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Département de Physique Théorique
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Universidad de La Frontera

Av. Francisco Salazar 01145, Temuco – Chile

Fomin Sergey

fomin@umich.edu

Department of Mathematics

University of Michigan

525 East University Ave. Ann Arbor

MI 48109 - 1109 – USA

Jurdjevic Velimir

jurdj@math.utoronto.ca

Department of Mathematics

University of Toronto

Ontario – Canadá
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Universidad de Valparáıso
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ABSTRACT

In this paper, we introduce and study a new iterative method for finding a common

null point of an infinite family of accretive operators with a strongly accretive and Lip-

schitzian operator, by using the proximal-point algorithm. And also we prove that the

common null point is a unique solution of variational inequality without imposing any

compactness-type condition on either the operators or the space considered. Finally,

some applications of the main results to equilibrium problems and fixed point prob-

lems with an infinite family of pseudocontractive mappings are given. The main result

is a generalization and improvement of numerous well-known results in the available

literature.

RESUMEN

En este art́ıculo, introducimos y estudiamos un nuevo método iterativo para encon-

trar un cero común de una familia infinita de operadores acretivos con un operador

Lischitziano fuertemente acretivo, usando el algoritmo punto-proximal. También de-

mostramos que el cero común es la única solución de una desigualdad variacional sin

imponer ninguna condición de tipo compacidad en ninguno de los operadores o los

espacios considerados. Finalmente, se entregan algunas aplicaciones de los resultados

principales a problemas de equilibrio y problemas de punto fijo con una familia in-

finita de aplicaciones pseudo-contractivas. El resultado principal es una generalización

y mejora de numerosos resultados bien conocidos en la literatura disponible.

Keywords and Phrases: Proximal-point algorithm; Accretive operators; Variational inequality;

Common zeros.
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1 Introduction

Let H be a real Hilbert space and K be a nonempty subset of H. For a set-valued map A : H → 2H ,

the domain of A, D(A), the image of a subset S of H, A(S) the range of A, R(A) and the graph

of A, G(A) are defined as follows:

D(A) := {x ∈ H : Ax 6= ∅}, A(S) := ∪{Ax : x ∈ S},

R(A) := A(H), G(A) := {(x, u) : x ∈ D(A), u ∈ Ax}.

A multi-valued map A : D(A) ⊂ H → 2H is called monotone if the inequality

〈u− v, x− y〉 ≥ 0

holds for each x, y ∈ D(A), u ∈ Ax, v ∈ Ay. A single-valued operator A : K → H is said to be

strongly positive bounded linear if there exists a constant k > 0 such that

〈Ax, x〉 ≥ k‖x‖2, ∀ x, y ∈ K.

Remark 1. It is immediate that if A is k-strongly positive bounded linear, then A is k-strongly

monotone and ‖A‖-Lipschitz continuous.

A monotone operator A is called maximal monotone if its graph G(A) is not properly contained

in the graph of any other monotone operator. It is well known that A is maximal monotone if

and only if A is monotone and R(I + rA) = H for all r > 0 and A is said to satisfy the range

condition if D(A) ⊂ R(I + rA). Many problems arising in different areas of mathematics, such as

optimization, variational analysis and differential equations, can be modeled by the equation

0 ∈ Ax, (1.1)

where A is a monotone mapping. The solution set of this equation coincide to a null points set of

A. Such operators have been studied extensively (see, e.g., Bruck Jr [5], Chidume [9], Rockafellar

[29], Xu [30] and the references therein).

Consider, for example, the following: let f : H → R∪ {∞} be a proper lower semi continuous

and convex function. The subdifferential, ∂f : H → 2H of f at x ∈ H is defined by

∂f(x) =
{

x∗ ∈ H : f(y)− f(x) ≥ 〈y − x, x∗〉 ∀ y ∈ H
}

.

