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jose.labrin@ufrontera.cl

Universidad de La Frontera, Chile

CUBO, A Mathematical Journal, is a scientific journal founded in 1985, and published by the

Department of Mathematics and Statistics of the Universidad de La Frontera, Temuco, Chile.

CUBO appears in three issues per year and is indexed in ZentralBlatt Math., Mathematical

Reviews, MathSciNet, Latin Index and SciELO-Chile. The journal publishes original results

of research papers, preferably not more than 20 pages, which contain substantial results in all

areas of pure and applied mathematics.



CUBO
20, 1 (2018)

EDITORIAL BOARD

EDITORIAL BOARD

Agarwal R.P.

agarwal@tamuk.edu

Department of Mathematics

Texas A&M University - Kingsville

Kingsville, Texas 78363-8202 – USA

Ambrosetti Antonio

ambr@sissa.it

Sissa, Via Beirut 2-4

34014 Trieste – Italy

Anastassiou George A.

ganastss@memphis.edu

Department of Mathematical Sciences

University of Memphis

Memphis TN 38152 – USA

Avramov Luchezar

avramov@unl.edu

Department of Mathematics

University of Nebraska

Lincoln NE 68588-0323 – USA

Benguria Rafael

rbenguri@fis.puc.cl

Instituto de F́ısica

Pontificia Universidad Católica de Chile
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9 Avenue Alain Savary, BP 47870

FR-21078 Dijon Cedex – France

Tian Gang

tian@math.princeton.edu

Department of Mathematics

Princeton University

Fine Hall, Washington Road

Princeton, NJ 08544-1000 – USA

Tjøstheim Dag Bjarne

dag.tjostheim@uib.no

Department of Mathematics

University of Bergen

Johannes Allegaten 41

Bergen – Norway

Uhlmann Gunther

gunther@math.washington.edu

Department of Mathematics

University of Washington

Box 354350 Seattle WA 98195 – USA

Vainsencher Israel

israel@mat.ufmg.br

Departamento de Matemática
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ABSTRACT

Let Ω be a smooth compact oriented 3-dimensional Riemannian manifold with boun-

dary. A quaternion field is a pair q = {α, u} of a function α and a vector field u on

Ω. A field q is harmonic if α, u are continuous in Ω and ∇α = rotu, divu = 0 holds

into Ω. The space Q(Ω) of harmonic fields is a subspace of the Banach algebra C (Ω)

of continuous quaternion fields with the point-wise multiplication qq ′ = {αα ′ − u ·
u ′, αu ′ + α ′u+ u∧ u ′}. We prove a Stone-Weierstrass type theorem: the subalgebra

∨Q(Ω) generated by harmonic fields is dense in C (Ω). Some results on 2-jets of

harmonic functions and the uniqueness sets of harmonic fields are provided.

Comprehensive study of harmonic fields is motivated by possible applications to inverse

problems of mathematical physics.

RESUMEN

SeaΩ una variedad Riemanniana 3-dimensional suave con borde, orientada y compacta.

Un campo cuaterniónico es un par q = {α, u} dado por una función α y un campo

de vectores u en Ω. Un campo q es armónico si α, u son continuos en Ω y ∇α =

rotu, divu = 0 vale en todoΩ. El espacio Q(Ω) de campos armónicos es un subespacio

del álgebra de Banach C (Ω) de campos cuaterniónicos continuos con la multiplicación

punto a punto qq ′ = {αα ′−u ·u ′, αu ′ +α ′u+u∧u ′}. Probamos un teorema de tipo

Stone-Weierstrass: la subálgebra ∨Q(Ω) generada por campos armónicos es densa en

C (Ω). Se entregan también algunos resultados acerca de 2-jets de funciones armónicas

y los conjuntos de unicidad campos armónicos.

Keywords and Phrases: 3d quaternion harmonic fields, real uniform Banach algebras, Stone-

Weierstrass type theorem on density, uniqueness theorems.

2010 AMS Mathematics Subject Classification: 30F15, 35Qxx, 46Jxx.
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1 Introduction

Motivation

There is an approach to inverse problems of mathematical physics (the so-called Boundary Control

method), which was originally based on the relations between inverse problems and the boundary

control theory [4, 7, 9]. The BC-method recovers Riemannian manifolds via spectral and/or dy-

namical boundary data. Later on, its version that makes use of connections with Banach algebras,

was proposed in [2, 5, 6].

The problem of recovering the manifold via its DN-map (the so-called Impedance Tomography

Problem) in dimensions > 3 isn’t yet properly solved. However, beginning from the papers [3, 10]

it becomes clear that harmonic quaternion fields may play the key role in the 3d ITP. It is the

reason, which has stimulated the study of their properties [8, 11].

Here we consider certain of algebraic and uniqueness properties of the harmonic quaternion

fields with hope for their future application to ITP [8]. In the mean time, our results may be

of certain independent interest for functional analysis: namely, the real uniform Banach algebras

theory [1, 13, 15].

Main result

• Let Ω be a smooth compact oriented 3-dimensional Riemannian manifold with boundary, TΩx

the tangent space at x ∈ Ω, u · v and u ∧ v the inner and vector products in TΩx. Elements of

the space Hx := R ⊕ TΩx (the pairs q = {α, u}) endowed with a multiplication qq ′ = {αα ′ − u ·
u ′, αu ′+α ′u+u∧u ′} are said to be the geometric quaternions. As an algebra, Hx is isometrically

isomorphic to the quaternion algebra H.

• A quaternion field is a pair q = {α, u} of a function α and vector field u on Ω; in other words,

q is an Hx-valued function on the manifold. The space C(Ω;H) of continuous quaternion fields

endowed with the point-wise linear operations and multiplication, and the relevant sup-norm, is a

real uniform Banach algebra [1, 13, 15].

A field q = {α, u} ∈ C(Ω;H) is harmonic if α, u are continuous in Ω and ∇α = rotu, divu = 0

holds into Ω. The space Q(Ω) of harmonic fields is a subspace of C(Ω,H) (but not a subalgebra!).

• Let A be an algebra. For a set A ⊂ A by ∨A we denote the minimal subalgebra that contains

A. The main result of the paper is a Stone-Weierstrass type Theorem 1 which claims that ∨Q(Ω)

is dense in C(Ω;H).
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More results and comments

• In the course of proving Theorem 1 we show that Q(Ω) (and, hence, ∨Q(Ω)) separates points

of Ω. It is quite evident for Ω ⊂ R
3 [11] but far from being evident for a 3d-manifold of arbitrary

topology. The separation property is derived from the so-called H-controllability of Ω from the

boundary, which is much stronger than separability. The H-controllability is proved by the use of

the results [18] on existence of the global Green function and the Landis type uniqueness theorems

for the second order elliptic equations [16]. The key step in proving Theorem 1 is to show that

∨Q(Ω) contains the algebra of scalar fields
{
{α, 0} | α ∈ CR(Ω)

}
. The latter resembles the trick

applied in [14].

• In sec 4 we prove that the 2-jets of harmonic functions are point-wise controllable from the

boundary. The proof also makes use of the elliptic uniqueness theorems. Then this result is

applied to show that harmonic functions determine the Riemannian structure of 3d manifold.

As we hope, it is a step towards the main prospective goal: application to the 3d impedance

tomography problem on Riemannian manifolds.

• One more result, which is of certain independent interest, is the following uniqueness property

of harmonic quaternion fields (sec 5). If q ∈ Q(Ω) vanishes on a piece of a smooth surface then it

vanishes in Ω identically.

• Everywhere in the paper we deal with real functions, fields, spaces, etc. Everywhere smooth

means C∞-smooth.

Acknowledgements

We’d like to thank Dr C.Shonkwiler for helpful remarks and useful references.

2 Quaternion fields

Quaternions

• Let E be an oriented 3d euclidean space, u · v and u∧ v the scalar (inner) and vector products,

|u| =
√
u · u. Elements p = {α, u} of the space H := R⊕E endowed with the norm |p| =

√

α2 + |u|2

and a (noncommutative) multiplication

pp ′ := {αα ′ − u · u ′, αu ′ + α ′u+ u∧ u ′} , (2.1)

are said to be geometric quaternions.

The norm obeys |p2| = |p|2,
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• Let H be the algebra of (standard) quaternions. Recall that it is the real algebra generated by

1, i, j,k with the unit 1 and multiplication defined by the table

i2 = j2 = k2 = −1, ij = k, jk = i, ki = j .

• For an orthogonal normalized basis ε = {e1, e2, e3} in E, the correspondence e1 7→ i, e2 7→
j, e3 7→ k determines an isometric isomorphism µε : H → H,

{α, ae1 + be2 + ce3}
µε7→ α1+ ai+ bj + ck , (2.2)

(we write H ∼= H). Any isometric isomorphism µ : H → H is of the form (2.2) by proper choice of

the basis ε.

Vector analysis

In the sequel, the following assumptions are accepted.

Convention 1. Ω is a smooth compact oriented Riemannian 3d-manifold with the smooth bound-

ary ∂Ω. It is endowed with the metric tensor g ∈ C2; dµ is the Riemannian volume 3-form; ⋆ is

the Hodge operator.

On such a manifold, the intrinsic operations of vector analysis are well defined on smooth

functions and vector fields (sections of the tangent bundle TΩ). Following [21], Chapter 10, we

recall their definitions.

• For a vector field u, one defines the conjugate 1-form u♭ by u♭(v) = g(u, v), ∀v. For a 1-form f,

the conjugate field f♭ is defined by g(f♭, u) = f(u), ∀u.

• A scalar product: {fields} × {fields}
·
→ {functions} is defined point-wise by u · v = g(u, v). A

vector product: {fields}× {fields}
∧
→ {fields} is defined point-wise by g(u∧ v,w) = dµ (u, v,w), ∀w.

• A gradient: {functions}
∇
→ {fields} and a divergence: {fields}

div
→ {functions} are defined by ∇α =

(dα)♭ and divu = ⋆d⋆ u♭ respectively, where d is the exterior derivative.

• A rotor: {fields}
rot
→ {fields} is defined by rotu = (⋆du♭)

♭. Recall the basic identities: div rot = 0

and rot∇ = 0. The equalities

∇α = rotu and dα = ⋆du♭

are equivalent.

• The Laplacian {functions}
∆
→ {functions} is ∆ = div∇. The vector Laplacian {fields}

~∆
→ {fields} is

~∆ = ∇ div − rot rot .
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Remark 1. Under the above accepted assumptions on the smoothness of Ω and g, the (harmonic)

functions and fields, which obey ∆α = 0 and ~∆u = 0 in the relevant weak sense, do belong to the

class C2
loc

: see, e.g, [12], Part II, Chapter 1.

Fields

Let Ω̇ := Ω\∂Ω be the set of the inner points, C(Ω) and ~C(Ω) the spaces of continuous functions

and vector fields. Let Hx := R⊕ TΩx, x ∈ Ω be the point-wise geometric quaternion algebras.

• A quaternion field is a pair p = {α, u} with the components α ∈ C(Ω) and u ∈ ~C(Ω), the values

p(x) = {α(x), u(x)} ∈ Hx being regarded as geometric quaternions.

By C(Ω;H) we denote the space of continuous quaternion fields. One can regard them as

sections of the bundle C(Ω;H) = ∪x∈ΩHx.

• Elements of the subspace

Q(Ω) :=
{
p ∈ C(Ω;H)

∣

∣ ∇α = rotu, divu = 0 in Ω̇
}

are called harmonic fields. To be rigorous, here the conditions on the components of p are under-

stood in the relevant sense of distributions but imply ∆α = 0 and ~∆u = 0, so that α and u are

automatically smooth enough by Remark 1.

3 Density theorem

Algebra C(Ω;H)

The space C(Ω;H) with the point-wise multiplication (2.1) and the norm

‖p‖ = sup
x∈Ω

|p(x)| = sup
x∈Ω

√

|α(x)|2 + |u(x)|2TΩx

satisfying ‖qp‖ 6 ‖q‖‖p‖, ‖p2‖ = ‖p‖2 is a real uniform noncommutative Banach algebra.

• The fields {α, 0} constitute a subalgebra C(Ω;R) of C(Ω;H), which is isometrically isomorphic

to the real continuous function algebra on Ω:

C(Ω;R) ∼= CR(Ω) . (3.1)

We say {α, 0} to be the scalar fields and often identify them with functions α via the map α 7→ {α, 0},

which embeds CR(Ω) in C(Ω;H).

• The harmonic subspace Q(Ω) ⊂ C(Ω;H) is not an algebra since, in general, p, q ∈ Q(Ω) does

not imply pq ∈ Q(Ω). It is easy to see that

Q(Ω) ∩ C(Ω;R) = {{c, 0} | c is a constant function} ,
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whereas {1, 0} is the unit of C(Ω;H).

Main result

For an algebra A and a set S ⊂ A by ∨S we denote a minimal (sub)algebra in A , which contains

S. Our main results is the following.

Theorem 1. The algebra ∨Q(Ω) is dense in C(Ω;H).

The proof occupies the rest of sec 3.

Green function

• A well-known in geometry fact is that the assumptions of Convention 1, in particular, provide

the existence of a compact 3-dimensional C∞- manifold Ω ′ ⋑ Ω endowed with the tensor g ′ ∈
C2 such that g ′|Ω = g. This enables one to apply the results by M.Mitrea and M.Taylor [18]

(existence of the fundamental solution, Green function, Poisson formula, etc) which are valid

for much weaker smoothness restrictions on g and ∂Ω. Also, one can apply the results on the

uniqueness of continuation of solutions to the elliptic PDE [12, 16].

• The following results are mostly taken from [18]. Also we use some well-known facts of the elliptic

2-nd order equations theory [17, 12, 16]. By Wl
p(Ω) we denote the Sobolev space of functions which

possess the (generalized) derivatives of the order l = 1, 2, . . . belonging to Lp(Ω) (p > 1). Recall

that Ω̇ = Ω \ ∂Ω. Also we put D := {(x, y) ∈ Ω×Ω | x = y}. The distance in Ω is denoted by

rxy. Let D(Ω̇) be a space of the smooth compactly supported into Ω functions (test functions)

endowed with the standard topology, D ′(Ω̇) the corresponding distributions.

For an h ∈ L2(Ω), the Dirichlet problem

∆v = h in Ω̇

v = 0 on ∂Ω

has a unique solution vh ∈ W2
2(Ω) vanishing at the boundary. The solution is represented in the

form

vh(x) =

∫

Ω

G(x, y)h(y)dµ(y), x ∈ Ω (3.2)

via the Green function G, which possesses the following properties.

1. G ∈ C2
loc

([Ω×Ω] \D); G(x, y) = G(y, x), (x, y) 6∈ D;

G(x, ·)|∂Ω = 0, x ∈ Ω̇ . (3.3)
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For the closed sets K,K ′ ⊂ Ω provided K ∩ K ′ = ∅ the map y 7→ G(·, y) is continuous from K to

C2(K ′).

2. The estimates

G(x, y) 6
c

rxy
, |∇yG(x, y)| 6

c

r2xy

hold and imply G(x, ·) ∈ W1
p(Ω) for x ∈ Ω, 1 6 p < 3

2
.

3. As a distribution of the class D ′(Ω̇) on the test functions (of the variable y) of the class D(Ω̇),

the Green function satisfies

∆yG(x, ·) = δx, (3.4)

where δx is the Dirac measure supported at x. Note that in (3.4), and below in (3.8), (3.9), the

variable x ∈ Ω̇ plays the role of parameter.

4. For f ∈ C∞(∂Ω), the inhomogeneous boundary value problem

∆w = 0 in Ω̇ (3.5)

w = f on ∂Ω (3.6)

has a unique classical solution w = wf(x), which is represented in the form

wf(x) =

∫

∂Ω

∂νy
G(x, y) f(y)dσ(y), x ∈ Ω̇ , (3.7)

where νy is the outward unit normal at the boundary, dσ is the boundary surface element. This

is a Poisson formula derived from (3.2) by integration by parts. Function f in (3.6) is said to be a

boundary control.

• Fix a point x ∈ Ω̇ and a vector e ∈ TΩx, |e| = 1. Let γe be the geodesic that emanates from x

in direction e. Define a functional ∂x
eδx ∈ D ′(Ω̇) by

〈∂x
eδx, ϕ〉 := lim

γe∋ x ′
→x

ϕ(x ′) − ϕ(x)

rxx ′

=

〈

lim
γe∋ x ′

→x

δx ′ − δx

rxx ′

, ϕ

〉

= e · ∇ϕ(x) .

The relevant limit passage in (3.4) determines a derivative ∂x
eG(x, ·) ∈ D ′(Ω̇) which satisfies

∆y[∂
x
eG(x, ·)] = ∂x

eδx . (3.8)

In the mean time, by the properties 1 and 2, ∂x
eG(·, y) is a (classical) function belonging to Lp(Ω)

for 1 6 p < 3
2
. Moreover it is harmonic (and hence C2-smooth) in Ω \ {x} and satisfies

∂x
eG(x, ·)|∂Ω = 0 , x ∈ Ω̇. (3.9)

• The relevant limit passage in the Poisson formula (3.7) implies

e · ∇wf(x) =

∫

∂Ω

∂νy
[∂x

eG(x, y)] f(y)dσ(y), x ∈ Ω̇ . (3.10)
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H-controllability

• The following result plays the key role in the proof of Theorem 1. Recall that Hx = R⊕TΩx
∼= H,

and Ω obeys Convention 1.

For a set of points A = {a1, . . . , aN} ⊂ Ω define a 4N-dimensional space HA := ⊕∑N
i=1 Hai

and a map MA : C∞(∂Ω) → HA:

f 7→ ⊕
N∑

i=1

{wf(ai),∇wf(ai)}

(each summand {wf(ai),∇wf(ai)} belongs to the corresponding Hai
). We say Ω to be H-

controllable from boundary if this map is surjective for any finite set A.

Lemma 1. The manifold Ω is H-controllable from boundary.

Proof. The opposite means thatHA⊖RanMA 6= {0}, i.e. there is a nonzero element⊕∑N
i=1{αi, βiei} ∈

HA (αi, βi ∈ R, |ei| = 1) such that

N∑

i=1

αiw
f(ai) + βi ei · ∇wf(ai) = 0 (3.11)

holds for all f ∈ C∞(∂Ω). Show that such an assumption leads to contradiction.

1. Let A ⊂ Ω̇, i.e., all ai are the interior points. A function

Φ(y) :=

N∑

i=1

αiG(ai, y) + βi∂
x
ei
G(ai, y) (3.12)

satisfies

∆Φ = 0 in Ω \A (3.13)

Φ|∂Ω = 0 (3.14)

by (3.3), (3.4), (3.8), and (3.9).

The relations (3.7), (3.10) and (3.11) easily follow to

∫

∂Ω

∂νΦ(y) f(y)dσ(y) = 0

that implies

∂νΦ|∂Ω = 0 (3.15)

by arbitrariness of f.
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2. So, Φ is harmonic in Ω \ A and has the zero Cauchy data at the boundary: see (3.14) and

(3.15). By the well-known uniqueness property of solutions to elliptic PDE (see, e.g., [16], sec. 4.3,

Remark 4.17), we get Φ = 0 in Ω \A, i.e., almost everywhere in Ω.

