Global convergence analysis of Caputo fractional Whittaker method with real world applications

Downloads

DOI:

https://doi.org/10.56754/0719-0646.2601.167

Abstract

The present article deals with the effect of convexity in the study of the well-known Whittaker iterative method, because an iterative method converges to a unique solution \(t^*\) of the nonlinear equation \(\psi(t)=0\) faster when the function's convexity is smaller. Indeed, fractional iterative methods are a simple way to learn more about the dynamic properties of iterative methods, i.e., for an initial guess, the sequence generated by the iterative method converges to a fixed point or diverges. Often, for a complex root search of nonlinear equations, the selective real initial guess fails to converge, which can be overcome by the fractional iterative methods. So, we have studied a Caputo fractional double convex acceleration Whittaker's method (CFDCAWM) of order at least (\(1+2\zeta\)) and its global convergence in broad ways. Also, the faster convergent CFDCAWM method provides better results than the existing Caputo fractional Newton method (CFNM), which has (\(1+\zeta\)) order of convergence. Moreover, we have applied both fractional methods to solve the nonlinear equations that arise from different real-life problems.

Keywords

Fractional derivative , efficiency index , nonlinear equations , Newton’s method , Whittaker’s method , convergence plane , basin of attraction

Mathematics Subject Classification:

65H105 , 26A33
  • Pages: 167–190
  • Date Published: 2024-04-11
  • Vol. 26 No. 1 (2024)

P. Agarwal and A. A. El-Sayed, “Vieta-Lucas polynomials for solving a fractional-order mathematical physics model,” Adv. Difference Equ., 2020, Art. ID 626, doi: 10.1186/s13662-020- 03085-y.

A. Akgül, A. Cordero, and J. R. Torregrosa, “A fractional Newton method with 2αth-order of convergence and its stability,” Appl. Math. Lett., vol. 98, pp. 344–351, 2019, doi: 10.1016/j.aml.2019.06.028.

T. M. Atanacković, S. Pilipović, B. Stanković, and D. Zorica, Fractional calculus with applications in mechanics, ser. Mechanical Engineering and Solid Mechanics Series. ISTE, London; John Wiley & Sons, Inc., Hoboken, NJ, 2014.

D. Babajee and V. Jaunky, “Applications of higher-order optimal Newton secant iterative methods in ocean acidification and investigation of long-run implications of emissions on alkalinity of seawater,” International Scholarly Research Notices, vol. 2013, 2013, Art. ID 785287, doi: 10.1155/2013/785287.

R. Bacastow and C. D. Keeling, “Atmospheric carbon dioxide and radiocarbon in the natural carbon cycle: II. Changes from AD 1700 to 2070 as deduced from a geochemical model,” in Brookhaven Symposia in Biology, vol. 24, 1973, pp. 86–135.

I. N. Bronshtein, K. A. Semendyayev, G. Musiol, and H. Mühlig, Handbook of mathematics, 6th ed. Springer, Heidelberg, 2015.

G. Candelario, A. Cordero, and J. R. Torregrosa, “Multipoint fractional iterative methods with (2α + 1)th-order of convergence for solving nonlinear problems,” Mathematics, vol. 8, no. 3, 2019, Art. ID 452, doi: 10.3390/math8030452.

M. C. Caputo and D. F. Torres, “Duality for the left and right fractional derivatives,” Signal Processing, vol. 107, pp. 265–271, 2015, doi: 10.1016/j.sigpro.2014.09.026.

S. C. Chapra, Applied numerical methods with MATLAB for engineers and scientists, 3rd ed. McGraw-Hill, 2018.

A. A. El-Sayed and P. Agarwal, “Numerical solution of multiterm variable-order fractional differential equations via shifted Legendre polynomials,” Math. Methods Appl. Sci., vol. 42, no. 11, pp. 3978–3991, 2019, doi: 10.1002/mma.5627.

J. A. Ezquerro and M. A. Hernández, “Different acceleration procedures of Newton’s method,” Novi Sad J. Math., vol. 27, no. 1, pp. 1–17, 1997.

W. Gander, “On Halley’s iteration method,” Amer. Math. Monthly, vol. 92, no. 2, pp. 131–134, 1985, doi: 10.2307/2322644.

K. S. Gritton, J. Seader, and W.-J. Lin, “Global homotopy continuation procedures for seeking all roots of a nonlinear equation,” Computers & Chemical Engineering, vol. 25, no. 7-8, pp. 1003–1019, 2001.

G. Honorato and S. Plaza, “Dynamical aspects of some convex acceleration methods as purely iterative algorithm for Newton’s maps,” Appl. Math. Comput., vol. 251, pp. 507–520, 2015, doi: 10.1016/j.amc.2014.11.083.