It is easy to check that ∂f : H → 2H is a monotone operator on H , and that 0 ∈ ∂f(x) if and only

if x is a minimizer of f . Setting ∂f ≡ A, it follows that solving the inclusion 0 ∈ Au, in this case,

is solving for a minimizer of f .
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In order to find a solution of problem (1.1), Rockafellar [29] introduced a powerful and suc-

cessful algorithm which is recognized as Rockafellar proximal- point algorithm: for any initial point

x0 ∈ H, a sequence {xn} is generated by:

xn+1 = Jrn(xn + en), ∀ n ≥ 0,

where Jr = (I + rA)−1 for all r > 0, is the resolvent of A and {en} is an error sequence in a

Hilbert space. In the recent years, the problem of finding a common element of the set of solutions

of convex minimization, variational inequality and the set of fixed point problems in real Hilbert

spaces, Banach spaces and complete CAT(0) (Hadamard) spaces have been intensively studied by

many authors; see, for example, [20, 21, 19, 29, 30] and the references therein.

Very recently, Eslamian and Vahidi [10] introduced a new iterative method base on proximal

point algorithm with strongly positive bounded linear operator for solving a system of inclusion

problem. They established a strong convergence theorem which extends the corresponding results

in [30, 2, 32, 28, 13, 14, 15, 16, 16, 17, 18].

Theorem 2 (Eslamian and Vahidi [10]). Let H be a real Hilbert space and K be a nonempty,

closed and convex subset of H. Let {Bi}, i ∈ N
∗ := {1, 2, 3, ...} be an infinite family of operators

of H such that

∞
⋂

i=1

Bi
−1(0) 6= ∅ and

∞
⋂

i=1

D(Bi) ⊂ K ⊂
∞
⋂

i=1

R(I + rBi), for all r > 0. Let A : H → H

be a k-strongly bounded linear operator with a coefficient γ̄ and f be a b− contraction mapping of

K into itself with a constant b ≥ 0.

Let {xn} be a sequence defined iteratively from arbitrary x0 ∈ K by:











yn = βn,0xn +

∞
∑

i=1

βn,iJ
Bi

rn
xn

xn+1 = αnγf(xn) + (I − αnA)yn.

(1.2)

Let {rn} ⊂]0,∞[, {βn,i} and {αn} be real sequences in (0, 1) satisfying:

(i) lim
n→∞

αn = 0; (ii)
∞
∑

n=0

αn = ∞,
∞
∑

i=0

βn,i = 1,

(iii) lim
n→∞

inf rn > 0, and lim
n→∞

inf βn,0βn,i > 0, for all i ∈ N.

Assume that 0 < γ <
γ̄

b
. Then, the sequence {xn} generated by (1.2) converges strongly to x∗ ∈

∞
⋂

i=1

Bi
−1(0).

Above discussion yields the following questions.

Question 1:Can results of Eslamian and Vahidi [10], and so on be extended from Hilbert spaces

to Banach spaces?
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Question 2: We know that Lipschitzian mapping is more general than contraction. What hap-

pens if the contraction is replaced by Lipschitzian mapping ?

Question 3: We know that k-strongly accretive operators and L-Lipchizian operators is more

general than the strong positive bounded linear operators. What happens if the strongly positive

bounded linear operators is replaced by k- strongly accretive operators and L-Lipchizian operators ?

The purpose of this paper is to give affirmative answers to these questions mentioned above.

Applications are also included to valide our new findings.

2 Preliminairies

Let E be a real Banach space and C be a nonempty, closed and convex subset of E. We denote by

J the normalized duality map from E to 2E
∗

(E∗ is the dual space of E) defined by:

J(x) := {x∗ ∈ E∗ : 〈x, x∗〉 = ||x||2 = ||x∗||2}, ∀x ∈ E.

Let S := {x ∈ E : ‖x‖ = 1}. E is said to be smooth if

lim
t→0+

‖x+ ty‖ − ‖x‖

t

exists for each x, y ∈ S. E is said to be uniformly smooth if it is smooth and the limit is attained

uniformly for each x, y ∈ S.

Let E be a normed space with dimE ≥ 2. The modulus of smoothness of E is the function

ρE : [0,∞) → [0,∞) defined by

ρE(τ) := sup

{

‖x+ y‖+ ‖x− y‖

2
− 1 : ‖x‖ = 1, ‖y‖ = τ

}

; τ > 0.

It is known that a normed linear space E is uniformly smooth if

lim
τ→0

ρE(τ)

τ
= 0.