Since G(ai, ·) ∈ W1
p(Ω) and ∂ei

G(ai, ·) ∈ Lp(Ω), we have Φ ∈ Lp(Ω) for some p > 1.

Therefore, Φ is a summable function equal zero a.e. in Ω. Thus, Φ = 0 as a distribution of the

class D ′(Ω̇).

In the mean time, by (3.4) and (3.8) one has

∆Φ =

N∑

i=1

αiδai
+ βi∂

x
ei
δai

6= 0 ,

i.e., Φ is a nonzero element of D ′(Ω̇). We arrive at the contradiction that proves the Lemma for

A ∈ Ω̇.

3. Let A contain the points of ∂Ω. The smoothness assumptions on Ω enable one to provide

Ω ′, g ′ obeying Convention 1 and such that Ω ⋐ Ω ′ and g ′|Ω = g holds. Then one has A ⊂ Ω̇ ′

that reduces this case to the previous one.

Note that relations between controllability and uniqueness theorems (like the one used in the

proof) are widely exploited in control theory for PDE (see, e.g., [9]).

• Recall that wf is a harmonic function that solves (3.5), (3.6). As immediate consequence of

Lemma 1 we have

Corollary 1. The algebra ∨
{
|∇wf|2 | f ∈ C∞(Ω)

}
is dense in CR(Ω).

Indeed, by Lemma 1, for any a, b ∈ Ω there is a smooth f such that |∇wf(a)|2 6= |∇wf(b)|2,

i.e., the functions |∇wf(·)|2 separate points of Ω. In the mean time, by the same Lemma, there

is no x0 ∈ Ω, at which all these functions vanish simultaneously. Hence, by the classical Stone-

Weierstrass Theorem (see, e.g., [19]), the above mentioned density does hold.

Note that {0,∇wf} ∈ Q(Ω) and {0,∇wf}2 = −{|∇wf(·)|2, 0} ∈ ∨Q(Ω). Hence, the algebra

∨
{
{|∇wf|2, 0} | f ∈ C∞(Ω)

}
is a subalgebra in ∨Q(Ω). By (3.1), Corollary 1 implies that this

algebra is dense in C(Ω;R). As a result, denoting

C := ∨Q(Ω)

we arrive at the important relation

C ⊃ C(Ω;R) . (3.16)
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Strong separation

We say that a family F ⊂ C(Ω;H) strongly separates points (of Ω) if for any a, b ∈ Ω and

ha ∈ Ha, hb ∈ Hb there is a p ∈ F such that p(a) = ha and p(b) = hb holds [13].

Lemma 2. The space Q(Ω) strongly separates points.

Proof. • Let ~L2(Ω) be the space of square-integrable vector fields and H := {v ∈ ~L2(Ω) | div v =

0, rot v = 0} its harmonic subspace. The well-known Hodge-Morrey-Friedrichs decomposition

claims that

H = G ⊕ N = R ⊕ D , (3.17)

where

G := {v ∈ H | v = ∇α}, N := {v ∈ H | v · ν = 0} ,

R := {v ∈ H | v = rotu}, D := {v ∈ H | v∧ ν = 0} .

(see, e.g., [21], Corollary 3.5.2). The subspaces N and D determined by the boundary conditions

are called the Neumann and Dirichlet spaces respectively. Their finite dimensions are equal to the

Betti numbers: dimN = β1, dimD = β2 [21]. Note that N ∩ D = {0} [3, 21]. Also note that

dimG = dimR = ∞.

• As a consequence of (3.17), a field v ∈ H is represented in the form v = ∇α = rotu if and only

if v ∈ G ∩ R or, equivalently, v⊥[N +̇D ].

If w = wf(x) solves (3.5), (3.6) then for any d ∈ D one has

(∇wf, d) =

∫

Ω

∇wf · d dµ =

∫

∂Ω

f d·νdσ .

In the mean time, since ∇wf ∈ G , the representation ∇wf = rotu holds if and only if ∇wf⊥D ,

which is equivalent to ∫

∂Ω

f d·νdσ = 0 , d ∈ D . (3.18)

In particular, taking f = 1 one has wf = 1 in Ω and gets

∫

∂Ω

d·νdσ = 0 , d ∈ D . (3.19)

• Now, fix two distinct points a, b ∈ Ω and elements ha = {ca, ka} ∈ Ha, hb = {cb, kb} ∈ Hb. To

prove the Lemma we need to show that there is a smooth f, which provides

wf(a) = ca, w
f(b) = cb; ∇wf = rotu; u(a) = ha, u(b) = hb . (3.20)
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Step 1. At first assume a, b ∈ Ω̇. Let Px(y) := ∂νy
G(x, y) be the Poisson kernel. By (3.7) for

f = 1 we have ∫

∂Ω

Px(y)dσ(y) = 1 , x ∈ Ω. (3.21)

In accordance with (3.7) and (3.18), to satisfy the relations wf(a) = ca, w
f(b) = cb; ∇wf = rotu

in (3.20) we need to find f provided

∫

∂Ω

Pa(y) f(y)dσ(y) = ca ,

∫

∂Ω

Pb(y) f(y)dσ(y) = cb ;

∫

∂Ω

f(y)d(y)·νdσ(y) = 0 , d ∈ D ,

or, equivalently,

(Pa, f) = ca, (Pb, f) = cb , f⊥ν·D (3.22)

(the inner products in L2(∂Ω)), where ν · D := {ν · d | d ∈ D}.

Comparing (3.19) with (3.21), we conclude that neither Pa nor Pb belong to ν · D . In the

mean time, Pa 6= Pb as elements of L2(∂Ω). Indeed, otherwise we’d have wf(a) = wf(b) for any

f that is impossible by Lemma 2. Hence, span{Pa, Pb} ∩ ν · D may consist of {c(Pa − Pb) | c ∈ R}

only. As a result, to proof the solvability of the linear system (3.22) (with respect to f) in the case

of ca 6= cb we must show that Pa − Pb 6∈ ν · D .

Step 2. Assume the opposite: there is a d ∈ D such that Pa − Pb = d · ν, and show that this

assumption leads to a contradiction.

Compare the fields ∇[G(a, ·)−G(b, ·)] and d. Since G(a, ·) = G(b, ·) = 0 on ∂Ω both of them

are normal on the boundary. Hence, by the assumption, they are equal on ∂Ω. In the mean time,

the field ∇[G(a, ·) −G(b, ·)] is harmonic in Ω̇ \ [{a} ∪ {b}], whereas d is harmonic in the whole Ω̇.

The coincidence at the boundary implies the coincidence in the domain of harmonicity. Hence,

∇[G(a, ·) − G(b, ·)] can be extended by continuity to the whole Ω and ∇[G(a, ·) − G(b, ·)] = d

everywhere. However, the latter is impossible since

div∇[G(a, ·) −G(b, ·)] = ∆[G(a, ·) − G(b, ·)] = δa − δb ,

whereas div d = 0 everywhere in Ω̇. This contradiction shows that Pa − Pb 6∈ ν · D .

Step 3. The case of a and/or b belonging to the boundary is reduced to the previous one by the

collar theorem arguments, which were applied at the end of the proof of Lemma 1.

Corollary 2. The algebra ∨Q(Ω) ⊂ C(Ω;H) strongly separates points of Ω.

This property plays important role in proving density theorems [13].
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Completing the proof of Theorem 1

Recall that C = ∨Q(Ω) and prove that C = C(Ω;H). The fact, which will play the key role, is

the embedding C ⊃ C(Ω;R) ∼= CR(Ω): see (3.16).

• Fix an x ∈ Ω and choose the smooth boundary controls fx1, f
x
2, f

x
3 such that∇wfx1 (x),∇wfx2 (x),∇wfx3 (x)

constitute a basis of TΩx. It is possible owing to Lemma 1. By continuity, there is a ball

Br(x)[x] ⊂ Ω centered at x, of (small enough) radius r(x), such that ∇wfx1 (y),∇wfx2 (y),∇wfx3 (y)

is a basis of TΩy for each y ∈ Br(x)[x].

Let such a choice be done for each x ∈ Ω.

• The balls provide an open cover Ω = ∪x∈ΩBr(x)[x]. By compactness there is a finite subcover

Ω = ∪N
n=1Brn [xn], where rn := r(xn). Let η1, . . . , ηN be a partition of unit subordinated to the

subcover, so that

η1, . . . , ηN ∈ C∞(Ω), suppηn ⊂ Brn [xn],

N∑

n=1

ηn ≡ 1 in Ω

holds.

• Take p = {α, u} ∈ C(Ω;H) and represent

p =

N∑

n=1

ηnp = {

N∑

n=1

ηnα,

N∑

n=1

ηnu} =

N∑

n=1

{ηnα, 0}+

N∑

n=1

{0, ηnu}

with {ηnα, 0} ∈ C(Ω;R) ⊂ C . In the mean time, one has

ηnu =

3∑

k=1

κ
n
k ∇wf

xn
k

with the certain κ
n
k ∈ CR(Ω) supported in Brn [xn]. Note that {κn

k , 0} ∈ C(Ω;R) ⊂ C .

Summarizing, we arrive at the representation

p =

N∑

n=1

{ηnα, 0}+

N∑

n=1

3∑

k=1

{κn
k , 0}{0,∇wf

xn
k } ,

where all cofactors and summands do belong to C . Thus p ∈ C and, hence, C(Ω;H) = C .

Theorem 1 is proved.

Remark 2. Analyzing the proof, it is easy to recognize that the family W :=
{
{0,∇wf} | f is smooth

}
,

which is smaller than Q(Ω), also generates the whole of the continuous field algebra: ∨W =

C(Ω;H).
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4 Controllability of 2-jets

Fix an a ∈ Ω̇; let x1, x2, x3 be the local coordinates in a neighborhood ω ∋ a. With a smooth

function φ one associates the row of its 0,1,2-order derivatives

ja[φ] := {φ(a); φx1(a), φx2(a), φx3(a);

φx1x1(a), φx1x2(a), φx1x3(a), φx2x2(a), φx2x3(a), φx3x3(a)} ∈ R
10,

which provides a coordinate representation of its second jet at the point a [20]. For short, we say

ja[φ] to be a 2-jet of φ at a and consider R10 with the (standard) inner product 〈j, j ′〉 as a space

of 2-jets.

Recall that in coordinates the Laplacian acts by

∆φ = g− 1
2 [g

1
2gikφxk ]xi ,

where {gik} is the inverse to the metric tensor matrix {gik} and g = det{gik} (summation over

repeating indexes is in the use). We say the row

λa :=

= {0;g− 1
2 [g

1
2gi1]xi , g− 1

2 [g
1
2gi2]xi , g− 1

2 [g
1
2gi3]xi ;g11, 2g12, 2g13, g22, 2g23, g33}

∣

∣

x=a

to be the Laplace jet and represent (∆φ)(a) = 〈λa, ja[φ]〉.

The harmonicity ∆w = 0 is equivalent to the orthogonality 〈ja[w], λa〉 = 0, a ∈ ω. Therefore

one has ja[w] ∈ R
10 ⊖ spanλa. Let us show that the 2-jets of harmonic functions exhaust the

subspace R
10 ⊖ spanλa. This result may be interpreted as a point-wise boundary controllability

of 2-jets by harmonic functions. Recall that wf is a solution to (3.5), (3.6).

Lemma 3. For any a ∈ Ω and s ∈ R
10 ⊖ spanλa there is a smooth f such that ja[w

f] = s.

Proof. Taking into account the structure of the Laplace jet, we may deal with s = {0; s1, s2, s3; s11, . . . , s33},

and let it be such that 0 6= s ∈ R
10 ⊖ spanλa but 〈s, ja[wf]〉 = 0 for any smooth f. Show that

such an assumption leads to contradiction.

• For a differential operator L with smooth coefficients in Ω, by L∗ we denote its adjoint by

Lagrange that is defined by

(Lη, ζ)L2(Ω) = (η, L∗ζ)L2(Ω), η, ζ ∈ D(Ω̇) .

For a distribution h ∈ D ′(Ω̇) one defines Lh by (Lh, η) := (h, L∗η)L2(Ω), η ∈ D(Ω̇).
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Let S be a differential operator, which acts by

(Sv)(x) =

= [s1vx1 + s2vx2 + s3vx3 + s11vx1x1 + s12vx1x2 + · · ·+ s33vx3x3 ] (x) =

= 〈s, jx[v]〉, x ∈ ω

in a coordinate neighborhood ω of a ∈ Ω̇, where the (constant) coefficients are the components of

the above chosen jet s.

• Let δa ∈ D ′(Ω̇) be the Dirac measure supported at the point a ∈ Ω̇. Consider the problem

∆H = S∗δa (4.1)

H
∣

∣

∂Ω
= 0 . (4.2)

The equation is understood as a relation in D ′(Ω̇); its r.h.s. is a distribution acting by (S∗δa, η)L2(Ω) =

(Sη)(a). The boundary condition does make sense since H is harmonic outside supp S∗δa = {a}.

Also, the normal derivative ∂νH is a smooth function on ∂Ω.

Formally by Green, for a function v ∈ C2(Ω) one has

〈s, ja[v]〉 = (Sv)(a) =

∫

Ω

δa Svdµ =

∫

Ω

S∗δa v dµ
(4.1)
=

∫

Ω

∆Hvdµ =

(4.2)
=

∫

Ω

H∆vdµ+

∫

∂Ω

∂νHvdσ .

To justify the final equality

〈s, ja[v]〉 =

∫

Ω

H∆vdµ+

∫

∂Ω

∂νHvdσ (4.3)

one can use the standard regularization technique, approximating δa by δεa ∈ D(Ω̇) supported

near a.

• By the choice of s, for v = wf the equality (4.3) provides

∫

∂Ω

∂νHwf dσ =

∫

∂Ω

∂νHfdσ = 0 .

By arbitrariness of f we get ∂νH = 0 on ∂Ω. So, H is harmonic in Ω\ {a} and has the zero Cauchy

data on the boundary. By the uniqueness theorem, H vanishes everywhere outside a. Hence, the

distribution H is supported at a. The well-known fact of the distribution theory is that such an

H is a linear combination of δa and its derivatives. In the mean time, comparing the orders of

singularities in the left and right hand sides of (4.1), one easily concludes that

H = cδa



CUBO
21, 1 (2019)

On algebraic and uniqueness properties of harmonic . . . 15

with c = const 6= 0. Indeed, otherwise ∆H contains the derivatives of δa of the order > 3 that

makes the equality (4.1) impossible.

For an η ∈ D(Ω̇) one has

〈s, ja[η]〉 = (δa, Sη) = (S∗δa, η)
(4.1)
= (∆cδa, η) = (cδa, ∆η) = 〈cλa, ja[η]〉 .

Comparing the beginning with the end and referring to the evident {ja[η] | η ∈ D(Ω̇)} = R
10, we

arrive at s = cλa that contradicts to the starting assumption s⊥λa.

• The case a ∈ ∂Ω is reduced to the previous one by means of the trick already used at the end

of the proof of Lemma 1: embedding Ω ⋐ Ω′.

As is easy to recognize, Lemma 3 implies the assertion of Lemma 1 for the case of the single

point a. However, Lemma 3 may be generalized on the finite set a1, . . . , aN so that the relevant

boundary controllability of 2-jets of harmonic functions holds up to the natural defect in ⊕∑
i R

10
ai
.

Determination of metric from harmonic functions

The metric on Ω determines the family of harmonic functions. The converse is also true in the

following sense.

• Let c > 0 be a smooth function on Ω and cg a conformal deformation of the metric g. By ∆cg

and ∆g we denote the corresponding Laplacians. A simple calculation leads to the relation

∆cgy = c−1∆gy− 2−1 ∇c−1 · ∇y , (4.4)

which is specific for the 3d case. Taking y = wf, we see that the metrics cg and g have the same

reserve of harmonic functions wf if and only if ∇c−1 · ∇wf = 0 holds for any smooth f. In the

mean time, by Lemma 1 the gradients ∇wf = 0 constitute the local bases in Ω. Hence, the latter

equality implies ∇c−1 = 0, i.e., c = const.

• Fix a point a in a coordinate neighborhood ω ∋ a. By λ
g
a we denote the Laplace jet of the given

metric g. By Lemma 3, the space of jets is

R
10
a = {ja[φ] | φ is smooth} = {ja[w

f] | f is smooth}⊕ spanλga . (4.5)

Therefore, writing (∆wf)(a) = 0 in the form

〈λga, ja[wf]〉 = 0, f is smooth

and varying f = f1, f2, . . . , we get a linear homogeneous algebraic system with respect to the

components of the jet λga, which determines them up to a factor, which may depend on a. Along
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with the components, we determine the tensor g up to a factor, possibly depending on a. However,

by the above mentioned geometric reasons, this factor is a constant.

Thus, the family {wf | f is smooth} determines the metric g up to a constant positive factor.

If g is known at least at a single point x0 ∈ Ω, then it is uniquely determined everywhere.

Notice in addition that in two-dimensional case relation (4.4) is of the form ∆cgy = c−1∆gy,

so that the metrics cg and g determine the same reserve of harmonic functions. It is the reason,

because of which in 2d impedance tomography problem the metric is recovered up to conformal

equivalence [2].

• Here we describe a trick, which is used in dynamical/spectral inverse problems and 2d impedance

tomography problem, for recovering the metric via boundary data[9]. The hope is that it may be

useful in future investigation of 3d ITP.

Assume that a topological space Ω̃ is homeomorphic to Ω via a homeomorphism β : Ω → Ω̃.

Also assume that the family of functions

{w̃f = wf ◦ β−1 | f is smooth}

is given. The following procedure enables one to determine the metric g̃ = β∗g in Ω̃.

1. Fix a point a ∈ Ω̃ and choose its neighborhood ω̃ with the coordinates x1, x2, x3. By the way,

Lemma 1 enables one to use the images w̃f as local coordinates.

2. Find spanλg̃a by (4.5) (replacing functions wf on ω with w̃f on ω̃). As was shown above, the

family of these subspaces given for a ∈ ω̃ determines the metric up to a constant factor. So, cg̃ is

recovered. Assuming g̃ to be known at least at a single point a0 ∈ ω̃, one recovers g̃ uniquely.

3. Covering Ω̃ by the coordinate neighborhoods and repeating the previous steps, we determine

g̃ in Ω̃.

5 Uniqueness properties of harmonic fields

Roughly speaking, the following result means that the set of zeros of a harmonic quaternion field

may be at most of dimension 1.

Lemma 4. Let Σ ∈ Ω be a C2-smooth surface (2-dim submanifold). If p ∈ Q(Ω) obeys p|Σ = 0

then p = 0 in the whole Ω.

Proof. Since the claimed result is of local character, we assume Σ to be a both-side surface endowed

with a smooth field of the unit normals ν. Also, Σ possesses the (induced) Riemannian metric and
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is provided with the corresponding operations on vector fields. In particular, a divergence, which

is denoted by divΣ, is well defined.

• For a point x ∈ Σ and vector v ∈ TΩx we represent

v = vθ + vν : vν = v · νν, vθ = v− vν

and, by default, identify vθ with the proper vector of TΣx. By the latter, for a smooth vector

field v given in a neighborhood of Σ, the value [divΣ vθ](x) is of clear meaning. Also, recall the

well-known vectot analysis relation

ν · rot v = divΣ ν∧ vθ on Σ (5.1)

(see, e.g. [21]).