M. K. Jain, S. R. K. Iyengar, and R. K. Jain, Numerical methods for scientific and engineering computation, 6th ed. New Age International Publishers, 2012.

G. Jumarie, “Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results,” Comput. Math. Appl., vol. 51, no. 9-10, pp. 1367–1376, 2006, doi: 10.1016/j.camwa.2006.02.001.

C. Kennedy, “Ocean acidity dissolving tiny snails’ protective shell,” 2014, www.climate.gov/news-features/featured-images/ocean-acidity-dissolving-tiny-snails’- protective-shell [Accessed: April 5, 2024].

M. A. Khan, S. Ullah, and M. Farhan, “The dynamics of Zika virus with Caputo fractional derivative,” AIMS Math., vol. 4, no. 1, pp. 134–146, 2019, doi: 10.3934/Math.2019.1.134.

S. Kumar, D. Kumar, J. R. Sharma, C. Cesarano, P. Agarwal, and Y.-M. Chu, “An optimal fourth order derivative-free numerical algorithm for multiple roots,” Symmetry, vol. 12, no. 6, 2020, Art. ID 1038, doi: 10.3390/sym12061038.

C. Lanczos, “A precision approximation of the gamma function,” J. Soc. Indust. Appl. Math. Ser. B Numer. Anal., vol. 1, pp. 86–96, 1964.

A. A. Magreñán, “A new tool to study real dynamics: the convergence plane,” Appl. Math. Comput., vol. 248, pp. 215–224, 2014, doi: 10.1016/j.amc.2014.09.061.

V. Morales-Delgado, J. Gómez-Aguilar, K. M. Saad, M. A. Khan, and P. Agarwal, “Analytic solution for oxygen diffusion from capillary to tissues involving external force effects: A fractional calculus approach,” Physica A: Statistical Mechanics and its Applications, vol. 523, pp. 48–65, 2019, doi: 10.1016/j.physa.2019.02.018.

Z. M. Odibat and N. T. Shawagfeh, “Generalized Taylor’s formula,” Appl. Math. Comput., vol. 186, no. 1, pp. 286–293, 2007, doi: 10.1016/j.amc.2006.07.102.

A. L. Ozores, “Cálculo fraccionario y dinámica newtoniana,” Pensamiento Matemático, vol. 4, no. 1, pp. 77–105, 2014.

T. M. Pavkov, V. G. Kabadzhov, I. K. Ivanov, and S. I. Ivanov, “Local convergence analysis of a one parameter family of simultaneous methods with applications to real-world problems,” Algorithms, vol. 16, no. 2, p. 103, 2023, Art. ID 103, doi: 10.3390/a16020103.

J. L. Sarmiento, Ocean biogeochemical dynamics. Princeton university press, 2006.

M. Shams, N. Kausar, C. Samaniego, P. Agarwal, S. F. Ahmed, and S. Momani, “On efficient fractional Caputo-type simultaneous scheme for finding all roots of polynomial equations with biomedical engineering applications,” Fractals, vol. 31, no. 04, 2023, Art. ID 2340075, doi: 10.1142/S0218348X23400753.

P. Tans and R. Keeling, “Trends in atmospheric carbon dioxide, national oceanic & atmospheric administration, earth system research laboratory (noaa/esrl) & scripps institution of oceanography,” 2014, url: https://gml.noaa.gov/ccgg/trends/data.html.

J. Tariboon, S. K. Ntouyas, and P. Agarwal, “New concepts of fractional quantum calculus and applications to impulsive fractional q-difference equations,” Adv. Difference Equ., 2015, Art. ID 2015:18, doi: 10.1186/s13662-014-0348-8.

A. Torres-Hernández and F. Brambila-Paz, “Fractional Newton-Raphson method,” MathSJ, vol. 8, no. 1, 2021, doi: 10.5121/mathsj.2021.8101.

J. F. Traub, Iterative methods for the solution of equations, ser. Prentice-Hall Series in Auto- matic Computation. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1964.

M. A. H. Verón, “An acceleration procedure of the Whittaker method by means of convexity,” Zb. Rad. Prirod.-Mat. Fak. Ser. Mat., vol. 20, no. 1, pp. 27–38, 1990.

Downloads

Download data is not yet available.

Published

2024-04-11

How to Cite

[1]
S. Kumar Nayak and P. K. Parida, “Global convergence analysis of Caputo fractional Whittaker method with real world applications”, CUBO, vol. 26, no. 1, pp. 167–190, Apr. 2024.

Issue

Section

Articles