If there exists a constant c > 0 and a real number q > 1 such that ρE(τ) ≤ cτq , then E is said

to be q-uniformly smooth. Typical examples of such spaces are the Lp, ℓp and Wm
p spaces for

1 < p < ∞ where,

Lp (or lp) or Wm
p is

{

2− uniformly smooth and p− uniformly convex if 2 ≤ p < ∞;
2− uniformly convex and p− uniformly smooth if 1 < p < 2.

(2.1)

It is known that a normed linear space E is uniformly smooth if

lim
τ→0

ρE(τ)

τ
= 0.
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If there exists a constant c > 0 and a real number q > 1 such that ρE(τ) ≤ cτq , then E is said

to be q-uniformly smooth. Typical examples of such spaces are the Lp, ℓp and Wm
p spaces for

1 < p < ∞ where,

Lp (or lp) or Wm
p is

{

2− uniformly smooth and p− uniformly convex if 2 ≤ p < ∞;
2− uniformly convex and p− uniformly smooth if 1 < p < 2.

Let Jq denote the generalized duality mapping from E to 2E
∗

defined by

Jq(x) :=
{

f ∈ E∗ : 〈x, f〉 = ‖x‖q and ‖f‖ = ‖x‖q−1
}

where 〈., .〉 denotes the generalized duality pairing. Notice that for x 6= 0,

Jq(x) = ‖x‖q−2J2(x), q > 1.

Following Browder [3], we say that a Banach space has a weakly continuous normalized duality

map if J is a single-valued and is weak-to-weak∗ sequentially continous, i.e., if {xn} ⊂ E, xn ⇀ x,

then J(xn) ⇀ J(x) in E∗. Weak continuity of duality map J plays an important role in the fixed

point theory for nonlinear operators. Finally recall that a Banach space E satisfies Opial property

(see, e.g., [24]) if lim sup
n→+∞

‖xn − x‖ < lim sup
n→+∞

‖xn − y‖ whenever xn ⇀ x, x 6= y.

A Banach space E that has a weakly continuous normalized duality map satisfies Opial’s property.

Remark 3. Note also that a duality mapping exists in each Banach space. We recall from [1]

some of the examples of this mapping in lp, Lp,W
m,p-spaces, 1 < p < ∞.

(i) lp : Jx = ‖x‖2−p
lp

y ∈ lq, x = (x1, x2, · · · , xn, · · · ), y = (x1|x1|
p−2, x2|x2|

p−2, · · · , xn|xn|
p−2, · · · ),

(ii) Lp : Ju = ‖u‖2−p
Lp

|u|p−2u ∈ Lq,

(iii) Wm,p : Ju = ‖u‖2−p
Wm,p

∑

|α≤m|(−1)|α|Dα
(

|Dαu|p−2Dαu
)

∈ W−m,q,

where 1 < q < ∞ is such that 1/p+ 1/q = 1.

Finally recall that a Banach space E satisfies Opial’s property (see, e.g., [24]) if lim sup
n→+∞

‖xn−x‖ <

lim sup
n→+∞

‖xn − y‖ whenever xn
w
−→ x, x 6= y. Recall that an operator A : K → E is said to be

accretive if there exists j ∈ Jq(x − y) such that

〈Ax−Ay, j〉 ≥ 0, ∀x, y ∈ K.
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It is said to be strongly accretive if there exists a positive constant k ∈ (0, 1) and such that for all

x, y ∈ K, such that

〈Ax −Ay, j〉 ≥ k‖x− y‖q, ∀x, y ∈ K.

In a Hilbert space, the normalized duality map is the identity map. Hence, in Hilbert spaces,

monotonicity and accretivity coincide. A multi-valued map A defined on a real Banach space E is

called m-accretive if it is accretive and R(I + rA) = E for some r > 0 and it is said to satisfy the

range condition R(I + rA) = E for all r > 0.

The operator A in the following example satisfies range condition.

Example 4. Let A : R → 2R defined by

Ax =

{

sgn(x), x 6= 0,
[−1, 1] , x = 0,

(2.2)

where A is the subdifferential of the absolute value function, ∂|.|, then A is m-accretive. It can be

shown that if R(I + rA) = E for some r > 0, then this holds for all r > 0. Hence, m-accretive

condition implies range condition.