• Begin with the case Σ ⊂ Ω̇. Let p = {α, u} ∈ Q(Ω), so that

∇α = rotu, divu = 0 in Ω̇ (5.2)

holds. Let p|Σ = 0. Since α|Σ = 0, we have (∇α)θ|Σ = 0 that implies (rotu)θ
∣

∣

Σ
= 0 by (5.2). In

the mean time, u|Σ = 0 is equivalent to uθ = uν = 0 on Σ; hence (rotu)ν|Σ = divΣ ν∧ uθ = 0 by

virtue of (5.1). Thus we get (rotu)θ|Σ = (rotu)ν|Σ = 0, i.e. rotu|Σ = 0.

The latter equality and (5.2) lead to (∇α)|Σ = 0 (along with α|Σ = 0). So, α is a harmonic

function with the zero Cauchy data on Σ. Therefore α = 0 in Ω by the elliptic uniqueness theorems

[16].

As a result, rotu = ∇α = 0 everywhere in Ω. Since divu = 0, the vector field u is harmonic

in Ω and vanishes on Σ. Therefore, locally near the points x ∈ Σ one represents u = ∇ϕ with a

harmonic function ϕ provided ∇ϕ|Σ = 0. Such a function is a constant; hence u = 0 near Σ. By

its harmonicity, u vanishes globally in Ω.

So, we have p = 0 in Ω.

• The case Σ ⊂ ∂Ω is reduced to the previous one by means of the trick already used at the end

of the proof of Lemma 1: embedding Ω ⋐ Ω′.
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ABSTRACT

The prime goal of this paper is to establish sharp lower and upper bounds for useful

functions such as the exponential functions, with a focus on exp(−x2), the trigonometric

functions (cosine and sine) and the hyperbolic functions (cosine and sine). The bounds

obtained for hyperbolic cosine are very sharp. New proofs, refinements as well as new

results are offered. Some graphical and numerical results illustrate the findings.

RESUMEN

El objetivo principal de este art́ıculo es establecer cotas inferiores y superiores precisas

para funciones útiles tales como las funciones exponenciales, con énfasis especial en

exp(−x2), las funciones trigonométricas (coseno y seno) y las funciones hiperbólicas

(coseno y seno). Las cotas obtenidas para el coseno hiperbólico son muy precisas.

Se presentan, tanto nuevas demostraciones y refinamientos, como resultados nuevos.

Algunos resultados numéricos y gráficos ilustran los resultados encontrados.
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1 Introduction

Sharp bounds for useful functions play a central role in many areas of mathematics and theoretical

physics. They aim to provide some properties of functions of interest, possibly complex, by dealing

with more tractable functions (in the context). The literature on the bounds dealing with the

special functions such as e−x2

, cos(x), sin(x), sinc(x), cosh(x), sinh(x) and tanh(x), is very vast.

Recent developments can be found in [10, 11, 7, 5, 1, 20, 17, 4, 15, 6, 21, 16, 3, 8, 14, 13, 18, 19]

and the references therein. In this paper, we offer new simple tight (lower and upper) bounds

involving these functions, with a high potential of interest for many researchers in mathematics

or theoretical physics. Some proofs of our results are based on the so-called l’Hospital’s rule of

monotonicity, the others used recent results with a new approach. The sharpness of our bounds

are highlighted by some graphics and numerical studies using a global L2 error as benchmark.

The result below shows bounds for e−x2

defined with the cosine function and well-chosen

constants.

Proposition 1.1. For x ∈ (0, π/2), the best possible constants α and β in the following inequalities

cos(x) − 1+ α

α
6 e−x2

6
cos(x) − 1+ β

β
(1.1)

are 1/2 and ≈ 1.092663 respectively.

The interest of Proposition 1.1 is the simplicity of the bounds, with very tractable expressions.

It can be useful to evaluate complex functions depending on e−x2

(Gaussian probability density

function, error function etc.). The bounds of Proposition 1.1 are illustrated in Figure 1. We see

that the lower bound is sharp for small values for x.

0.0 0.5 1.0 1.5

0
.2

0
.4

0
.6

0
.8

1
.0 exp(− x

2)
(cos(x) − 1 + α) α
(cos(x) − 1 + β) β
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Figure 1: Graphs of the functions of the bounds (1.1) for x ∈ (0, π/2).

Note: Using exponential and cosine series, Proposition 1.1 can be expressed in terms of

alternating series as follows.

For x ∈ (−π/2, π/2), we have

1

α

∞∑

k=1

(−1)kx2k

(2k)!
6

∞∑

k=1

(−1)kx2k

k!
6

1

β

∞∑

k=1

(−1)kx2k

(2k)!
,

where α and β are as defined above.

Now let us recall that the sinc function is defined by

sinc(x) =

{
sin(x)

x
x 6= 0,

1 x = 0.
(1.2)

It is of importance due to it’s frequent occurrence in Fourier analysis. So the interest of finding

the bounds of this type of functions is increasing. In the next proposition, we give new bounds to

sinc function using hyperbolic tangent.

Proposition 1.2. For x ∈ (0, π/2), we have

(

tanh(x)

x

)δ

<
sin(x)

x
<

(

tanh(x)

x

)η

(1.3)

with the best possible constants δ = 0.839273 and η = 1/2.

In the following propositions, the inequalities presented are somewhat Cusa-Huygen’s type

[13, 18]. Proposition 1.3 below provides bounds for the sinc function using e−x2

or hyperbolic

cosine.

Proposition 1.3. For x ∈ (0, π/2), the inequalities

(

2+ e−x2

3

)a

<
sin(x)

x
<

(

2+ e−x2

3

)b

(1.4)

and

(

3

2+ cosh(x)

)c

<
sin(x)

x
<

(

3

2+ cosh(x)

)d

(1.5)

are true with the best possible constants a ≈ 1.240827, b = 1/2, c ≈ 1.108171 and d = 1.
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In view of Propositions 1.2 and 1.3, it is natural to address the following question: Which

bounds for sinc are the best ? We provide the answer by doing a numerical study. We investigate

the global L2 error defined by

e(u) =

∫π/2

0

(

sin x

x
− u(x)

)2

dx,

where u(x) denotes bound (lower or upper) in (1.3), (1.4) and (1.5). The results are summarized

in Table 1.

Table 1: Global L2 errors e(u) for sinc(x) and the functions u(x) in the bounds of (1.3), (1.4)

and (1.5) for x ∈ (0, π/2).

Inequality (1.3)

u(x) lower upper

e(u) ≈ 0.001421437 ≈ 0.003648618

Inequality (1.4)

u(x) lower upper

e(u) ≈ 0.006242974 ≈ 0.008628254

Inequality (1.5)

u(x) lower upper

e(u) ≈ 6.53313× 10−5
≈ 0.0001542441

It follows from Table 1 that the bounds (1.5) are more sharp. This sharpness is illustrated in

Figure 2.

0.0 0.5 1.0 1.5

0
.7

0
.8

0
.9

1
.0 sin(x) x

(3 (2 + cosh(x)))c

(3 (2 + cosh(x)))d

Figure 2: Graphs of the functions of the bounds (1.5) for x ∈ (0, π/2).
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The next result provides bounds for x/ sinh(x) using cosine function.

Proposition 1.4. If x ∈ (0, π/2) then we have

(

2+ cos(x)

3

)m

<
x

sinh(x)
<

(

2+ cos(x)

3

)n

(1.6)

with the constants m ≈ 1.014227 and n ≈ 0.928648.

The obtained bounds are illustrated in Figure 3.
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x sinh(x)
((2 + cos(x)) 3)m

((2 + cos(x)) 3)n

Figure 3: Graphs of the functions of the bounds (1.6) for x ∈ (0, π/2).

Note: The inequality
2+ cos(x)

3
<

x

sinh(x)

is more sharp version of left inequality of (1.6). It is appeared in [19, Theorem 6].

Proposition 1.5 below presents sharp bounds for sinh(x)/x using hyperbolic cosine.

Proposition 1.5. For x ∈ (0, π/2) one has

(

2+ cosh(x)

3

)p

<
sinh(x)

x
<

(

2+ cosh(x)

3

)q

(1.7)

with the constants p ≈ 0.928648 and q ≈ 1.009155.

The bounds are illustrated in Figure 4.
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((2 + cosh(x)) 3)q

Figure 4: Graphs of the functions of the bounds (1.7) for x ∈ (0, π/2).

Note: The hyperbolic Cusa-Huygen’s inequality[16]

sinh(x)

x
<

2+ cosh(x)

3

is however more sharp than right inequality of (1.7).

The rest of the study is devoted to new bounds for cosh(x), with discussion. A well-known

upper bound for cosh(x) is given by ex
2/2. This result was recently completed by Yogesh Bagul[3,

Theorem 2.1] who finds a sharp lower bound, i.e.

eax2

< cosh(x) < ex
2/2, x ∈ (0, 1), (1.8)

with the best possible constants a ≈ 0.433781 and 1/2. We now aim to refine the inequalities of

(1.8) in Proposition 1.6 below.

Proposition 1.6. For x ∈ (0, 1), we have

exp

(

3

2

(

1− e−x2/3
)

)

6 cosh(x) 6 exp

(

1

2θ

(

1− e−θx2
)

)

(1.9)

with θ ≈ 0.272342.

Note: Using the well-known inequality ey > 1+y for y ∈ R, we obtain exp
((

1− e−θx2
)

/(2θ)
)

6

ex
2/2. This proves that the upper bound in (1.9) is sharper to the one in (1.8).

Alternative bounds are given in Proposition 1.7 below, with discussion.
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Proposition 1.7. For x ∈ (0, 1), we have

(

1+
x2

3

)3/2

6 cosh(x) 6

(

1+
x2

ξ

)ξ/2

(1.10)

with ξ ≈ 3.194528.

Note: Again, using the well-known inequality ey > 1+ y for y ∈ R, we get
(

1+ x2/ξ
)ξ/2

6

ex
2/2. This shows that the upper bound in (1.10) is sharper to the one in (1.8).

We now claim that the bounds obtained in (1.10) are better than those in (1.8) and (1.9).

Numerical results support this claim. Indeed, by considering the global L2 error defined by

e∗(u) =

∫1

0

(cosh(x) − u(x))
2
dx,

where u(x) denotes bound (lower or upper) in (1.8), (1.9) and (1.10), Table 1 indicates that (1.10)

are the best.

Table 2: Global L2 errors e∗(u) for cosh(x) and the functions u(x) in the bounds of (1.8), (1.9)

and (1.10) for x ∈ (0, 1).

Inequality (1.8)

u(x) lower upper

e∗(u) ≈ 0.0001352084 ≈ 0.001139289

Inequality (1.9)

u(x) lower upper

e∗(u) ≈ 1.335929 × 10−5
≈ 7.004029 × 10−6

Inequality (1.10)

u(x) lower upper

e∗(u) ≈ 9.456552 × 10−7
≈ 6.895902 × 10−7

The sharpness of the obtained bounds is illustrated in Figures 5 and 6 (for a zoom on the

interval (0.95, 1), where the hierarchy of the bounds is more clear).
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Figura 5: Graphs of the functions of the bounds (1.10) for x ∈ (0, 1).
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Figura 6: Graphs of the functions of the bounds (1.10) for x ∈ (0.95, 1).

Note: To prove the inequalities (1.5), (1.6) and (1.7), we will simply use the results of [7, 5, 12].

We stress on the fact that it is not difficult to verify that all the results in [5] are also true in (0, π/2)

with the respective best possible constants obtained accordingly (see [12]). Propositions 1.6 and

1.7 will be proved by the techniques of integration on some known results[4, 6]. For proving

Proposition 1.1, Proposition 1.2 and Proposition 1.3, we need the Lemmas presented in the next

section.
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2 Lemmas

The following Lemma is known as l’Hospital’s rule of monotonicity. The details are given in [9]

and [2].

Lemma 2.1. ([2]) Let f, g be two real valued functions which are continuous on [a, b] and differ-

entiable on (a, b), where −∞ < a < b < ∞ and g ′(x) 6= 0, for ∀x ∈ (a, b). Let,

A(x) =
f(x) − f(a)

g(x) − g(a)

and

B(x) =
f(x) − f(b)

g(x) − g(b)
.

Then,

I) A(x) and B(x) are increasing on (a, b) if f ′/g ′ is increasing on (a, b) and

II) A(x) and B(x) are decreasing on (a, b) if f ′/g ′ is decreasing on (a, b).

The strictness of the monotonicity of A(x) and B(x) depends on the strictness of monotonicity of

f ′/g ′.

Lemma 2.2. H(x) =
sin(x)−x cos(x)

x2 sin(x)
is strictly positive increasing in (0, π/2).

Proof: H(x) is positive as cos(x) < sin(x)
x

on (0, π/2).

Consider,

H(x) =
sin(x) − x cos(x)

x2 sin(x)
=

H1(x)

H2(x)
,

where H1(x) = sin(x) − x cos(x) and H2(x) = x2 sin(x) are such that H1(0) = 0 and H2(0) = 0. By

differentiating
H ′

1(x)

H ′

2(x)
=

sin(x)

x cos(x) + 2 sin(x)
=

H3(x)

H4(x)
,

where H3(x) = sin(x) and H4(x) = x cos(x) + 2 sin(x) with H3(0) = 0 and H4(0) = 0. Again

differentiating we get

H ′

3(x)

H ′

4(x)
=

cos(x)

−x sin(x) + 3 cos(x)
=

1

−x tan(x) + 3
.

Now, it is well known that −x tan(x) is decreasing in (0, π/2) and so is −x tan(x) + 3. By Lemma

1, H(x) is a strictly increasing function in (0, π/2).

3 Proofs of the Main Results

This section is devoted to the proofs of our main results.
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Proof of Proposition 1.1: Clearly, the equalities hold at x = 0. Consider

f(x) =
cos(x) − 1

e−x2

− 1
=

f1(x)

f2(x)
,

where f1(x) = cos(x) − 1 and f2(x) = e−x2

− 1 with f1(0) = 0 and f2(0) = 0. By differentiation,

we obtain
f ′1(x)

f ′2(x)
=

sin(x)ex
2

2x
=

f3(x)

f4(x)
,

where f3(x) = sin(x)ex
2

and f4(x) = 2x with f3(0) = 0 and f4(0) = 0. Again differentiating we get

f ′3(x)

f ′4(x)
=

ex
2

2
[cos(x) + 2x sin(x)]

=
ex

2

2
F(x),

where F(x) = cos(x) + 2x sin(x). Differentiation gives

F ′(x) = 2x cos(x) + sin(x) > 0

in (0, π/2), which implies that F(x) is increasing. Thus
f ′

3
(x)

f ′

4
(x)

being a product of two positive in-

creasing functions is a positive increasing. By Lemma 2.1, f(x) is also increasing in (0, π/2). So

α = f(0+) = 1/2 and β = f(π/2−) = −1/[e−(π/2)2 − 1] ≈ 1.092663.

Proof of Proposition 1.2: Let us set

h(x) =
log(sin(x)/x)

log(tanh(x)/x)
=

h1(x)

h2(x)
,

where h1(x) = log(sin(x)/x) and h2(x) = log(tanh(x)/x) with h1(0+) = 0 and h2(0+) = 0.

Differentiating we get

h ′

1(x)

h ′

2(x)
=

sin(x) − x cos(x)

x2 sin(x)

x2 tanh(x)

tanh(x) − x sech2(x)
= H(x) J(x),

where H(x) =
sin(x)−x cos(x)

x2 sin(x)
and J(x) =

x2 tanh(x)

tanh(x)−x sech2(x)
. Now set

J(x) =
J1(x)

J2(x)
,

where J1(x) = x2 tanh(x) and J2(x) = tanh(x) − x sech2(x) with J1(0) = 0 and J2(0) = 0. Differ-

entiation gives

J ′1(x)

J ′2(x)
=

x sech2(x) + 2 tanh(x)

2 sech2(x) tanh(x)

=
1

2

x

tanh(x)
+ cosh2(x),
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which is clearly increasing as both x/ tanh(x) and cosh2(x) are increasing. By Lemma 2.1, J(x) is

also increasing in (0, π/2). Moreover, J(x) is positive as x/ sinh(x) < cosh(x). By Lemma 2.2, H(x)

is strictly positive increasing in (0, π/2). h ′

1(x)/h
′

2(x), being product of two positive increasing

functions is positive increasing. Again by Lemma 2.1, h(x) is strictly increasing in (0, π/2). So

δ = log(2/π)/ log(2 tanh(π/2)/π) ≈ 0.839273 and η = f(0+) = 1/2, by l’Hospital’s rule. This

completes the assertion.

Proof of Proposition 1.3:

• Proof of (1.4). Let

f(x) =
log (sin(x)/x)

log
(

2+ e−x2
)

− log 3
=

f1(x)

f2(x)
,

where f1(x) = log (sin(x)/x) and f2(x) = log
(

2+ e−x2
)

− log 3 such that f1(0+) = 0 and

f2(0) = 0. Differentiation gives

f ′1(x)

f ′2(x)
=

1

2

(sin(x) − x cos(x))

x2 sin(x)
(2ex

2

+ 1)

=
1

2
H(x)G(x),

where H(x) =
sin(x)−x cos(x)

x2 sin(x)
is strictly positive increasing in (0, π/2) by Lemma 2.2 and

G(x) = 2ex
2

+ 1 is also clearly positive increasing. Therefore H(x)G(x) is strictly increasing.

By making use of Lemma 2.1, we conclude that f(x) is strictly increasing in (0, π/2). So

f(0+) < f(x) < f(π/2); x ∈ (0, π/2).

Hence, a = f(π/2) = log(2/π)/[log(2 + e−(π/2)2) − log 3] ≈ 1.240827 and b = f(0+) = 1/2

by l’Hospital’s rule.

• Proof of (1.5). Utilizing [5, Theorem 2], [12, Proposition 3] we have

e−kx2

<
sin(x)

x
< e−x2/6,

where k =
− log(2/π)

(π/2)2
. After rearrangement, it can be written as

(

sin(x)

x

)6

< e−x2

<

(

sin(x)

x

)1/k

. (3.1)

By virtue of [7, Theorem 2] we write

(

3

2+ cosh(x)

)γ

< e−x2

<

(

3

2+ cosh(x)

)6

, (3.2)
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where γ =
(π/2)2

log[(2+cosh(π/2))/3]
. Combining (3.1) and (3.2), we get

(

3

2+ cosh(x)

)c

<
sin(x)

x
<

(

3

2+ cosh(x)

)

,

where c = kγ =
− log(2/π)

log[(2+cosh(π/2))/3]
≈ 1.108171.

Proof of Proposition 1.4: According to [5, Theorem 3] and [12] we have

e−x2/6 <
x

sinh(x)
< e−tx2

, x ∈ (0, π/2),

where t =
− log[π/(2 sinh(π/2))]

(π/2)2
. It is equivalent to

(

x

sinh(x)

)1/t

< e−x2

<

(

x

sinh(x)

)6

. (3.3)

Similarly, using [7, Theorem 1] we have

(

2+ cos(x)

3

)λ

< e−x2

<

(

2+ cos(x)

3

)6

, (3.4)

where λ =
−(π/2)2

log(2/3)
. Combining (3.3) and (3.4) we get

(

2+ cos(x)

3

)m

<
x

sinh(x)
<

(

2+ cos(x)

3

)n

,

where m = λ
6
=

−(π/2)2

6 log(2/3)
≈ 1.014227 and n = 6t =

−6 log[π/(2 sinh(π/2))]

(π/2)2
≈ 0.928648.

