almost contact metric submersions”, Rend. Circ. Mat. Palermo, vol. 34, no. 1, pp. 89–104, 1985.

M. Falcitelli, A. M. Pastore and S. Ianus, Riemannian submersions and related topics, World Scientific, River Edge, NJ, 2004.

A. Gray, “Pseudo-Riemannian almost product manifolds and submersions”, J. Math. Mech., vol. 16, pp. 715–738, 1967.

Y. Gündüzalp and M. A. Akyol, “Conformal slant submersions from cosymplectic manifolds”, Turkish J. Math., vol. 42, no. 5, pp. 2672–2689, 2018.

S. IanuÅŸ and M. Visinescu, “Kaluza-Klein theory with scalar fields and generalized Hopf manifolds”, Classical Quantum Gravity, vol. 4, no. 5, pp. 1317–1325, 1987.

S. IanuÅŸ, A. M. Ionescu, R. Mocanu and G. E. Vîlcu, “Riemannian submersions from almost contact metric manifolds”, Abh. Math. Semin. Univ. Hambg., vol. 81, no. 1, pp. 101–114, 2011.

S. Kumar, R. Prasad and P. K. Singh, “Conformal semi-slant submersions from Lorentzian para Sasakian manifolds”, Commun. Korean Math. Soc., vol. 34, no. 2, pp. 637–655, 2019.

S. Longwap, F. Massamba and N. E. Homti, “On quasi-hemi-slant Riemannian submersion”, Journal of Advances in Mathematics and Computer Science, vol. 34, no. 1, pp. 1–14, 2019.

B. O‘Neill, “The fundamental equations of a submersion”, Michigan Math. J., vol. 33, no. 13, pp. 459–469, 1966.

K.-S. Park and R. Prasad, “Semi-slant submersions”, Bull. Korean Math. Soc, vol. 50, no. 3, pp. 951–962, 2013.

R. Prasad, S. S. Shukla and S. Kumar, “On quasi-bi-slant submersions”, Mediterr. J. Math., vol. 16, no. 6, paper no. 155, 18 pages, 2019.

R. Prasad, P. K. Singh and S. Kumar, “On quasi-bi-slant submersions from Sasakian manifolds onto Riemannian manifolds”, Afr. Mat., vol. 32, no. 3-4, pp. 403–417, 2020.

B. Åžahin,“Semi-invariant submersions from almost Hermitian manifolds”, Canad.Math.Bull., vol. 56, no. 1, pp. 173–182, 2013.

B. Åžahin, “Slant submersions from almost Hermitian manifolds”, Bull. Math. Soc. Sci. Math. Roumanie, vol. 54 (102), no. 1, pp. 93–105, 2011.

B. Åžahin, “Riemannian submersion from almost Hermitian manifolds”, Taiwanese J. Math., vol. 17, no. 2, pp. 629–659, 2013.

B. Åžahin, Riemannian submersions, Riemannian maps in Hermitian geometry and their applications, Elsevier, Academic Press, London, 2017.

B. Åžahin, “Anti-invariant Riemannian submersions from almost Hermitian manifolds”, Cent. Eur. J. Math., vol. 8, no. 3, pp. 437–447, 2010.

C. Sayar, M. A. Akyol and R. Prasad, “Bi-slant submersions in complex geometry”, Int. J. Geom. Methods Mod. Phys., vol. 17, no. 4, 17 pages, 2020.

C. Sayar, H. M. Ta ̧stan, F. Özdemir and M. M. Tripathi, “Generic submersions from Kaehler manifolds”, Bull. Malays. Math. Sci. Soc., vol. 43, no. 1, pp. 809–831, 2020.

H. M. TaÅŸtan, B. Åžahin and Åž. Yanan, “Hemi-slant submersions”, Mediterr. J. Math., vol 13, no. 4, pp. 2171–2184, 2016.

B. Watson, “Almost Hermitian submersions”, J. Differential Geometry, vol. 11, no. 1, pp. 147–165, 1976.


Download data is not yet available.



How to Cite

R. Prasad, M. A. Akyol, S. Kumar, and P. K. Singh, “Quasi bi-slant submersions in contact geometry”, CUBO, vol. 24, no. 1, pp. 01–20, Apr. 2022.