The demiclosedness of a nonlinear operator T usually plays an important role in dealing with

the convergence of fixed point iterative algorithms.

Definition 1. Let E be a real Banach space and T : D(T ) ⊂ E → E be a mapping. I − T is said

to be demiclosed at 0 if for any sequence {xn} ⊂ D(T ) such that {xn} converges weakly to p and

‖xn − Txn‖ converges to zero, then p ∈ F (T ), where F (T ) denote the set of fixed points of the

mapping T.

Lemma 5 (Demiclosedness principle, [3]). Let E be a real Banach space satisfying Opial’s property,

K be a closed convex subset of E, and T : K → K be a nonexpansive mapping such that F (T ) 6= ∅.

Then I − T is demiclosed; that is,

{xn} ⊂ K, xn ⇀ x ∈ K and (I − T )xn → y implies that (I − T )x = y.

Lemma 6 ([22]). Let E be a smooth real Banach space. Then, we have

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, J(x+ y)〉 ∀x, y ∈ E.

Lemma 7 ([31]). Assume that {an} is a sequence of nonnegative real numbers such that an+1 ≤

(1−αn)an + σn for all n ≥ 0, where {αn} is a sequence in (0, 1) and {σn} is a sequence in R such

that

(a)
∞
∑

n=0

αn = ∞, (b) lim sup
n→∞

σn

αn

≤ 0 or
∞
∑

n=0

|σn| < ∞. Then lim
n→∞

an = 0.
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Theorem 8. [9] Let q > 1 be a fixed real number and E be a smooth Banach space. Then the

following statements are equivalent:

(i) E is q-uniformly smooth.

(ii) There is a constant dq > 0 such that for all x, y ∈ E

‖x+ y‖q ≤ ‖x‖q + q〈y , Jq(x)〉 + dq‖y‖
q.

(iii) There is a constant c1 > 0 such that

〈x− y , Jq(x)− Jq(y)〉 ≤ c1‖x− y‖q ∀ x, y ∈ E.

Lemma 9 ( [8]). Let E be a uniformly convex real Banach space. For arbitrary r > 0, let

B(0)r := {x ∈ E : ||x|| ≤ r}, a closed ball with center 0 and radius r > 0. For any given sequence

{u1, u2, ....., un, .....} ⊂ B(0)r and any positive real numbers {λ1, λ2, ...., λn, ....} with
∞
∑

k=1

λk = 1,

there exists a continuous, strictly increasing and convex function

g : [0, 2r] → R
+, g(0) = 0,

such that for any integer i, j with i < j,

‖
∞
∑

k=1

λkuk‖
2 ≤

∞
∑

k=1

λk‖uk‖
2 − λiλjg(‖ui − uj‖).

Lemma 10. [33] Let H be a real Hilbert space and K a nonempty, closed convex subset of H. Let

A : K → H be a k-strongly monotone and L-Lipschitzian operator with k > 0, L > 0. Assume

that 0 < η <
2k

L2
and τ = η

(

k −
L2η

2

)

. Then for each t ∈
(

0,min{1,
1

τ
}
)

, we have

‖(I − tηA)x − (I − tηA)y‖ ≤ (1− tτ)‖x − y‖ ∀x, y ∈ K.

Let C be a nonempty subsets of a real Banach space E. A mapping QC : E → C is said to be

sunny if

QC(QCx+ t(x−QCx)) = QCx

for each x ∈ E and t ≥ 0. A mapping QC : E → C is said to be a retraction if QCx = x for each

x ∈ C.

Lemma 11. [26] Let C and D be nonempty subsets of a smooth real Banach space E with D ⊂ C

and QD : C → D a retraction from C into D. Then QD is sunny and nonexpansive if and only if

〈z −QDz, J(y −QDz)〉 ≤ 0 (2.3)

for all z ∈ C and y ∈ D.
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Remark 12. If K is a nonempty closed convex subset of a Hilbert space H, then the nearest point

projection PK from H to K is the sunny nonexpansive retraction.

The resolvent operator has the following properties:

Lemma 13. [12] For any r > 0.