Proof of Proposition 1.5: The proof follows easily by combining inequalities (3.2) and (3.3)

to get

p =
−6 log[π/(2 sinh(π/2))]

(π/2)2
≈ 0.928648 and q =

(π/2)2

6 log[(2+cosh(π/2))/3]
≈ 1.009155.

Proof of Proposition 1.6: For x = 0 equalities hold obviously. Rearranging [4, Theorem

5], for any t ∈ (0, 1), we have

te−t2/3 < tanh(t) < te−θt2

with θ ≈ 0.272342. Therefore by integration, for x ∈ (0, 1), we get

∫x

0

te−t2/3dt <

∫x

0

tanh(t)dt <

∫x

0

te−θt2dt,

which yields
3

2

(

1− e−x2/3
)

< log(cosh(x)) <
1

2θ

(

1− e−θx2
)

.
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By composing with the exponential function, we get the required result.

Proof of Proposition 1.7: Clearly, the equalities hold at x = 0. Rearranging [6, Theorem

4], for any t ∈ (0, 1), we have
3t

3+ t2
< tanh(t) <

ξt

ξ + t2

with ξ ≈ 3.194528. On integration, for x ∈ (0, 1), we have

∫x

0

3t

3+ t2
dt <

∫x

0

tanh(t)dt <

∫x

0

ξt

ξ+ t2
dt

which implies that
3

2
log

(

1+
x2

3

)

< log(cosh(x)) <
ξ

2
log

(

1+
x2

ξ

)

.

The desired result follows by composing with the exponential function.
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Pontificia Universidad Católica de Chile,
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We present a new criterion, based on commutator methods, for the strong mixing

property of unitary representations of topological groups equipped with a proper length

function. Our result generalises and unifies recent results on the strong mixing property

of discrete flows {UN}N∈Z and continuous flows {e−itH}t∈R induced by unitary operators
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RESUMEN

Presentamos un nuevo criterio, basado en métodos de conmutadores, para la propiedad

de mezcla fuerte de representaciones unitarias de grupos topológicos dotados de una

función de longitud propia. Nuestro resultado generaliza y unifica resultados recientes

acerca de la propiedad de mezcla fuerte de flujos discretos {UN}N∈Z y flujos continuos

{e−itH}t∈R inducidos por operadores unitarios U y operadores autoadjuntos H en un

espacio de Hilbert. Como aplicación, presentamos una demostración corta alternativa

(sin usar convoluciones) de la propiedad de mezcla fuerte de la representación regular

de grupos localmente compactos σ-compactos.

Keywords and Phrases: Strong mixing, unitary representations, commutator methods.

2010 AMS Mathematics Subject Classification: 22D10, 37A25, 58J51, 81Q10.
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1 Introduction

In the recent paper [14], itself motivated by the previous papers [8, 12, 13, 15], it has been shown

that commutator methods for unitary and self-adjoint operators can be used to establish strong

mixing. The main results of [14] are the following two commutator criteria for strong mixing.

First, given a unitary operator U in a Hilbert space H, assume there exists an auxiliary self-

adjoint operator A in H such that the commutators [A,UN] exist and are bounded in some precise

sense, and such that the strong limit

D1 := s -lim
N→∞

1

N
[A,UN]U−N (1.1)

exists. Then, the discrete flow {UN}N∈Z is strongly mixing in ker(D1)
⊥. Second, given a self-

adjoint operator H in H, assume there exists an auxiliary self-adjoint operator A in H such that

the commutators [A, e−itH] exist and are bounded in some precise sense, and such that the strong

limit

D2 := s -lim
t→∞

1

t
[A, e−itH] eitH (1.2)

exists. Then, the continuous flow {e−itH}t∈R is strongly mixing in ker(D2)
⊥. These criteria were

then applied to skew products of compact Lie groups, Furstenberg-type transformations, time

changes of horocycle flows and adjacency operators on graphs.

The purpose of this note is to unify these two commutator criteria into a single, more general,

commutator criterion for strong mixing of unitary representations of topological groups, and also

to remove an unnecessary invariance assumption made in [14].

Our main result is the following. We consider a topological group X equipped with a proper

length function ℓ : X → R+, a unitary representation U : X → U (H), and a net {xj}j∈J in X

with xj → ∞ (see Section 2 for precise definitions). Also, we assume there exists an auxiliary

self-adjoint operator A in H such that the commutators [A,U(xj)] exist and are bounded in some

precise sense, and such that the strong limit

D := s -lim
j

1

ℓ(xj)
[A,U(xj)]U(xj)

−1 (1.3)

exists. Then, under these assumptions we show that the unitary representation U is strongly

mixing in ker(D)⊥ along the net {xj}j∈J (Theorem 2.3). As a corollary, we obtain criteria for strong

mixing in the cases of unitary representations of compactly generated locally compact Hausdorff

groups (Corollary 2.5) and the Euclidean group Rd (Corollary 2.7). These results generalise the

commutator criteria of [14] for the strong mixing of discrete and continuous flows, as well as

the strong limit (1.3) generalises the strong limits (1.1) and (1.2) (see Remarks 2.6 and 2.8). To

conclude, we present in Example 2.9 an application which was not possible to cover with the results

of [14]: a short alternative proof (not using convolutions) of the strong mixing property of the left

regular representation of σ-compact locally compact Hausdorff groups.
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We refer the reader to [4, 6, 9, 10, 11, 16] for references on strong mixing properties of unitary

representations of groups.

2 Commutator criteria for strong mixing

We start with a short review of basic facts on commutators of operators and regularity classes

associated with them. We refer to [1, Chap. 5-6] for more details.

Let H be an arbitrary Hilbert space with scalar product 〈 · , · 〉 antilinear in the first argument,

denote by B(H) the set of bounded linear operators on H, and write ‖ · ‖ both for the norm on

H and the norm on B(H). Let A be a self-adjoint operator in H with domain D(A), and take

S ∈ B(H). For any k ∈ N, we say that S belongs to Ck(A), with notation S ∈ Ck(A), if the map

R ∋ t 7→ e−itA S eitA ∈ B(H) (2.1)

is strongly of class Ck. In the case k = 1, one has S ∈ C1(A) if and only if the quadratic form

D(A) ∋ ϕ 7→
〈
ϕ, iSAϕ

〉
−
〈
Aϕ, iSϕ

〉
∈ C

is continuous for the topology induced by H on D(A). We denote by [iS,A] the bounded operator

associated with the continuous extension of this form, or equivalently the strong derivative of the

map (2.1) at t = 0. Moreover, if we set Aε := (iε)−1(eiεA −1) for ε ∈ R \ {0}, we have (see [1,

Lemma 6.2.3(a)]):

s -lim
εց0

[iS,Aε] = [iS,A]. (2.2)

Now, if H is a self-adjoint operator in H with domain D(H) and spectrum σ(H), we say that

H is of class Ck(A) if (H− z)−1 ∈ Ck(A) for some z ∈ C \ σ(H). In particular, H is of class C1(A)

if and only if the quadratic form

D(A) ∋ ϕ 7→
〈
ϕ, (H − z)−1Aϕ

〉
−
〈
Aϕ, (H − z)−1ϕ

〉
∈ C

extends continuously to a bounded form with corresponding operator denoted by [(H− z)−1, A] ∈

B(H). In such a case, the set D(H) ∩ D(A) is a core for H and the quadratic form

D(H) ∩ D(A) ∋ ϕ 7→
〈
Hϕ,Aϕ

〉
−
〈
Aϕ,Hϕ

〉
∈ C

is continuous in the topology of D(H) (see [1, Thm. 6.2.10(b)]). This form then extends uniquely

to a continuous quadratic form on D(H) which can be identified with a continuous operator [H,A]

from D(H) to the adjoint space D(H)∗. In addition, the following relation holds in B(H) (see [1,

Thm. 6.2.10(b)]):

[(H − z)−1, A] = −(H − z)−1[H,A](H− z)−1. (2.3)
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With this, we can now present our first result, which is at the root of the new commutator

criterion for strong mixing. For it, we recall that a net {xj}j∈J in a topological space X diverges

to infinity, with notation xj → ∞, if {xj}j∈J has no limit point in X. This implies that for each

compact set K ⊂ X, there exists jK ∈ J such that xj /∈ K for j ≥ jK. In particular, X is not compact.

We also fix the notations U (H) for the set of unitary operators on H and R+ := [0,∞).

Proposition 2.1. Let {Uj}j∈J be a net in U (H), let {ℓj}j∈J ⊂ R+ satisfy ℓj → ∞, assume there

exists a self-adjoint operator A in H such that Uj ∈ C1(A) for each j ∈ J, and suppose that the

strong limit

D := s -lim
j

1

ℓj
[A,Uj]U

−1
j

exists. Then, limj

〈
ϕ,Ujψ

〉
= 0 for all ϕ ∈ ker(D)⊥ and ψ ∈ H.

Before the proof, we note that for j ∈ J large enough (so that ℓj 6= 0) the operators
1
ℓj
[A,Uj]U

−1
j

are well-defined, bounded and self-adjoint. Therefore, their strong limit D is also bounded and

self-adjoint.

Proof. Let ϕ = Dϕ̃ ∈ DD(A) and ψ ∈ D(A), take j ∈ J large enough, and set

Dj :=
1

ℓj
[A,Uj]U

−1
j .

Since Uj and U
−1
j belong to C1(A) (see [1, Prop. 5.1.6(a)]), both Ujψ and U−1

j ϕ̃ belong to D(A).

Thus,

∣∣〈ϕ,Ujψ
〉∣∣

=
∣∣〈(D −Dj)ϕ̃, Ujψ

〉
+
〈
Djϕ̃, Ujψ

〉∣∣

≤
∥∥(D −Dj)ϕ̃

∥∥‖ψ‖+ 1

ℓj

∣∣〈[A,Uj

]
U−1

j ϕ̃, Ujψ
〉∣∣

≤
∥∥(D −Dj)ϕ̃

∥∥‖ψ‖+ 1

ℓj

∣∣〈Aϕ̃,Ujψ
〉∣∣+ 1

ℓj

∣∣〈UjAU
−1
j ϕ̃, Ujψ

〉∣∣

≤
∥∥(D −Dj)ϕ̃

∥∥‖ψ‖+ 1

ℓj

∥∥Aϕ̃
∥∥‖ψ‖+ 1

ℓj

∥∥ϕ̃
∥∥‖Aψ‖.

Since D = s -lim jDj and ℓj → ∞, we infer that limj

〈
ϕ,Ujψ

〉
= 0, and thus the claim follows by

the density of DD(A) in DH = ker(D)⊥ and the density of D(A) in H.

In the sequel, we assume that the unitary operators Uj are given by a unitary representation

of a topological group X. We also assume that the scalars ℓj are given by a proper length function

on X, that is, a function ℓ : X → R+ satisfying the following properties (e denotes the identity of

X):

(L1) ℓ(e) = 0,
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(L2) ℓ(x−1) = ℓ(x) for all x ∈ X,

(L3) ℓ(xy) ≤ ℓ(x) + ℓ(y) for all x, y ∈ X,

(L4) if K ⊂ R+ is compact, then ℓ−1(K) ⊂ X is relatively compact.

Remark 2.2 (Topological groups with a proper left-invariant pseudo-metric). Let X be a Haus-

dorff topological group equipped with a proper left-invariant pseudo-metric d : X × X → R+ (see

[7, Def. 2.A.5 & 2.A.7]). Then, simple calculations show that the associated length function

ℓ : X → R+ given by ℓ(x) := d(e, x) satisfies the properties (L1)-(L4) above. Examples of groups

admitting a proper left-invariant pseudo-metric are σ-compact locally compact Hausdorff groups [7,

Prop. 4.A.2], as for instance compactly generated locally compact Hausdorff groups with the word

metric [7, Prop. 4.B.4(2)].

The next theorem provides a general commutator criterion for the strong mixing property of

a unitary representation of a topological group. Before stating it, we recall that if a topological

group X is equipped with a proper length function ℓ, and if {xj}j∈J is a net in X with xj → ∞, then

ℓ(xj) → ∞ (this can be shown by absurd using the property (L4) above).

Theorem 2.3 (Topological groups). Let X be a topological group equipped with a proper length

function ℓ, let U : X → U (H) be a unitary representation of X, let {xj}j∈J be a net in X with

xj → ∞, assume there exists a self-adjoint operator A in H such that U(xj) ∈ C1(A) for each

j ∈ J, and suppose that the strong limit

D := s -lim
j

1

ℓ(xj)
[A,U(xj)]U(xj)

−1 (2.4)

exists. Then,

(a) limj

〈
ϕ,U(xj)ψ

〉
= 0 for all ϕ ∈ ker(D)⊥ and ψ ∈ H,

(b) U has no nontrivial finite-dimensional unitary subrepresentation in ker(D)⊥.

Proof. The claim (a) follows from Proposition 2.1 and the fact that ℓ(xj) → ∞. The claim (b)

follows from (a) and the fact that matrix coefficients of finite-dimensional unitary representations

of a group do not vanish at infinity (see for instance [3, Rem. 2.15(iii)]).

Remark 2.4. (i) The result of Theorem 2.3(a) amounts to the strong mixing property of the

unitary representation U in ker(D)⊥ along the net {xj}j∈J, as mentioned in the introduction. If the

strong limit (2.4) exists for all nets {xj}j∈J with xj → ∞, then Theorem 2.3(a) implies the usual

strong mixing property of the unitary representation U in ker(D)⊥.

(ii) One can easily see that Theorem 2.3 remains true if the scalars ℓ(xj) in (2.4) are replaced

by (f ◦ ℓ)(xj), with f : R+ → R+ any proper function. For simplicity, we decided to present only

the case f = idR+
, but we note this additional freedom might be useful in applications.
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Theorem 2.3 and Remark 2.2 imply the following result in the particular case of a compactly

generated locally compact group X :

Corollary 2.5 (Compactly generated locally compact groups). Let X be a compactly generated

locally compact Hausdorff group with generating set Y and word length function ℓ, let U : X→ U (H)

be a unitary representation of X, let {xj}j∈J be a net in X with xj → ∞, assume there exists a self-

adjoint operator A in H such that U(y) ∈ C1(A) for each y ∈ Y, and suppose that the strong

limit

D := s -lim
j

1

ℓ(xj)
[A,U(xj)]U(xj)

−1 (2.5)

exists. Then,

(a) limj

〈
ϕ,U(xj)ψ

〉
= 0 for all ϕ ∈ ker(D)⊥ and ψ ∈ H,

(b) U has no nontrivial finite-dimensional unitary subrepresentation in ker(D)⊥.

Proof. In order to apply Theorem 2.3, we first note from Remark 2.2 that the word length function

ℓ is a proper length function. Second, we note that X =
⋃

n≥1(Y ∪ Y−1)n. Therefore, for each

x ∈ X there exist n ≥ 1, y1, . . . , yn ∈ Y and m1, . . . ,mn ∈ {±1} such that x = ym1

1 · · ·ymn
n . Thus,

U(x) = U
(
ym1

1 · · ·ymn
n

)
= U(y1)

m1 · · ·U(yn)
mn ,

and it follows from the inclusions U(y1), . . . , U(yn) ∈ C
1(A) and standard results on commutator

methods [1, Prop. 5.1.5 & 5.1.6(a)] that U(x) ∈ C1(A). Thus, we have U(xj) ∈ C1(A) for each

j ∈ J, and the commutators [A,U(xj)] appearing in (2.5) make sense. So, we can apply Theorem

2.3 to conclude.

Remark 2.6. Corollary 2.5 is a generalisation of [14, Thm. 3.1] to the case of unitary represen-

tations of compactly generated locally compact Hausdorff groups. Indeed, if we let X be the additive

group Z with generating element 1, take the trivial net {xj = j}j∈N∗ = {N | N ∈ N∗}, and set

U := U(1) in Corollary 2.5, then the strong limit (2.5) reduces to

D = s -lim
N→∞

1

N

[
A,UN

]
U−N = s -lim

N→∞

1

N

N−1∑

n=0

Un
(
[A,U]U−1

)
U−n,

which is the strong limit appearing in [14, Thm. 3.1]. In Corollary 2.5 we also removed the

unnecessary invariance assumption η(D)D(A) ⊂ D(A) for each η ∈ C∞
c
(R \ {0}). So, the strong

mixing properties for skew products and Furstenberg-type transformations established in [14, Sec. 3]

and [5, Sec. 3] can be obtained more directly using Corollary 2.5.

In the next corollary we consider the case of a strongly continuous unitary representation

U : Rd → U (H) of the Euclidean group Rd, d ≥ 1. In such a case Stone’s theorem implies the
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existence of a family of mutually commuting self-adjoint operators H1, . . . , Hd such that U(x) =

e−i
∑d

k=1 xkHk for each x = (x1, . . . , xd) ∈ Rd. Therefore, we give a criterion for strong mixing in

terms of the operators H1, . . . , Hd. We use the shorthand notations

H := (H1, . . . , Hd), Π(H) := (H1 + i)−1 · · · (Hd + i)−1 and x ·H :=

d∑

k=1

xkHk.

Corollary 2.7 (Euclidean group Rd). Let Rd, d ≥ 1, be the Euclidean group with Euclidean

length function ℓ, let U : Rd → U (H) be a strongly continuous unitary representation of Rd, let

{xj}j∈J be a net in Rd with xj → ∞, assume there exists a self-adjoint operator A in H such that

(Hk − i)−1 ∈ C1(A) for each k ∈ {1, . . . , d}, and suppose that the strong limit

D := s -lim
j

1

ℓ(xj)

∫1

0

ds e−is(xj·H)Π(H)
[
i(xj ·H), A

]
Π(H)∗ eis(xj·H) (2.6)

exists. Then,

(a) limj

〈
ϕ,U(xj)ψ

〉
= 0 for all ϕ ∈ ker(D)⊥ and ψ ∈ H,

(b) U has no nontrivial finite-dimensional unitary subrepresentation in ker(D)⊥.

Proof. The proof consists in applying Theorem 2.3 with A replaced by a new operator Ã that we

now define.

The inclusions (H1 − i)−1, . . . , (Hd − i)−1 ∈ C1(A) and the standard result on commutator

methods [1, Prop. 5.1.5] imply that Π(H)∗ ∈ C1(A). So, we have Π(H)∗D(A) ⊂ D(A), and the

operator

Ãϕ := Π(H)AΠ(H)∗ϕ, ϕ ∈ D(A),

is essentially self-adjoint (see [1, Lemma 7.2.15]). Take ϕ ∈ D(A) and j0 ∈ J such that ℓ(xj) > 0

for all j ≥ j0, and define for ε ∈ R \ {0} the operator Aε := (iε)−1(eiεA −1). Then, we have

〈
Ãϕ,U(xj)ϕ

〉
−
〈
ϕ,U(xj)Ãϕ

〉

= lim
εց0

(〈
ϕ,Π(H)AεΠ(H)

∗ e−i(xj·H)ϕ
〉
−
〈
ϕ, e−i(xj·H)Π(H)AεΠ(H)

∗ϕ
〉)

= lim
εց0

∫ ℓ(xj)

0

dq
d

dq

〈
ϕ, ei(q−ℓ(xj))(xj·H)/ℓ(xj) Π(H)AεΠ(H)

∗ e−iq(xj·H)/ℓ(xj)ϕ
〉

=
1

ℓ(xj)
lim
εց0

∫ ℓ(xj)

0

dq
〈
ϕ, ei(q−ℓ(xj))(xj·H)/ℓ(xj)Π(H)

[
i(xj ·H), Aε

]
Π(H)∗ e−iq(xj·H)/ℓ(xj)ϕ

〉
.

(2.7)

But, (H1 − i)−1, . . . , (Hd − i)−1 ∈ C1(A). Therefore, (2.2) and (2.3) imply that

s-lim
εց0

Π(H)
[
i(xj ·H), Aε

]
Π(H)∗ = Π(H)

[
i(xj ·H), A

]
Π(H)∗,
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and we can exchange the limit and the integral in (2.7) to obtain

〈
Ãϕ,U(xj)ϕ

〉
−
〈
ϕ,U(xj)Ãϕ

〉

=
1

ℓ(xj)

∫ ℓ(xj)

0

dq
〈
ϕ, ei(q−ℓ(xj))(xj·H)/ℓ(xj)Π(H)

[
i(xj ·H), A

]
Π(H)∗ e−iq(xj·H)/ℓ(xj)ϕ

〉

=
1

ℓ(xj)

∫ ℓ(xj)

0

dr
〈
ϕ, e−ir(xj·H)/ℓ(xj)Π(H)

[
i(xj ·H), A

]
Π(H)∗ ei(r−ℓ(xj))(xj·H)/ℓ(xj)ϕ

〉

=

∫1

0

ds
〈
ϕ, e−is(xj·H)Π(H)

[
i(xj ·H), A

]
Π(H)∗ eis(xj·H)U(xj)ϕ

〉

=
〈
ϕ, ℓ(xj)DjU(xj)ϕ

〉

with

Dj :=
1

ℓ(xj)

∫1

0

ds e−is(xj·H) Π(H)
[
i(xj ·H), A

]
Π(H)∗ eis(xj·H) .

Since D(A) is a core for Ã, this implies that U(xj) ∈ C1(Ã) with
[
Ã, U(xj)

]
= ℓ(xj)DjU(xj).

Therefore, we have

Dj =
1

ℓ(xj)

[
Ã, U(xj)

]
U(xj)

−1,

and all the assumptions of Theorem 2.3 are satisfied with A replaced by Ã.

Remark 2.8. Corollary 2.7 is a generalisation of [14, Thm. 4.1] to the case of strongly continuous

unitary representations of Rd for an arbitrary d ≥ 1. Indeed, if we set d = 1, write H for H1, and

take the trivial net {xj = j}j∈(0,∞) = {t | t > 0} in Corollary 2.7, then the strong limit (2.6) reduces

to

D = s -lim
t→∞

1

t

∫1

0

ds e−is(t·H)(H + i)−1
[
itH,A

]
(H − i)−1 eis(t·H)

= s -lim
t→∞

1

t

∫t

0

ds e−isH(H + i)−1
[
iH,A

]
(H− i)−1 eisH,

which is (up to a sign) the strong limit appearing in [14, Thm. 4.1]. In Corollary 2.7, we also

removed the unnecessary invariance assumption η(D)D(A) ⊂ D(A) for each η ∈ C∞
c
(R \ {0}).

So, the strong mixing properties for adjacency operators, time changes of horocycle flows, etc.,

established in [14, Sec. 4] can be obtained more directly using Corollary 2.7.

To conclude, we add to the list of examples presented in [14] an application which was not

possible to cover with the results of [14]. It is a short alternative proof, not using convolutions,

of the strong mixing property of the left regular representation of σ-compact locally compact

Hausdorff groups (see for instance [2, Sec. C.4] for the proof using convolutions):
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Example 2.9 (Left regular representation). Let X be a σ-compact locally compact Hausdorff group

with left Haar measure µ and proper length function ℓ (see Remark 2.2). Let D ⊂ H be the set of

functions X→ C with compact support, and let U : X→ U (H) be the left regular representation of

X on H := L
2(X, µ) given by

U(x)ϕ := ϕ(x−1 ·), x ∈ X, ϕ ∈ H.

Let finally A be the maximal multiplication operator in H given by

Aϕ := ℓϕ ≡ ℓ(·)ϕ, ϕ ∈ D(A) :=
{
ϕ ∈ H | ‖ℓϕ‖ <∞

}
.

For ϕ ∈ D and x ∈ X, one has

AU(x)ϕ−U(x)Aϕ =
(
ℓ( ·) − ℓ(x−1 ·)

)
U(x)ϕ.

Furthermore, the properties (L2)-(L3) of a length function imply that

∣∣(ℓ( ·) − ℓ(x−1 ·)
)∣∣ ≤ ℓ(x). (2.8)

Therefore, since D is dense in D(A), it follows that U(x) ∈ C1(A) with

[A,U(x)]U(x)−1 = ℓ( ·) − ℓ(x−1 ·).

Now, we take {xj}j∈J a net in X with xj → ∞, and show that

D := s -lim
j

1

ℓ(xj)
[A,U(xj)]U(xj)

−1 = −1. (2.9)

For this, we first note that for ϕ ∈ H we have

(
1

ℓ(xj)
[A,U(xj)]U(xj)

−1 + 1

)
ϕ =

ℓ( ·) − ℓ(x−1
j ·) + ℓ(xj)

ℓ(xj)
ϕ.

Next, we note that (2.8) implies that

∣∣∣∣∣
ℓ( ·) − ℓ(x−1

j ·) + ℓ(xj)

ℓ(xj)
ϕ

∣∣∣∣∣

2

≤ 4 |ϕ|2 ∈ L
1(X, µ),

and that the properties (L2)-(L3) imply that

lim
j

∣∣∣∣∣
ℓ( ·) − ℓ(x−1

j ·) + ℓ(xj)

ℓ(xj)
ϕ

∣∣∣∣∣

2

≤ lim
j

∣∣∣∣
2ℓ( ·)

ℓ(xj)
ϕ

∣∣∣∣
2

= 0 µ-almost everywhere.

Therefore, we can apply Lebesgue dominated convergence theorem to get the equality

s -lim
j

(
1

ℓ(xj)
[A,U(xj)]U(xj)

−1 + 1

)
ϕ = 0,

which proves (2.9). So, Theorem 2.3 applies with D = −1, and thus limj

〈
ϕ,U(xj)ψ

〉
= 0 for all

ϕ,ψ ∈ H.
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RESUMEN

El objetivo de este art́ıculo es establecer algunas transformadas integrales de las fun-

ciones generalizadas de Lommel-Wright, que se expresan en términos de la función

hipergeométrica deWright. Algunas integrales que involucran funciones trigonométricas,

de Bessel generalizadas y de Struve también se obtienen como casos especiales de nue-

stros resultados principales.

Keywords and Phrases: Gamma function, generalized Wright hypergeometric function pψq ,

generalized Lommel-Wright functions Jµm
ν,λ (z), Integral Transforms.
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1 Introduction

The k-Pochhammer symbol (λ)ν,k is defined (for ν, λ ∈ C; k ∈ R) by [4]

(λ)ν,k =
Γk(λ+ ν k)

Γk(λ)
(λ ∈ C/0) (1.1)

and the k-gamma function has the relation

Γk(z) = k
z/k−1Γ(z/k), (1.2)

is such that Γk(z) → Γ(z) if k→ 1 .

The Wright hypergeometric function defined by the series [21]

pψq









(α1, A1), ..., (αp, Ap);

(β1, B1), ..., (βq, Bq)

z









=

∞∑

k=0

p∏

j=1

Γ(αj +Ajk)z
k

q∏

j=1

Γ(βj + Bjk)k!

, (1.3)

where the coefficients A1, ..., Ap and B1, ..., Bq are positive real numbers such that

1+

q∑

j=1

Bj −

p∑

j=1

Aj ≥ 0. (1.4)

can be slightly generalized (1.3) as given below.

pψq









(α1, 1), ..., (αp, 1);

(β1, 1), ..., (βq, 1);

z









=

p∏

j=1

Γ(αj)

q∏

j=1

Γ(βj)

pFq









α1, .., αp;

β1, ..., βq;

z









, (1.5)

where pFq is the generalized hypergeometric function defined by [19, 21]

pFq









α1, ..., αp;

β1, ..., βq

z









=

∞∑

k=0

(α1)n, ..., (αp)nz
n

(β1)n, ..., (βq)nn!
= pFq(α1, ..., αp;β1, ..., βq; z), (1.6)

where (λ)n is the well known Pochhammer symbol [21].

The generalization of (λ)n is given as

(λ)n = λ(λ + 1)(λ + 2), ..., (λ + n− 1)) , n > 0 (1.7)

(λ)n =

n∏

m=1

(λ +m− 1), (λ)0 = 1, λ 6= 0
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(λ)n =
Γ(λ + n)

Γ(λ)

Generalized Bessel, Lommel, Struve and Lommel-Wright function have originated from concrete

problems in Mechanics, Physics, Engineering and Astronomy.

The series representation of the generalized Lommel Wright function as [8];

J
µ,m
ν,λ (z) =

∞∑

k=0

(−1)kΓ(k + 1)( z
2
)2k+ν+2λ

Γ(λ+ k+ 1)mΓ(ν+ kµ+ λ+ 1)k!
, (1.8)

(z ∈ N/(−∞, 0] m ∈ N, ν, λ ∈ C, µ > 0).

Also, we have the following relations of generalized Lommel Wright functions with trigonometric

functions and the generalized Bessel function and Struve function:

J1,11/2,0(z) =
√

(
2

πz
) sin(z) (1.9)

J1,1−1/2,0(z) =
√

(
2

πz
) cos(z) (1.10)

J
µ,1
ν,λ(z) = J

µ
ν,λ(z) (1.11)

J1,1ν,1/2(z) = Hν(z) (1.12)

Further, we recall the following results [5].

∫
∞

0

tu−1 exp(−t/2)Wλ,µ(t)dt =
Γ(1/2+ µ+ u)Γ(1/2 − µ+ u)

Γ(1− λ+ u)
, (1.13)

(Re(u± µ) > −1/2),

where the Whittaker function Wλ,µ(t) is given in[5, 11].

Wλ,µ(t) =
Γ(−2µ)

Γ(1/2− µ− λ)
Mλ,µ(t) +

Γ(2µ)

Γ(1/2+ µ− λ)
Mλ,−µ(t)

where Mλ,µ(t) is defined as

Mλ,µ(t) = z
1/2+µ exp(−t/2) 1F1

(

1/2+ µ+ u; 2µ + 1; t

)

Definition 1.1. Euler Transform:

Let ρ, σ ∈ C and Re(ρ),Re(σ) > 0, then the Euler transform of the function f(z) is defined by

B(f(z); ρ, σ) =

∫1

0

zρ−1(1 − z)σ−1f(z)dz (1.14)
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Definition 1.2. Laplace Transform:

The Laplace transform of the function f(t) is defined as

F(δ) = L(f(t); δ) =

∫
∞

0

exp(−tδ)f(t)dt, Re(δ) > 0 (1.15)

Definition 1.3. Fourier Transform:

The following integral gives the Fourier transform

u = Im[u](w) =

∫

R

u(t) exp(iwt)dt, (1.16)

where u = u(t) be a function of the space S(R) Shwartzian space of the function that decay rapidly

at ∞ together with all derivatives.

Definition 1.4. The Fractional Fourier Transform (FFT):

Let u be the function belonging to φ(R), the Lizorkin space of function, where

φ(R) = {φ ∈ S(R)} : Im[φ] ∈ V(R)

and V(R) is the set of functions defined by

V(R) = {v ∈ S(R)} : Vu
0 = 0, n = 0, 1, 2, ...

then FFT of order α, 0 ≤ α ≤ 1 is given by

Uα(w) = Imα(w) =

∫

R

exp(i wα t)u(t)dt (1.17)

particularly, if α = 1 (1.17) reduces to FT and for w > 0 (1.17) reduces to FFT given by Luchko

et al [10].

The aim of this paper is to obtain the Euler, Laplace, Whittaker and Fractional Fourier transforms

of Lommel-Wright function.

Various generalizations, integrals, transforms and fractional calculus of special functions have been

investigated by many researchers (see, for details, [1, 2, 6, 7, 9, 12, 13, 14, 15, 16, 17, 18, 20]).

In this sequel, here, we aim at establishing certain new generalized integral formula involving the

generalized Lommel-Wright function Jµ,m
ν,λ (z) interesting integral formulas which are derived as

special cases.

2 Main Results

This section deals with some integral formulas involving Lommel-Wright function.
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Theorem 2.1. For t ∈ N/(−∞, 0] m ∈ N, ν, λ ∈ C and µ > 0 , the following integral formula

holds true

∫1

0

tα−1(1− t)β−1Jµ,m
ν,λ (x tσ)dt =

(

x

2

)ν+2λ

Γ(β)

× 2ψm+2

[

(1, 1), (α + νσ+ 2λσ, 2σ);

(λ + 1, 1), ..., (λ + 1, 1), (ν + λ+ 1, µ), (α + β+ νσ+ 2λσ, 2σ);
−
x2

4

]

. (2.1)

Proof. On using (1.8) in the integrand of (2.1) and then interchanging the order of integral sign

and summation which is verified by uniform convergence of the involved series under the given

conditions we get

∫1

0

tα−1(1− t)β−1Jµ,m
ν,λ (x tσ)dt

=

(

x

2

)ν+2λ ∞∑

k=0

Γ(k+ 1)(−x2/4)k

Γ(λ+ k + 1)mΓ(ν+ kµ+ λ + 1)k!

×
∫1

0

tα+σ(2k+ν+2λ)−1(1− t)β−1dt. (2.2)

Now using (1.14) in the above equation we get

∫1

0

tα−1(1− t)β−1J
µ,m
ν,λ (x tσ)dt = Γ(β)

(

x

2

)ν+2λ

×
∞∑

k=0

Γ(k + 1)Γ(α + νσ+ 2λσ+ 2kσ)(−x2

4
)k

Γ(λ+ k + 1)mΓ(α+ β + νσ+ 2λσ+ 2kσ)Γ(ν + kµ+ λ+ 1)k!
. (2.3)

Finally, using (1.3) in the above equation, we get our assertion (2.1). This completes the proof of

Theorem 2.1.

Theorem 2.2. For t ∈ N/(−∞, 0] m ∈ N, ν, λ ∈ C and µ > 0 , the following integral formula

holds true

∫
∞

0

tα−1 exp(−tδ)Jµ,m
ν,λ (x tσ)dt =

(

x

2 δ−α

)ν+2λ

(δ)−α

× 2ψm+1

[

(1, 1), (α + νσ+ 2λσ, 2σ);

(λ + 1, 1), ..., (λ + 1, 1), (ν + λ+ 1, µ);
−

x2

4 δ2σ

]

. (2.4)

Proof. On using (1.8) in the integrand of (2.4) and then interchanging the order of integral sign

and summation which is verified by uniform convergence of the involved series under the given
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conditions we get
∫
∞

0

tα−1 exp(−δ t)Jµ,m
ν,λ (x tσ)dt

=

(

x

2

)ν+2λ ∞∑

k=0

Γ(k + 1)(−x2/4)k

Γ(λ+ k + 1)mΓ(ν+ kµ+ λ + 1)k!

×
∫
∞

0

tα+σ(2k+ν+2λ)−1 exp(−δ t)dt. (2.5)

Now using (1.15) in the above equation we get
∫
∞

0

tα−1 exp(−δ t)Jµ,m
ν,λ (x tσ)dt = (δ)−α

(

x

2δσ

)ν+2λ

×
∞∑

k=0

Γ(k + 1)Γ(α + νσ+ 2λσ+ 2kσ)( −x2

4 δ2σ )
k

Γ(λ+ k + 1)mΓ(ν+ kµ+ λ + 1)k!
. (2.6)

Finally, using (1.3) in the above equation, we get our assertion (2.6). This completes the proof of

Theorem 2.2.

Theorem 2.3. For t ∈ N/(−∞, 0] m ∈ N, ν, λ ∈ C and µ > 0 , the following integral formula

holds true
∫
∞

0

tη−1 exp(−p t)/2 Wλ,µ(p t)J
µ,m
ν,λ (w tδ)dt =

(

w

pδ

)ν+2λ

× 3ψm+2

[

(1, 1), (1/2 + µ+ η+ δ ν+ 2δλ, 2δ), (1/2− µ+ η+ δ ν+ 2δλ, 2δ);

(λ+ 1, 1), ..., (λ + 1, 1), (ν + λ + 1, µ), (1 − λ + η+ νδ+ 2δλ, 2δ);
−

w2

4 p2δ

]

.

(2.7)

Proof. On using (1.8) in the integrand of (2.7) and then interchanging the order of integral sign

and summation which is verified by uniform convergence of the involved series under the given

conditions we get
∫
∞

0

(u/p)η−1 exp(−u/2)Wλ,µ(u)J
µ,m
ν,λ (w (u/p)δ)du

=

(

w

pδ

)ν+2λ ∞∑

k=0

Γ(k + 1)(−w2/4 p2δ)k

Γ(λ+ k + 1)mΓ(ν+ kµ+ λ + 1)k!

×
∫
∞

0

uη+δ(2k+ν+2λ)−1 exp(−u/2)Wλ,µ(u)du. (2.8)

Now using (1.13) in the above equation we get

∫
∞

0

tη−1 exp(−p t)/2 Wλ,µ(p t)J
µ,m
ν,λ (w tδ)dt =

(

w

pδ

)ν+2λ

×
∞∑

k=0

Γ(k + 1)Γ(1/2 + µ+ η+ 2kδ + δν+ 2δλ)Γ(1/2− µ+ η+ 2kδ + δν+ 2δλ)( −w2

4 p2δ )
k

Γ(λ+ k+ 1)mΓ(ν+ kµ+ λ+ 1)Γ(1 − λ + η+ 2kδ + δν+ 2δλ)k!
. (2.9)
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Finally, using (1.3) in the above equation, we get our assertion (2.9). This completes the proof of

Theorem 2.3.