(i) A is accretive if and only if the resolvent JA
r of A is single-valued and nonexpansive;

(ii) A is m-accretive if and only if JA
r of A is single-valued and nonexpansive and its domain is

the entire E;

(iii) 0 ∈ A(x∗) if and only if x∗ ∈ F (JA
r ), where F (JA

r ) denotes the fixed-point set of JA
r .

Lemma 14. ( [23]) For any r > 0 and µ > 0, the following holds:

µ

r
x+ (1 −

µ

r
)JA

r x ∈ D(JA
r )

and

JA
r x = JA

µ (
µ

r
x+ (1−

µ

r
)JA

r x).

Lemma 15. [7] Let A be a continuous accretive operator defined on a real Banach space E with

D(A) = E. Then A is m-accretive.

3 Main results

For our main theorem, we shall need the following lemma.

Lemma 16. Let q > 1 be a fixed real number and E be a q-uniformly smooth real Banach space

with constant dq. Let A : E → E be a k-strongly accretive and L-Lipschitzian operator with k > 0,

L > 0. Assume that η ∈
(

0,min
{

1,
( kq

dqLq

)
1

q−1
})

and τ = η
(

k −
dqL

qηq−1

q

)

. Then for each

t ∈
(

0,min{1,
1

τ
}
)

, we have

‖(I − tηA)x− (I − tηA)y‖ ≤ (1− tτ)‖x− y‖, ∀x, y ∈ E. (3.1)

Proof. Without loss of generality, assume k <
1

q
. Then, as η <

( kq

dqLq

)
1

q−1

, we have 0 < qk −

dqL
qηq−1. Furthermore, from k <

1

q
, we have qk − dqL

qηq−1 < 1 so that 0 < qk − dqL
qηq−1 < 1.

By using (ii) of Theorem 8 and properties of A, it follows that

‖(I − tηA)x − (I − tηA)y‖q ≤ ‖x− y‖q + q〈tηAy − tηAx , Jq(x− y)〉+ dq‖tηAx− tηAy‖q

≤ ‖x− y‖q − qtη〈Ax−Ay , Jq(x− y)〉+ dq(tη)
q‖Ax−Ay‖q

≤ ‖x− y‖q − qtkη‖x− y‖q + dq(Ltη)
q‖x− y‖q

≤
(

1− qtkη + dqL
qtqηq

)

‖x− y‖q.
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Therefore

‖(I − tηA)x − (I − tηA)y‖ ≤
(

1− qtkη + dqL
qtηq

)
1
q

‖x− y‖. (3.2)

Using definition of τ , inequality (3.2) and inequality (1 + x)s ≤ 1 + sx, for x > −1 and 0 < s < 1,

we have

‖(I − tηA)x − (I − tηA)y‖ ≤
(

1− tkη +
dqL

qtηq

q

)

‖x− y‖

≤
(

1− tη(k −
dqL

qηq−1

q
)
)

‖x− y‖

≤ (1 − tτ)‖x− y‖,

which gives us the required result (3.1). This completes the proof.

Remark 17. Lemma 16 is one generalization of Lemma 10 for a Banach space.

We are now in a position to state and prove our main result.

Theorem 18. Let q > 1 be a fixed real number and E be a q-uniformly smooth and uniformly

convex real Banach space having a weakly continuous duality map. Let K be a nonempty, closed and

convex subset of E which is a nonexpansive retract of E with QK as the nonexpansive retraction.

Let {Bi}, i ∈ N
∗ be an infinite family of accretive operators of E such that F :=

∞
⋂

i=1

Bi
−1(0) 6= ∅

and

∞
⋂

i=1

D(Bi) ⊂ K ⊂
∞
⋂

i=1

R(I + rBi), for all r > 0. Let A : K → E be a k-strongly accretive and

L-Lipschitzian operator and f : K → E be a b-Lipschitzian mapping with a constant b ≥ 0. Let

{xn} and {yn} be sequences defined iteratively from arbitrary x0 ∈ K by:















yn = βn,0xn +

∞
∑

i=1

βn,iJ
Bi

rn
xn,

xn+1 = QK

(

αnγf(xn) + (I − ηαnA)yn

)

.