3 Special Cases

In this section, we get some integral formulas involving trigonometric function and generalized

Lommel-Wright function as follows:

Corollary 3.1. If we take m = 1, µ = 1, λ = 0 and ν = 1/2 in (2.1) and then by using (1.9), we

derive the following integral formula:

∫1

0

tα−σ/2−1(1− t)(β−1) sin(x tσ)dt

=
√
π

(

x

2

)

Γ(β) 1ψ2









(α + σ/2, 2σ);

(3/2, 1), (α + β+ σ/2, 2σ);

−
x2

4









(3.1)

Corollary 3.2. If we take m = 1, µ = 1, λ = 0 and ν = 1/2 in (2.4) and then by using (1.9), we

derive the following integral formula:
∫
∞

0

tα−σ/2−1 exp(−δ t) sin(x tσ)dt

= δ−α

√

π

δσ

(

x

2

)

Γ(β) 1ψ1









(α+ σ/2, 2σ);

(3/2, 1);

−
x2

4 δ2σ









(3.2)

Corollary 3.3. Further if we take m = 1, µ = 1, λ = 0 and ν = 1/2 in (2.7) and then by using

(1.9), we derive the following integral formula:
∫
∞

0

tη−δ/2−1 exp(−pt/2)Wλ,µ(p t) sin(w tδ)dt

= w

√

π

2 pδ
2ψ2









(η+ δ/2+ 3/2, 2δ)(η + δ/2− 1/2, 2δ), ;

(3/2, 1), (η + δ/2+ 1, 2δ);

−
w2

4 p2δ









(3.3)

Corollary 3.4. If we take m = 1, µ = 1, λ = 0 and ν = −1/2 in (2.1) and then by using (1.10),

we derive the following integral formula:

∫1

0

tα−σ/2−1(1− t)(β−1) cos(x tσ)dt

=
√
πΓ(β) 1ψ2









(α − σ/2, 2σ);

(1/2, 1), (α + β− σ/2, 2σ);

−
x2

4









(3.4)
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Corollary 3.5. If we take m = 1, µ = 1, λ = 0 and ν = −1/2 in (2.4) and then by using (1.10),

we derive the following integral formula:
∫
∞

0

tα−σ/2−1 exp(−δ t) cos(x tσ)dt

= δ(σ−α)
√
π 1ψ1









(α − σ/2, 2σ);

(1/2, 1);

−
x2

4 δ2σ









(3.5)

Corollary 3.6. Further if we take m = 1, µ = 1, λ = 0 and ν = −1/2 in (2.7) and then by using

(1.10), we derive the following integral formula:
∫
∞

0

tη−δ/2−1 exp(−pt/2)Wλ,µ(p t) cos(w tδ)dt

= w

√

π

2
2ψ2









(η− δ/2+ 3/2, 2δ)(η − δ/2− 1/2, 2δ), ;

(1/2, 1), (η − δ/2+ 1, 2δ);

−
w2

4 p2δ









(3.6)

Corollary 3.7. If we take m = 1 in (2.1) and then by using (1.11), we derive the following integral

formula:

∫1

0

tα−1(1− t)(β−1)
J
µ
ν,λ(x t

σ)dt =

(

x

2

)ν+2λ

Γ(β)

×2ψ3









(1, 1), (α + νσ+ 2λσ, 2σ);

(λ + 1, 1), (ν + λ + 1, µ), (α + β + νσ+ 2λσ, 2σ);

−
x2

4









(3.7)

Corollary 3.8. If we take m = 1 in (2.4) and then by using (1.11), we derive the following integral

formula:
∫
∞

0

tα−1 exp(−δ t)Jµν,λ(x t
σ)dt

=

(

x

2

)ν+2λ

δ−α
2ψ2









(1, 1), (α + νσ+ 2λσ, 2σ);

(λ + 1, 1), (ν + λ+ 1, µ);

−
x2

4 δ2σ









(3.8)

Corollary 3.9. Further if we take m = 1 in (2.7) and then by using (1.11), we derive the following

integral formula:

∫
∞

0

tη−1 exp(−pt/2)Wλ,µ(p t)J
µ
ν,λ(w tδ)dt =

(

w

pδ

)ν+2λ

×3ψ3









(1, 1), (1/2 + µ+ η+ νδ+ 2λδ, 2δ), (1/2− µ+ η+ νδ+ 2λδ, 2δ);

(λ+ 1, 1), (ν + λ + 1, µ), (1 − λ+ η+ δν+ 2δλ, 2δ);

−
w2

4 p2δ









(3.9)
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Corollary 3.10. If we take µ = 1,m = 1 and λ = 1/2 in (2.1) and then by using (1.12), we derive

the following integral formula:

∫1

0

tα−1(1− t)(β−1)
Hν(x t

σ)dt =

(

x

2

)ν+1

Γ(β)

×2ψ3









(1, 1), (α + νσ+ σ, 2σ);

(3/2, 1), (ν + 3/2, 1), (α + β+ νσ+ σ, 2σ);

−
x2

4









(3.10)

Corollary 3.11. If we take µ = 1,m = 1 and λ = 1/2 in (2.4) and then by using (1.12), we derive

the following integral formula:

∫
∞

0

tα−1 exp(−δ t)Hν(x t
σ)dt =

(

x

2 δσ

)ν+1

δ−α

×2ψ2









(1, 1), (α + νσ+ σ, 2σ);

(3/2, 1), (ν + 3/2, 1);

−
x2

4 δ2σ









(3.11)

Corollary 3.12. Further if we take µ = 1,m = 1 and λ = 1/2 in (2.7) and then by using (1.12),

we derive the following integral formula:

∫
∞

0

tη−1 exp(−pt/2)Wλ,µ(p t)Hν(w tδ)dt =

(

w

pδ

)ν+1

×3ψ3









(1, 1), (η + νδ+ δ+ 3/2, 2δ), (η + νδ+ δ− 1/2, 2δ);

(3/2, 1), (ν + 3/2, 1), (η + δν+ δ+ 1/2, 2δ);

−
w2

4 p2δ









(3.12)
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ABSTRACT

In this paper, we prove the existence of mild solution of the fractional integro-differential

equations with state-dependent delay with not instantaneous impulses. The existence

results are obtained under the conditions in respect of Kuratowski’s measure of non-

compactness. An example is also given to illustrate the results.

RESUMEN

En este art́ıculo, demostramos la existencia de soluciones mild de ecuaciones integro-

diferenciales fraccionarias con retardo dependiente del estado e impulsos no instantáneos.

Los resultados de existencia se obtienen bajo condiciones respecto de la medida de Ku-

ratowski de no compacidad. También se entrega un ejemplo para ilustrar los resultados.
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1 Introduction

Fractional differential equations play the crucial and significant role in the field of science and

engineering. Most importantly non-integer order differential equations have ability to describe the

real behavior and memory effects of the system and processes. For more details about fractional

differential equations and its applications refer the monographs of Abbas et al. [1, 2, 3], Baleanu

et al. [12], Diethelm [18], Hilfer [24], Kilbas et al. [26], Miller and Ross [32], Samko et al. [37],

Tarasov [38], and Zhou [39] and the references therein.

Most of the research papers deal with the existence of solutions for differential equations with

instantaneous impulsive conditions see [6, 7, 10, 11, 14, 28, 31]. But many times it has seen that

certain dynamics of evolution processes cannot describe by instantaneous impulses, For instance:

Pharmacotherapy, high or low levels of glucose, this situation can be interpreted as an impulsive

action which starts abruptly at certain point of time and continue with a finite time interval. Such

type of systems are known as non-instantaneous impulsive systems which are more suitable to

study the dynamics of evolution processes [4].

This theory of a new class of impulsive differential equation was initiated by Hernández et al.

[23]. Afterwards, Pierri et al. [35] continued the work in this field and extend the theory of [23] in

a PCα normed Banach space. The existence of solutions for non-instantaneous impulsive fractional

differential equations have also been discussed in [8, 19, 27, 29, 34].

Recently, Benchohra et al. [15] investigated the existence and uniqueness of solutions on a

compact interval for non-linear fractional integro-differential equations with state-dependent delay

and noninstantaneous impulses. Anguraj and Kanjanadevi [9] studied the existence and uniqueness

of fractional neutral differential equations with state-dependent delay subject to non-instantaneous

impulsive conditions.

Motivated by the papers cited above, in this paper, we consider the existence of mild solu-

tions for fractional integro-differential equations with state-dependent delay and non instantaneous

impulses described by the form

C
D

q
t x(t) + Ax(t) =

∫ t

0

a(t, s)f(s, xρ(s,xs), x(s))ds, a.e. t ∈ (si, ti+1] ⊂ J, i = 0, . . . ,N,

x(t) = hi(t, xρ(t,xt), x(t)), t ∈ (ti, si], i = 1, . . . , N,

x0 = φ ∈ B,

(1.1)

where CD
q
t is the Caputo fractional derivative of order 0 < q < 1, A : D(A) ⊂ X→ X is the

infinitesimal generator of an analytic semigroup {S(t)}t≥0 of uniformly bounded linear operators

on X, f : J × B × X −→ X, J = [0, T ], T > 0, and ρ : J × B → (−∞, T ] are appropriate functions,

a : D → R (D = {(t, s) ∈ J × J : t ≥ s}). Here 0 = t0 = s0 < t1 ≤ s1 ≤ t2 < . . . < tN−1 ≤ sN ≤

tN ≤ tN+1 = T are pre-fixed numbers, and hi ∈ C((ti, si]× B × X,X), for all i = 1, 2, . . . , N. For
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any continuous function x defined on (−∞, T ] and any t ∈ J, we denote by xt the element of B

defined by

xt(θ) = x(t+ θ), θ ∈ (−∞, 0].

Here xt represents the history of the state up to the present time t and φ ∈ B to be specified later.

2 Preliminaries

Let (X, ‖ · ‖) be a real Banach space.

C = C(J, X) be the space of all X-valued continuous functions on J.

L(X) be the Banach space of all linear and bounded operators on X.

L1(J, X) the space of X−valued Bochner integrable functions on J with the norm

‖y‖L1 =

∫T

0

‖y(t)‖dt.

L∞(J,R) is the Banach space of measurable functions which are essentially bounded, normed by

‖y‖L∞ = inf{d > 0 : |y(t)| ≤ d, a.e. t ∈ J}.

We need some basic definitions of the fractional calculus theory which are used in this paper.

Definition 2.1. Let α > 0 and f : R+ → X be in L1(R+, X). Then the Riemann–Liouville integral

is given by:

Iαt f(t) =
1

Γ(α)

∫t

0

f(s)

(t− s)1−α
ds,

where Γ(·) is the Euler gamma function.

For more details on the Riemann–Liouville fractional derivative, we refer the reader to [17].

Definition 2.2. [36] The Caputo derivative of order α for a function f : [0,+∞) → X can be

written as

Dα
t f(t) =

1

Γ(n − α)

∫t

0

f(n)(s)

(t− s)α+1−n
ds = In−αf(n)(t), t > 0, n− 1 ≤ α < n.

If 0 ≤ α < 1, then

Dα
t f(t) =

1

Γ(1− α)

∫t

0

f(1)(s)

(t− s)α
ds.

Obviously, The Caputo derivative of a constant is equal to zero.

Definition 2.3. A function f : J×B×X −→ X is said to be an Carathéodory function if it satisfies

:

(i) for each t ∈ J the function f(t, ·, ·) : B × X −→ X is continuous;
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(ii) for each (v,w) ∈ B × X the function f(·, v,w) : J→ X is measurable .

Next we give the concept of a measure of noncompactness [13].

Definition 2.4. Let B be a bounded subset of a Banach space Y. The Kuratowski measure of

noncompactness of B is defined as

α(B) = inf{d > 0 : B has a finite cover by sets of diameter ≤ d}.

We note that this measure of noncompactness satisfies the properties ([13]).

Lemma 2.5.

1. If A ⊆ B then α(A) ≤ α(B),

2. α(A) = α(A), where A denotes the closure of A,

3. α(A) = 0⇔ A is compact (A is relatively compact),

4. α(λA) = |λ|A, with λ ∈ R,

5. α(A ∪ B) = max{α(A), α(B)},

6. α(A+ B) ≤ α(A) + α(B), where

A + B = {x+ y : x ∈ A,y ∈ B},

7. α(A+ a) = α(A) for any a ∈ X,

8. α(convA) = α(A), where convA is the closed convex hull of A.

For H ⊂ C(J, X), we define

∫ t

0

H(s)ds =

{∫t

0

u(s)ds : u ∈ H

}
for t ∈ J, (2.1)

where H(s) = {u(s) ∈ X : u ∈ H}.

Lemma 2.6. [13] If H ⊂ C(J, X) is a bounded, equicontinuous set, then

αC(H) = sup
t∈J

α(H(t)). (2.2)

Lemma 2.7. [21] If {un}
∞

n=1 ⊂ L1(J, X) and there exists m ∈ L1(J,R+) such that ‖un(t)‖ ≤m(t),

a.e. t ∈ J, then α({un(t)}
∞

n=1) is integrable and

α

({∫t

0

un(s)ds

}∞

n=1

)

≤ 2

∫ t

0

α({un(s)}
∞

n=1)ds. (2.3)
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In this paper, we will employ an axiomatic definition for the phase space B which is similar to

those introduced by Hale and Kato [20]. Specifically, B will be a linear space of functions mapping

(−∞, 0] into X endowed with a seminorm ‖ · ‖B, and satisfies the following axioms:

(A1) If x : (−∞, T ] −→ X is continuous on J and x0 ∈ B, then xt ∈ B and xt is continuous in

t ∈ J and

‖x(t)‖ ≤ C‖xt‖B, (2.4)

where C ≥ 0 is a constant.

(A2) There exist a continuous function C1(t) > 0 and a locally bounded function C2(t) ≥ 0 in

t ≥ 0 such that

‖xt‖B ≤ C1(t) sup
s∈[0,t]

‖x(s)‖+ C2(t)‖x0‖B, (2.5)

for t ∈ [0, T ] and x as in (A1).

(A3) The space B is complete.

Remark 2.8. Condition (2.4) in (A1) is equivalent to ‖φ(0)‖ ≤ C‖φ‖B, for all φ ∈ B.

Example 2.9. The phase space Cr × L
p(g, X).

Let r ≥ 0, 1 ≤ p <∞, and let g : (−∞,−r) → R be a nonnegative measurable function which

satisfies the conditions (g − 5), (g − 6) in the terminology of [25]. Briefly, this means that g is

locally integrable and there exists a nonnegative, locally bounded function Λ on (−∞, 0], such that

g(ξ + θ) ≤ Λ(ξ)g(θ), for all ξ ≤ 0 and θ ∈ (−∞,−r)\Nξ, where Nξ ⊆ (−∞,−r) is a set with

Lebesgue measure zero.

The space Cr × Lp(g, X) consists of all classes of functions ϕ : (−∞, 0] → X, such that ϕ

is continuous on [−r, 0], Lebesgue-measurable, and g‖ϕ‖p on (−∞,−r). The seminorm in ‖.‖B is

defined by

‖ϕ‖B = sup
θ∈[−r,0]

‖ϕ(θ)‖ +

(∫−r

−∞

g(θ)‖ϕ(θ)‖pdθ

)

1
p

.

The space B = Cr × L
p(g, X) satisfies axioms (A1), (A2), (A3). Moreover, for r = 0 and p = 2,

this space coincides with C0 × L2(g, X), H = 1,M(t) = Λ(−t)
1
2 , K(t) = 1 +

(∫0
−r
g(τ)dτ

)
1
2

, for

t ≥ 0 (see [25], Theorem 1.3.8 for details).

For our purpose we will only need the following fixed point theorems.

Theorem 2.10. [5, 33] Let U be a bounded, closed and convex subset of a Banach space, and let

N be a continuous mapping of U into itself. If the implication

V = convN(V) or V = N(V) ∪ {0} =⇒ α(V) = 0

holds for every subset V of U, then N has a fixed point.
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A continuous map N : D ⊆ E → E is said to be a α-contraction if there exists a constant

ν ∈ [0, 1) such that α(N(C)) ≤ να(C) for any bounded closed subset C ⊆ D.

Theorem 2.11. (Darbo–Sadovskii)[13] Let E be a Banach space. If D ⊆ E is bounded closed and

convex, the continuous map N : D→ D is a α-contraction, then the map N has at least one fixed

point in D.

Consider the space

PC(J, X) =
{
x : J→ X, x ∈ C

(

J ∩
(

∪N
k=0 (tk, sk]

)

, X
)

,

and x(t+k ), x(s
−
k ) exist with, x(s

−
k ) = x(sk), k = 1, . . . , N

}
.

Obviously, PC(J, X) is a Banach space with the norm

‖x‖PC = sup
t∈J

‖x(t)‖.

3 Existence Results

In this section, we prove the existence of mild solution of (1.1).

Definition 3.1. A function x : (−∞, T ] → X is said to be a mild solution of the equation (1.1) if

x0 = φ on (−∞, T ], x|[0,T ] ∈ PC([0, T ], X) and x satisfies

x(t) =



































































Q(t)φ(0) +

∫t

0

∫s

0

R(t− s)a(s, τ)f(τ, xρ(τ,xτ), x(τ))dτds, t ∈ [0, t1],

hi(t, xρ(t,xt), x(t)), t ∈ (ti, si], i = 1, 2, . . . ,N,

Q(t− si)hi(si, xρ(si,xsi
), x(si))

+

∫ t

0

∫ s

0

R(t− s)a(s, τ)f(τ, xρ(τ,xτ), x(τ))dτds, t ∈ (si, ti+1],

(3.1)

where

Q(t) =

∫
∞

0

ξq(σ)S(t
qσ)dσ, R(t) = q

∫
∞

0

σtq−1ξq(σ)S(t
qσ)dσ

and ξq is a probability density function defined on (0,∞) such that

ξq(σ) =
1

q
σ−1−( 1

q
)̟q(σ

− 1
q ) ≥ 0,
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where

̟q(σ) =
1

π

∞∑

k=1

(−1)k−1σ−qk−1 Γ(kq+ 1)

k!
sin(kπq), σ ∈ (0,∞).

Remark 3.2. Note that {S(t)}t≥0 is a uniformly bounded i.e

there exists a constant M > 0 such that ‖S(t)‖L(X) ≤M for all t ≥ 0.

Remark 3.3. According to [30], direct calculation gives that

‖R(t)‖ ≤ Cq,Mt
q−1, t > 0, (3.2)

where Cq,M =
qM

Γ(1+ q)
.

Set

R(ρ−) = {ρ(s,ϕ) : (s,ϕ) ∈ J× B, ρ(s,ϕ) ≤ 0}.

We always assume that ρ : J × B → (−∞, T ] is continuous. Additionally, we introduce following

hypothesis:

(Hϕ) The function t → ϕt is continuous from R(ρ−) into B and there exists a continuous and

bounded function Lφ : R(ρ−) → (0,∞) such that

‖φt‖B ≤ Lφ(t)‖φ‖B for every t ∈ R(ρ−).

Remark 3.4. Condition (Hϕ), is frequently verified by the continuous and bounded functions. For

more details see [25].

Remark 3.5. In the rest of this section, C∗
1 and C∗

2 are the constants

C∗
1 = sup

s∈J

C1(s) and C
∗
2 = sup

s∈J

C2(s).

Lemma 3.6. [22] If x : R → X is a function such that x0 = φ, then

‖xs‖B ≤ (C∗
2 + L

φ)‖φ‖B + C∗
1 sup{|x(θ)|; θ ∈ [0,max{0, s}]}, s ∈ R(ρ−) ∪ J,

where Lφ = sup
t∈R(ρ−)

Lφ(t).

Let us introduce the following hypotheses:

(H1) f : J× B × X −→ X satisfies the Carathéodory conditions.

(H2) There exist functions µ, µ∗ ∈ L1(J,R+) and continuous nondecreasing functions ψ,ψ∗ : R+ →

(0,+∞) such that

‖f(t, x, y)‖ ≤ µ(t)ψ (‖x‖B + ‖y‖) , (t, x, y) ∈ J× B × X,

‖hi(t, x, y)‖ ≤ µ∗(t)ψ∗ (‖x‖B + ‖y‖) , (t, x, y) ∈ J× B × X,
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(H3) For any bounded sets D1 ⊂ B, D2 ⊂ X, and 0 ≤ s ≤ t ≤ T , there exists an integrable positive

function η such that

α (R(t− s)f(τ,D1, D2)) ≤ ηt(s, τ)

(

α(D2) + sup
−∞<θ≤0

α(D1(θ))

)

,

where ηt(s, τ) = η(t, s, τ) and sup
t∈J

∫t

0

∫s

0

ηt(s, τ)dτds = η
∗ <∞.

(H4) There exists a constant L > 0 such that, for each bounded sets D1 ⊂ B, D2 ⊂ X,

α (hi(τ,D1, D2)) ≤ L

(

α(D2) + sup
−∞<θ≤0

α(D1(θ))

)

.

(H5) For each t ∈ J, a(t, s) is measurable on [0, t] and a(t) = ess sup{|a(t, s)|, 0 ≤ s ≤ t} is bounded

on J. The map t→ at is continuous from J to L∞(J,R), here, at(s) = a(t, s).

Set a = sup
t∈J

a(t).

Our first result is based on the Mönch fixed point theorem.

Theorem 3.7. Suppose that the assumptions (Hϕ), (H1) − (H5) hold, and if

2ML+ 16 a η∗ < 1, (3.3)

then the problem (1.1) has at least one mild solution.

Proof. Let Y = {u ∈ PC(X) : u(0) = φ(0) = 0} endowed with the uniform convergence
topology and define the operator P : Y → Y by

P(x)(t) =



































































Q(t)φ(0) +

∫ t

0

∫ s

0

R(t− s)a(s, τ)f(τ, xρ(τ,xτ), x(τ))dτds, t ∈ [0, t1],

hi(t, xρ(t,xt), x(t)), t ∈ (ti, si], i = 1, 2, . . . , N,

Q(t− si)hi(si, xρ(si,xsi ), x(si))

+

∫ t

si

∫ s

0

R(t− s)a(s, τ)f(τ, xρ(τ,xτ), x(τ))dτds, t ∈ (si, ti+1],

where x : (−∞, T ] → X is such that x0 = φ and x = x on J. Let φ : (−∞, T ] −→ X be the

extension of φ to (−∞, T ] such that φ(θ) = φ(0) = 0 on J.

Choose

r ≥M‖µ∗‖L1ψ∗
(

(C∗
2 + Lφ)‖φ‖B + (C∗

1 + 1)r
)

+aCq,M‖µ‖L1

Tq

q
ψ
(

(C∗
2 + L

φ)‖φ‖B + (C∗
1 + 1)r

)

,

and define the set

Br = {x ∈ Y : ‖x‖PC ≤ r} ,
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then Br is a bounded, closed-convex subset in Y.

Step 1: P is continuous.

Let {xk}k∈N be a sequence such that xk → x in Br as k→ ∞.

Case 1. For each t ∈ [0, t1], we have

‖P(xk)(t) − P(x)(t)‖ ≤

∫t

0

∫s

0

‖R(t− s)‖‖a(s, τ)‖‖f(τ, xk
ρ(τ,xk

τ)
, xk(τ))

− f(τ, xρ(τ,xτ), x(τ))‖dτds

≤ aCq,M

∫t

0

∫s

0

(t− s)q−1‖f(τ, xk
ρ(τ,xk

τ)
, xk(τ))

− f(τ, xρ(τ,xτ), x(τ))‖dτds.

Case 2. For each t ∈ [ti, si), i = 1, 2, . . . , N, we have

‖P(xk)(t) − P(x)(t)‖ = ‖hi(t, x
k
ρ(t,xk

t )
, xk(t)) − hi(t, xρ(t,xt), x(t))‖

→ 0 k→ ∞.

Case 3. For each t ∈ (si, ti+1], i = 1, 2, . . . , N, we obtain

‖P(xk)(t) − P(x)(t)‖ ≤ ‖Q(t− si)‖‖hi(si, x
k
ρ(si,x

k
si

)
, xk(si)) − hi(si, xρ(si,xsi

), x(si))‖

+

∫t

si

∫s

0

‖R(t− s)‖‖a(s, τ)‖‖f(τ, xk
ρ(τ,xk

τ)
, xk(τ))

− f(τ, xρ(τ,xτ), x(τ))‖dτds

≤ M‖hi(si, x
k
ρ(si,x

k
si

)
, xk(si)) − hi(si, xρ(si,xsi

), x(si))‖

+ aCq,M

∫t

si

∫s

0

(t− s)q−1‖f(τ, xk
ρ(τ,xk

τ)
, xk(τ))

− f(τ, xρ(τ,xτ), x(τ))‖dτds.

Since the function hi is continuous and f is of Carathéodory type, we have by the Lebesgue

dominated convergence theorem that

‖P(xk)(t) − P(x)(t)‖ → 0 as k→ ∞,

which shows the operator P is continuous.

Step 2: P maps Br into itself.
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Case 1. For all t ∈ [0, t1], we get

‖P(x)(t)‖ ≤ ‖Q(t)φ(0)‖ +

∫t

0

∫s

0

‖R(t− s)a(s, τ)f(τ, xρ(τ,xτ), x(τ))‖dτds

≤ MC‖φ‖B + aCq,M

∫t

0

∫s

0

(t − s)q−1µ(τ)ψ(‖xρ(τ,xτ)‖B + ‖x‖)dτds

≤ MC‖φ‖B + aCq,M

∫t

0

∫s

0

(t − s)q−1µ(τ)

× ψ
(

(C∗
2 + L

φ)‖φ‖B + C∗
1r+ r

)

dτds

≤ MC‖φ‖B + aCq,M‖µ‖L1

Tq

q
ψ
(

(C∗
2 + L

φ)‖φ‖B + (C∗
1 + 1)r

)

≤ r.

Case 2. For all t ∈ [ti, si), i = 1, 2, . . . , N, we have

‖P(x)(t)‖ ≤ ‖hi(t, xρ(t,xt), x(t))‖

≤ µ∗(t)ψ∗
(

‖xρ(t,xt)‖B + ‖x‖
)

≤ ‖µ∗‖L1ψ∗
(

(C∗
2 + L

φ)‖φ‖B + (C∗
1 + 1)r

)

≤ r.

Case 3. For all t ∈ (si, ti+1], i = 1, 2, . . . , N, we obtain

‖P(x)(t)‖ ≤ ‖Q(t− si)hi(si, xρ(si,xsi
), x(si))‖

+

∫t

si

∫s

0

‖R(t− s)a(s, τ)f(τ, xρ(τ,xτ), x(τ))‖dτds,

≤ M‖µ∗‖L1ψ∗
(

(C∗
2 + Lφ)‖φ‖B + (C∗

1 + 1)r
)

+ aCq,M‖µ‖L1

Tq

q
ψ
(

(C∗
2 + Lφ)‖φ‖B + (C∗

1 + 1)r
)

≤ r.

Step 3: P(Br) is bounded and equicontinuous.

Case 1. For each t ∈ [0, t1], 0 ≤ τ2 ≤ τ1 ≤ t1, and x ∈ Br. Then we have

‖P(x)(τ1) − P(x)(τ2)‖ ≤ I1 + I2 + I3,

where

I1 = ‖Q(τ1) −Q(τ2)‖‖φ(0)‖

I2 =

∥

∥

∥

∥

∫τ2

0

∫s

0

[R(τ1 − s) − R(τ2 − s)]a(s, τ)f(τ, xρ(τ,xτ), x(τ))dτds

∥

∥

∥

∥

I3 =

∥

∥

∥

∥

∫τ1

τ2

∫s

0

R(τ1 − s)a(s, τ)f(τ, xρ(τ,xτ), x(τ))dτds

∥

∥

∥

∥

.
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I1 tends to zero as τ2 → τ1, since S(t) is uniformly continuous operator.

For I2, using (3.2) and (H2), we have

I2 ≤ aψ
(

(C∗
2 + L

φ)‖φ‖B + (C∗
1 + 1)r

)

‖µ‖L1

∫τ2

0

[R(τ1 − s) − R(τ2 − s)]ds

≤ aψ
(

(C∗
2 + L

φ)‖φ‖B + (C∗
1 + 1)r

)

‖µ‖L1

×

∫τ2

0

[

q

∫
∞

0

σ(τ1 − s)
q−1ξq(σ)S((τ1 − s)qσ)dσ

−q

∫
∞

0

σ(τ2 − s)
q−1ξq(σ)S((τ2 − s)qσ)dσ

]

ds

≤ aψ
(

(C∗
2 + L

φ)‖φ‖B + (C∗
1 + 1)r

)

‖µ‖L1

×

[

q

∫τ2

0

∫
∞

0

σ‖[(τ1 − s)
q−1 − (τ2 − s)

q−1]ξq(σ)S((τ1 − s)qσ)

+q

∫τ2

0

∫
∞

0

σ(τ2 − s)q−1ξq(σ)‖S((τ1 − s)qσ) − S((τ2 − s)
qσ)‖

]

≤ aψ
(

(C∗
2 + L

φ)‖φ‖B + (C∗
1 + 1)r

)

‖µ‖L1

× [Cq,M

∫τ2

0

∣

∣(τ1 − s)
q−1 − (τ2 − s)

q−1
∣

∣ds

+ q

∫τ2

0

∫
∞

0

σ(τ2 − s)
q−1ξq(σ)‖S((τ1 − s)qσ) − S((τ2 − s)

qσ)‖dσds].

Clearly, the first term on the right-hand side of the above inequality tends to zero as τ2 → τ1.

From the continuity of S(t) in the uniform operator topology for t > 0, The second term on the

right-hand side of the above inequality tends to zero as τ2 → τ1.

In view of (H2), we have

I3 ≤ a Cq,M

∫τ1

τ2

∫s

0

(τ1 − s)
q−1‖f(τ, xρ(τ,xτ), x(τ))‖dτds

≤ a Cq,Mψ
(

(C∗
2 + Lφ)‖φ‖B + (C∗

1 + 1)r
)

‖µ‖L1

∫τ1

τ2

(τ1 − s)
q−1ds.

As τ2 → τ1, I3 tends to zero.

Case 2. For each t ∈ [ti, si), i = 1, 2, . . . , N, ti ≤ τ2 ≤ τ1 ≤ si, and x ∈ Br. Then we have

‖P(x)(τ1) − P(x)(τ2)‖ = ‖hi(τ1, xρ(τ1,xτ1
), x(τ1)) − hi(τ2, xρ(τ2,xτ2

), x(τ2))‖

→ 0 as τ2 → τ1.

Case 3. For each t ∈ (si, ti+1], i = 1, 2, . . . , N, si ≤ τ2 ≤ τ1 ≤ ti+1, and x ∈ Br. Then we have

‖P(x)(τ1) − P(x)(τ2)‖ ≤ ‖Q(τ1 − si) −Q(τ2 − si)‖‖hi(si, xρ(si,xsi
), x(si))‖+ I1 + I2 + I3.

Since S(t) is uniformly continuous operator, so

lim
τ2→τ1

‖Q(τ1 − si) −Q(τ2 − si)‖ = 0, i = 1, . . . , N.
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Consequently

lim
τ2→τ1

‖P(x)(τ1) − P(x)(τ2)‖ = 0.

Thus, P(Br) is equicontinuous.

Now let V be a subset of Br such that V ⊂ conv(P(V) ∪ {0}). Moreover, for any ε > 0 and

bounded set D, we can take a sequence {vn}
∞

n=1 ⊂ D such that α(D) ≤ 2α({vn}) + ε ([16], P. 125).

Thus, for {vn}
∞

n=1 ⊂ V , and using lemmas 2.5-2.7 and (H3), we have, for t ∈ [0, t1],

α (PV) ≤ 2α ({Pvn}) + ε

= 2 sup
t∈J

α ({Pvn(t)}) + ε

= 2 sup
t∈J

α

({∫t

0

R(t− s)

∫s

0

a(s, τ)f(τ, yτ + vnτ, y(τ) + vn(τ))dτds

})
+ ε

≤ 4 sup
t∈J

∫t

0

α

({
R(t− s)

∫s

0

a(s, τ)f(τ, yτ + vnτ, y(τ) + vn(τ))dτds

})
+ ε

≤ 8 sup
t∈J

∫t

0

∫s

0

α({R(t− s)a(s, τ)f(τ, yτ + vnτ, y(τ) + vn(τ))dτds}) + ε

≤ 8 a sup
t∈J

∫t

0

∫s

0

α({R(t− s)f(τ, yτ + vnτ, y(τ) + vn(τ))dτds}) + ε

≤ 8 a sup
t∈J

∫t

0

∫s

0

ηt(s, τ)

[

α(vn(τ)) + sup
−∞<θ≤0

α(vn(θ + τ))

]

dτds+ ε

≤ 8 a sup
t∈J

∫t

0

∫s

0

ηt(s, τ)

[

α(vn) + sup
0<µ≤τ

α(vn(µ))

]

dτds+ ε

≤ 16 a α(vn) sup
t∈J

∫t

0

∫s

0

ηt(s, τ)dτds+ ε

≤ 16 a η∗α(V) + ε.

For any t ∈ [ti, si), i = 1, 2, . . . , N, we get

α(PV) = α
(

hi(t, xρ(t,xt), x(t))
)

≤ L

(

α(vn(t)) + sup
−∞<θ≤0

α(vn(θ + t))

)

≤ L

(

α(vn) + sup
0<µ≤τ

α(vn(µ))

)

≤ 2Lα(vn)

≤ 2Lα(V).
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In the same way, for any t ∈ (si, ti+1], i = 1, 2, . . . , N, we obtain

α (PV) ≤ 2α ({Pvn}) + ε

= 2 sup
t∈J

α ({Pvn(t)}) + ε

= 2 sup
t∈J

α
(

Q(t− si)hi(si, xρ(si,xsi
), x(si))

)

+ 2 sup
t∈J

α

({∫t

si

R(t− s)

∫s

0

a(s, τ)f(τ, yτ + vnτ, y(τ) + vn(τ))dτds

})
+ ε

≤ 2MLα(vn)

+ 4 sup
t∈J

∫t

si

α

({
R(t− s)

∫s

0

a(s, τ)f(τ, yτ + vnτ, y(τ) + vn(τ))dτds

})
+ ε

≤ 2MLα(vn)

+ 8 sup
t∈J

∫t

si

∫ s

0

α({R(t− s)a(s, τ)f(τ, yτ + vnτ, y(τ) + vn(τ))dτds}) + ε

≤ 2MLα(vn) + 8 a sup
t∈J

∫t

si

∫s

0

α({R(t− s)f(τ, yτ + vnτ, y(τ) + vn(τ))dτds}) + ε

≤ 2MLα(vn) + 8 a sup
t∈J

∫t

si

∫s

0

ηt(s, τ)

[

α(vn(τ)) + sup
−∞<θ≤0

α(vn(θ+ τ))

]

dτds+ ε

≤ 2MLα(vn) + 8 a sup
t∈J

∫t

si

∫s

0

ηt(s, τ)

[

α(vn) + sup
0<µ≤τ

α(vn(µ))

]

dτds+ ε

≤ 2MLα(vn) + 16 a α(vn) sup
t∈J

∫t

0

∫s

0

ηt(s, τ)dτds+ ε

≤ 2MLα(V) + 16 a η∗α(V) + ε

≤ (2ML+ 16 a η∗)α(V) + ε.

Therefore, in view of Lemma 2.5, we have

α(V) ≤ α (PV) ≤ (2ML+ 16 a η∗)α(V) + ε,

since ε is arbitrary we obtain that

α(V) ≤ (2ML+ 16 a η∗)α(V).

This means that

α(V) (1− (2ML+ 16 a η∗)) ≤ 0.

By (3.3) it follows that α(V) = 0. In view of the Ascoli-Arzelà theorem, V is relatively compact in

Br. Applying now Theorem 2.10, we conclude that P has a fixed point which is a solution of the

problem (1.1).

The second result is established using the Darbo’s fixed point theorem.
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Theorem 3.8. Assume that (H1)−(H5) are satisfied, then the problem (1.1) has at least one mild

solution.

Proof. In what follows we show that the operator P : Y → Y is a strict set contraction. We

know that P : Y → Y is bounded and continuous, we need to prove that there exists a constant

0 ≤ ν < 1 such that α(PV) ≤ να(V) for V ⊂ Br.

Using the same method as the proof of Theorem 3.7, for t ∈ [0, T ], we have

α (PV) ≤ (2ML+ 16 a η∗)α(V) + ε,

since ε is arbitrary we obtain that

α (PV) ≤ να(V).

Hence P is a set contraction. According to Theorem 2.11 the operator P has at least one fixed

point which is obviously a mild solution of the problem (2.4). This completes the proof.

4 An Example

We consider the fractional integro-differential equations with state-dependent delay and non-

instantaneous impulses of the form

∂qt
∂tq

v(t, ζ) +
∂2

∂ζ2
v(t, ζ) =

∫t

0

(t− s)2
∫s

−∞

γ(τ− s)v(τ − ρ1(s)ρ2(|v(s, ζ)|), ζ)dτds

+

∫t

0

(t− s)2 cos |v(s, ζ)|ds, (t, x) ∈ N ∈ ∪n
i=1[si, ti+1]× [0, π],

v(t, 0) = v(t, π) = 0, t ∈ [0, T ],

v(τ, ζ) = v0(θ, ζ), θ ∈ (−∞, 0], x ∈ [0, π]

v(t, ζ) = Hi(t, v(t− ρ1(t)ρ2(|v(t, ζ)|), ζ), ζ), (t, x) ∈ (ti, si]× [0, π], i = 1, 2, . . . , N,

(4.1)

where 0 < q < 1, 0 = t0 = s0 < t1 ≤ s1 ≤ t2 < . . . < tN−1 ≤ sN ≤ tN ≤ tN+1 = T are

prefixed real numbers and the functions γ : R → R, ρi : [0,+∞) → [0,+∞), i = 1, 2 are continuous

functions.

Let X = L2([0, π]) and define the operator A : D(A) ⊂ X→ X by Aω = ω ′′ with domain

D(A) = {ω ∈ E : ω,ω ′ are absolutely continuous, ω ′′ ∈ E,ω(0) = ω(π) = 0}.

Then

Aω =

∞∑

n=1

n2(ω,ωn)ωn, ω ∈ D(A),
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where ωn(x) =

√

2

π
sin(nx), n ∈ N is the orthogonal set of eigenvectors of A. It is well known that

A is the infinitesimal generator of an analytic semigroup {S(t)}t≥0 in X and is given by

S(t)ω =

∞∑

n=1

e−n2t(ω,ωn)ωn, ∀ω ∈ X, and every t > 0.

From these expressions, it follows that {S(t)}t≥0 is a uniformly bounded compact semigroup on X.

For the phase space, we choose B = C0 × L
2(g, X), see Example 2.9 for details.

Set

x(t)(ζ) = v(t, ζ),

φ(θ)(ζ) = v0(θ, ζ),

a(t, s) = (t − s)2

f(t, ϕ, x(t))(ζ) =

∫0

−∞

γ(t)ϕ(t, ζ)ds+ cos |x(t)(ζ)|,

hi(t, ϕ, x(t))(ζ) = Hi(t, v(t− ρ1(t)ρ2(|x(t)|), ζ), ζ)

ρ(t, ϕ) = t− ρ1(t)ρ2(|ϕ(0)|).

Under the above conditions, we can represent the problem (4.1) by the abstract problem (1.1).

Proposition 4.1. Let ϕ ∈ B be such that (Hϕ) holds, and let t → ϕt be continuous on R(ρ−).

Then there exists a mild solution of (4.1).
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RESUMEN

Estudiamos la existencia de soluciones periódicas múltiples del siguiente sistema de

ecuaciones diferenciales con un parámetro

x(n+ 1) = A(n, x(n))x(n) + λf(n, xn).

En particular, usamos los problemas de valores propios de operadores completamente

continuos para obtener nuestros resultados. Aplicamos nuestros resultados a modelos

de dinámica poblacional bien conocidos.

Keywords and Phrases: Functional difference system, Positive periodic solution, Eigenvalue,

Population model
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1 Introduction

Let R denote the real numbers, Z the integers, Z− the negative integers, Rk
+ = {(x1, x2, ..., xk)

T ∈

R
k : xj ≥ 0, j = 1, 2, ..., k}, R

+ = {x ∈ R : x > 0}, and Z
+ the nonnegative integers.

Also, let BC denote the normed vector space of bounded functions φ : Z → R
k, with the norm

||φ|| =
∑k

j=1 maxn∈[0,ω−1] |φj(n)|, where φ = (φ1, φ2, ..., φk)
T and [0,ω − 1] = {0, 1, ...,ω − 1}.

Particularly for each x = (x1, x2, ..., xk)
T ∈ R

k, we define the norm |x|0 =
∑k

j=1 |xj|. Also, denote

by BCk
+ = {φ ∈ BC : φ(n) ∈ R

k
+ for n ∈ Z}.

In [12], Raffoul used a Krasnoselskii’s fixed point theorem in cones to prove the existence of positive

periodic solutions of the scaler difference equation with parameter

x(n+ 1) = a(n)x(n) + λh(n)f(x(n − τ(n))).

Also, in [10], Zhu and Li generalized the work in [12] by proving that the system of difference

equations with parameter

x(n + 1) = A(n)x(n) + λh(n)f(x(n − τ(n)))

where A(n) = diag[a1(n), a2(n), ..., am(n)] and h(n) = diag[h1(n), h2(n), ..., hm(n)] has positive

periodic solutions. Motivated by the above considerations we investigate the existence of multiple

positive periodic solutions of the nonautonomous system of difference equations

x(n+ 1) = A(n, x(n))x(n) + λf(n, xn), (1.1)

where, λ > 0 is a parameter, A(n, x(n)) = diag[a1(n, x(n)), ..., ak(n, x(n))], aj(n+ω, .) = aj(n, .),

f(n, x) : Z × BC → R
k is continuous in x and f(n, x) is ω-periodic in n and x, whenever x is ω-

periodic, ω ≥ 1 is an integer. If x ∈ BC, then xn ∈ BC for any n ∈ Z is defined by xn(θ) = x(n+θ)

for θ ∈ Z. Throughout this paper, we denote the product of y(n) from n = a to n = b by
∏b

n=a y(n) with the understanding that
∏b

n=a y(n) = 1 for all a > b. Also, for two m×n matri-

ces A and B, A ≥ B (A < B) means that the inequality is satisfied entrywisely. In particular, A is

said to be a nonnegative matrix if A ≥ 0.

Definition 3.1. [4] Let X be a Banach space and P a closed, nonempty subset of X. P is a (convex)

cone if

(i) x, y ∈ P and α,β ∈ R+ imply αx+ βy ∈ P.

(ii) x ∈ P and −x ∈ P imply x = 0.

Definition 3.2. [4] Let X be a Banach space and D ⊂ X, 0 ∈ D. The operator L : D→ X is such

that L0 = 0. xλ 6= 0 is said to be an eigenvector of the eigenvalue λ of L if Lxλ = λxλ.
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Lemma 3.1. [4] Suppose D is an open subset of an infinite-dimensional real Banach space X,

0 ∈ D, and P is a cone of X. If the operator Γ : P ∩D → P is completely continuous with Γ0 = 0

and satisfies infx∈P∩∂D ||Γx|| > 0, then Γ has an eigenvector on P ∩ ∂D associated with a positive

eigenvalue. That is, there exist x0 ∈ P ∩ ∂D and µ0 > 0 such that Γx0 = µ0x0.

In this paper we make the following assumptions.

(H1) 0 < aj(n) < 1, j = 1, 2, ...k, and n ∈ [0, ω− 1].

(H2) There exist B(n) = diag[b1(n), b2(n), ..., bk(n)] and C(n) = diag[c1(n), c2(n), ..., ck(n)]

where bj, cj : Z → R+ are ω-periodic with 0 < bj, cj < 1, such that

B(n) ≤ A(n,ϕ(n)) ≤ C(n)

for all (n,ϕ) ∈ Z× BCk
+.

(H3) f(n, 0) = 0 for all n ∈ Z.

(H4) f(n,ϕn) ≤ 0 for all (n,ϕ) ∈ Z× BCk
+.

(H5) For any L > 0 and ǫ > 0, there exists δ > 0 such that [φ,ψ ∈ BCk
+, ||φ|| ≤ L, ||ψ|| ≤

L, ||φ− ψ|| < δ, 0 ≤ s ≤ ω] imply

|f(s, φs) − f(s,ψs)| < ǫ.

To study system (1.1) we let X = {x : Z → R
k, x(n +ω) = x(n)}, then it is clear that X ⊂ BC,

endowed with the norm ||x|| =
∑k

j=1 |xj|0, where |xj|0 = maxn∈[0,ω−1] |xj(n)|.

For the next lemma we consider

xj(n + 1) = aj(n, x(n))xj(n) + fj(n, xn), j = 1, 2, ..., k. (1.2)

The proof of the next lemma can be easily deduced from [12] and hence we omit it.

Lemma 3.2. Suppose that (H1) hold. If x(n) ∈ X then xj(n) is a solution of equation (1.2) if

and only if

xj(n) =

n+T−1∑

u=n

Gx
j (n, u)fj(n, xn), j = 1, 2, ..., k, (1.3)

where

Gx
j (n, u) =

∏n+T−1
s=u+1 aj(s, x(s))

1−
∏n+T−1

s=n aj(s, x(s))
, u ∈ [n,n+ T − 1], j = 1, 2, ..., k. (1.4)
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Let

σ = min 1≤j≤k

(∏ω−1
s=0 bj(s)

)[

1−
∏ω−1

s=0 cj(s)
]

(∏ω−1
s=0 cj(s)

)[

1−
∏ω−1

s=0 bj(s)
] (1.5)

It can easily be obtained from (H2) that σ < 1. We next define two cones in X as follows:

P1 =
{
y ∈ X : yj(n) ≥ σ|yj|0, n ∈ Z and j = 1, ..., k

}
,

and

P2 =
{
y ∈ X : y(n) ≥ 0, n ∈ Z

}
.

Define an operator T on X by T : X → X by

(Tx) = (T1x, T2x, ..., Tkx)
T . (1.6)

where

(Tjx)(n) =

n+ω−1∑

u=n

Gx
j (n, u)fj(u, xu), j = 1, ..., k.

It is not very difficult to see that Gx
j (n+ω,u+ω) = Gx

j (n, u). Also, it can easily be verified that

x∗(n) = (x∗1(n), ..., x
∗
k(n)) ≥ 0 is a positive ω-periodic solution of system (1.1) associated with λ∗

if and only if x∗ ∈ P2 is an eigenvector of the operator T associated with the eigenvalue 1
λ∗
> 0,

that is Tx∗ = 1
λ∗
x∗.

Lemma 3.2. Suppose that (H1) and (H2) hold. Then the mapping T maps P1 into P1, i.e.,

TP1 ⊂ P1.

Proof. In view of (H1) and (H2), we have that, for j = 1, 2, ..., k, and 0 ≤ u ≤ ω− 1,

∏ω−1
s=0 bj(s)

1−
∏ω−1

s=0 bj(s)
≤ Gx

j (n, u) ≤

∏ω−1
s=0 cj(s)

1−
∏ω−1

s=0 cj(s)
(1.7)
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|(Tjx)(n)| ≤

n+ω−1∑

u=n

∏ω−1
s=0 cj(s)

1−
∏ω−1

s=0 cj(s)
|fj(u, xu)|

≤

∏ω−1
s=0 cj(s)

1−
∏ω−1

s=0 cj(s)

ω−1∑

u=0

|fj(u, xu)|

It follows that

|(Tjx)|0 ≤

∏ω−1
s=0 cj(s)

1−
∏ω−1

s=0 cj(s)

ω−1∑

u=0

|fj(u, xu)|

or

ω−1∑

u=0

|fj(u, xu)| ≥
1−

∏ω−1
s=0 cj(s)

∏ω−1
s=0 cj(s)

|(Tjx)|0.

Therefore,

(Tjx)(n) ≥

∏ω−1
s=0 bj(s)

1−
∏ω−1

s=0 bj(s)

ω−1∑

u=0

|fj(u, xu)|

≥

(∏ω−1
s=0 bj(s)

)[

1−
∏ω−1

s=0 cj(s)
]

(∏ω−1
s=0 cj(s)

)[

1−
∏ω−1

s=0 bj(s)
] |(Tjx)|o

≥ σ|(Tjx)|o,

which means that Tx ∈ P1. This completes the proof.

Lemma 3.3. Suppose (H5) hold. Then the operator T : P2 → X is completely continuous.

Proof. In view of (H5) and the assumption that f(n, x) is continuous in x, we have that the

operator T is continuous. We will show that T is compact.

Let U ⊆ P2 be any bounded set. Then, by the (H5), there exists a constant M> 0 such that

|fj(n, xn)| ≤M, for (n, x) ∈ [0,ω − 1]×U, j = 1, 2, ..., k.

Thus we have,

|(Tjx)| ≤

∏ω−1
s=0 cj(s)

1−
∏ω−1

s=0 cj(s)
Mω.

It follows that,
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||(Tx)|| =

k∑

j=1

|Tjx|0

≤ Mω

k∑

j=1

∏ω−1
s=0 cj(s)

1−
∏ω−1

s=0 cj(s)

≤ Mkωγ,

where

γ = max 1≤j≤k

∏ω−1
s=0 cj(s)

1−
∏ω−1

s=0 cj(s)
.

Next, we show that T maps bounded subsets into compact sets. Let J > 0 be given, and define

ρ = {ϕ ∈ P2 :‖ ϕ ‖≤ J} and Q = {(Tϕ)(n) : ϕ ∈ ρ}, then ρ is a subset of Rωk which is closed and

bounded thus compact. As T is continuous in ϕ it maps compact sets into compact sets. Therefore

Q = T(ρ) is compact.

This completes the proof of lemma 3.3.

2 Main Results

In this section we state and prove our main results. For our main results we let

f0 = lim
φ∈P1, ||φ||→0

∑ω−1
u=0 |f(u, xu)|

||φ||
, and f∞ = lim

φ∈P1, ||φ||→∞

∑ω−1
u=0 |f(u, xu)|

||φ||
.

Also, define, for r a positive number, Ωr, by

Ωr = {x ∈ X : ||x|| < r }.

Theorem 4.1 Suppose that (H1)-(H5) hold and 0 < f∞ <∞. Then there exist positive constants

R0, λ1, and λ2 with λ1 < λ2 such that, for any r > R0, system (1.1) has a positive ω-periodic

solution xr(n) associated with some λr ∈ [λ1, λ2] and ||xr|| = r.

Proof. Since 0 < f∞ < +∞, there exist ǫ2 > ǫ1 > 0 and R0 > 0 such that

ǫ1||φ|| <

ω−1∑

u=0

|f(u,φu)| < ǫ2||φ|| for ||φ|| ≥ R0, φ ∈ P1.
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Suppose r > R0, then Ωr is a bounded open subset of X and 0 ∈ Ωr. For x ∈ P1 ∩ ∂Ωr, we have

||Tx|| =

k∑

j=1

max
n∈[0,ω−1]

|(Tjx)(n)|

≥

k∑

j=1

|(Tjx)(n)|

=

k∑

j=1

ω−1∑

u=0

Gx
j (n, u)fj(u, xu)

≥

k∑

j=1

∏ω−1
s=0 bj(s)

1−
∏ω−1

s=0 bj(s)

ω−1∑

u=0

fj(u, xu)

≥ min
1≤j≤k

∏ω−1
s=0 bj(s)

1−
∏ω−1

s=0 bj(s)

ω−1∑

u=0

k∑

j=1

|fj(u, xu)|

≥ min
1≤j≤k

∏ω−1
s=0 bj(s)

1−
∏ω−1

s=0 bj(s)
ǫ1r > 0.

It follows that

inf
x∈P1∩∂Ωr

||Tx|| ≥ min
1≤j≤k

{ ∏ω−1
s=0 bj(s)

1−
∏ω−1

s=0 bj(s)

}
ǫ1r > 0.

Since, T is completely continuous with T(0) = 0, it follows from Lemma 3.1 that the operator T

has an eigenvector xr ∈ P1 associated with the eigenvalue µr > 0 such that ||xr|| = r. Set λr =
1
µr
.

Then xr is a positive ω-periodic solution of system (1.1).

We next determine λ1 and λ2 as follows. From

(xr)j(n) = λr

n+ω−1∑

u=n

Gxr

j (n, u)fj(u, x
r
u)

≤ λr

ω−1∑

u=0

∏ω−1
s=0 cj(s)

1−
∏ω−1

s=0 cj(s)
|fj(u, x

r
u)|

≤ λr

∏ω−1
s=0 cj(s)

1−
∏ω−1

s=0 cj(s)

ω−1∑

u=0

|fj(u, x
r
u)|

≤ λr

∏ω−1
s=0 cj(s)

1−
∏ω−1

s=0 cj(s)
ǫ2r, j = 1, 2, ..., k,

and ||xr|| = r we can get

λr ≥
1

ǫ2
∑k

j=1

∏
ω−1
s=0

cj(s)

1−
∏

ω−1
s=0

cj(s)

=: λ1



CUBO
21, 1 (2019)

Positive periodic solutions of functional discrete systems . . . 87

On the other hand,

(xr)j(n) ≥ λr

∏ω−1
s=0 bj(s)

1−
∏ω−1

s=0 bj(s)

ω−1∑

u=0

|fj(u, x
r
u)|, j = 1, ..., k.

It follows from

||xr|| = r ≥ λr min
1≤j≤k

{ ∏ω−1
s=0 bj(s)

1−
∏ω−1

s=0 bj(s)

}ω−1∑

u=0

|f(u, xru)|

≥ λr min
1≤j≤k

{ ∏ω−1
s=0 bj(s)

1−
∏ω−1

s=0 bj(s)

}
ǫ1r

that

λr ≤ λr max
1≤j≤k

{1−
∏ω−1

s=0 bj(s)

ǫ1
∏ω−1

s=0 bj(s)

}
:= λ2.

Therefore, λr ∈ [λ1, λ2] and this completes the proof.

Theorem 4.2. Suppose that (H1)-(H5) hold and 0 < f0 <∞. Then there exist positive constants

r0 > 0, λ̃1 and λ̃2 with λ̃1 < λ̃2 such that, for any 0 < r < r0, system (1.1) has a positive

ω-periodic solution x̃r(n) associated with some λ̃r ∈ [λ̃1, λ̃2] and ||x̃r|| = r.

Proof. Since 0 < f0 <∞, there exist 0 < l1 < l2 and r0 > 0 such that

l1||φ|| <

ω−1∑

u=0

|f(u,φu)| < l2||φ|| for 0 < ||φ|| < r0, φ ∈ P1.

For r ∈ (0, r0), Ωr is a bounded subset of X and 0 ∈ Ωr. Moreover, for x ∈ P1 ∩ ∂Ωr,

||Tx|| ≥

k∑

j=1

|(Tjx)(n)|

=

k∑

j=1

n+ω−1∑

u=n

Gx
j (n, u)fj(u, xu)

≥ min
1≤j≤k

{ ∏ω−1
s=0 bj(s)

1−
∏ω−1

s=0 bj(s)

}
l1r > 0.

This implies that infx∈P1∩∂ωr
||Tx|| > 0. The remaining part of the proof is similar to that of The-

orem 4.1 and so we omit it. This completes the proof.
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Using arguments similar to that of Theorem 4.1 and Theorem 4.2, the following results can be

established respectively.

Theorem 4.3. Suppose that (H1)-(H5) hold and f∞ = ∞. Then there exist positive constants R̆0

and λ̆ such that, for any r > R̆0, system (1.1) has a positive ω-periodic solution x̆r(n) associated

with some λ̆r ≤ λ̆ and ||x̆r|| = r.

Theorem 4.4. Suppose that (H1)-(H5) hold and f0 = ∞. Then there exist positive constants

r̄0 and λ̄ such that, for any 0 < r < r̄0, system (1.1) has a positive ω-periodic solution x̄r(n)

associated with some λ̄r ≤ λ̄ and ||x̄r|| = r.

3 An application

In this section, we apply our results from the previous section to the Volterra discrete system

xj(n + 1) = xj(n)
[

aj(n) − λ

k∑

i=1

(

bji(n)xi(n) +

n∑

s=−∞

Cji(n, s)gji(xi(s))
)]

,

j = 1, 2, ..., k,

(3.1)

where xj(n) is the population of the jth species, aj, bji : Z → R+ are ω-periodic and Cji(n, s) ≥ 0

and Cji(n +ω, s+ω) = Cji(n, s) for all (n, s) ∈ Z
2; gji : R+ → R+, i, j = 1, ..., k.

Theorem 5.1. Suppose that maxn∈Z

∑n
s=−∞ |Cji(n, s)| < +∞. Then there exist positive con-

stants R0 and λ0 such that, for any r > R0, system (3.1) has a positive ω-periodic solution xr(n)

associated with λr ≤ λ0 and ||xr|| = r.

Proof. Note that A(n, x(n)) = diag[a1(n), a2(n), ..., ak(n)] and f = (f1, f2, ..., fk) where

fj(n, xn) = −xj(n)

k∑

i=1

(

bji(n)xi(n) +

n∑

s=−∞

Cji(n, s)gji(xi(s))
)

for j = 1, 2, ..., k and (H1)-(H5) are satisfied.
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For x ∈ P1 and j = 1, ..., k we have

ω−1∑

u=0

|fj(u, xu)| =

k∑

i=1

ω−1∑

u=o

xj(u)
(

xi(u)bji(u) +

u∑

s=−∞

Cji(u, s)gji(xi(s))
)

≥

k∑

i=1

ω−1∑

u=o

xj(u)xi(u)bji(u)

≥

ω−1∑

u=o

x2j (u)bjj(u)

≥ σ2|xj|
2
0

ω−1∑

u=o

bjj(u).

Thus,

ω−1∑

u=0

|f(u, xu)| =

k∑

j=1

ω−1∑

u=0

|fj(u, xu)|

≥

k∑

j=1

σ2|xj|
2
0

ω−1∑

u=o

bjj(u)

≥ σ2 min
1≤j≤k

ω−1∑

u=o

bjj(u)

k∑

j=1

|xj|
2
0

≥
σ2

k
||x||2 min

1≤j≤k

ω−1∑

u=o

bjj(u).

It follows that

∑ω−1
u=0 |f(u, xu)|

||x||
→ as ||x|| → ∞.

The conclusion follows directly from Theorem 4.3 and this completes the proof.
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