(3.3)

Let {rn} ⊂]0,∞[, {βn,i} and {αn} be real sequences in (0, 1) satisfying:

(i) lim
n→∞

αn = 0; (ii)

∞
∑

n=0

αn = ∞,

∞
∑

i=0

βn,i = 1,

(iii) lim
n→∞

inf rn > 0, and lim
n→∞

inf βn,0βn,i > 0, for all i ∈ N.

Assume that 0 < η <
( kq

dqLq

)
1

q−1

and 0 < bγ < τ, where τ = η
(

k−
dqL

qηq−1

q

)

. Then the sequence

{xn} generated by (3.3) converges strongly to x∗ ∈ F, which is a unique solution of variational

inequality

〈ηAx∗ − γf(x∗), J(x∗ − p)〉 ≤ 0, ∀p ∈ F. (3.4)
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Proof. First of all, we show that the uniqueness of a solution of the variational inequality (3.4).

Suppose both x∗ ∈ F and x∗∗ ∈ F are solutions to (3.4). Then

〈ηAx∗ − γf(x∗), J(x∗ − x∗∗)〉 ≤ 0 (3.5)

and

〈ηAx∗∗ − γf(x∗∗), J(x∗∗ − x∗)〉 ≤ 0. (3.6)

Adding up (3.5) and (4.3) yields

〈ηAx∗∗ − ηAx∗ + γf(x∗)− γf(x∗∗), J(x∗∗ − x∗)〉 ≤ 0. (3.7)

dqL
qηq−1

q
> 0 ⇐⇒ k −

dqL
qηq−1

q
< k

⇐⇒ η
(

k −
dqL

qηq−1

q

)

< kη

⇐⇒ τ < kη.

It follows that

0 < bγ < τ < kη.

Noticing that

〈ηAx∗∗ − ηAx∗ + γf(x∗)− γf(x∗∗), Jϕ(x
∗∗ − x∗)〉 ≥ (kη − bγ)‖x∗ − x∗∗‖2,

which implies that x∗ = x∗∗ and the uniqueness is proved. Below we use x∗ to denote the unique

solution of (3.4).Without loss of generality, we can assume αn ∈
(

0,min{1 ,
1

τ
}
)

.

Now, we prove that the sequences {xn} and {yn} are bounded. Let p ∈ F. Using (3.3) and the

fact that JBi
rn

are nonexpansive, we have

‖yn − p‖ = ‖βn,0xn +

∞
∑

i=1

βn,iJ
Bi

rn
xn − p‖

≤ βn,0‖xn − p‖+
∞
∑

i=1

βn,i‖J
Bi
rn

xn − p‖

≤ βn,0‖xn − p‖+
∞
∑

i=1

βn,i‖xn − p‖

≤ ‖xn − p‖.
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Using Lemma 16, we have

‖xn+1 − p‖ = ‖QK

(

αnγf(xn) + (I − ηαnA)yn

)

− p‖

≤ ‖αnγf(xn) + (I − ηαnA)yn − p‖

≤ αnγ‖f(xn)− f(p)‖+ (1 − ταn)‖yn − p‖+ αn‖γf(p)− ηAp‖

≤ (1− αn(τ − bγ))‖xn − p‖+ αn‖γf(p)− ηAp‖

≤ max {‖xn − p‖,
‖γf(p)− ηAp‖

τ − bγ
}.

By induction, it is easy to see that

‖xn − p‖ ≤ max {‖x0 − p‖,
‖γf(p)− ηAp‖

τ − bγ
}, n ≥ 1.

Hence {xn} is bounded also are {f(xn)}, and {Axn}.

Let k ∈ N
∗, from Lemma 9 and (3.3), we have

‖yn − p‖2 = ‖βn,0xn +

∞
∑

i=1

βn,iJ
Bi

rn
xn − p‖2

≤ βn,0‖xn − p‖2 +
∞
∑

i=1

βn,i‖J
Bi
rn

xn − p‖2 − βn,0βn,kg(‖J
Bk
rn

xn − xn‖)

≤ ‖xn − p‖2 − βn,0βn,kg(‖J
Bk
rn

xn − xn‖).

Consequently, we obtain

‖xn+1 − p‖2 = ‖QK

(

αnγf(xn) + (I − ηαnA)yn

)

− p‖2

≤ ‖αn(γf(xn)− ηAp) + (I − ηαnA)(yn − p)‖2

≤ α2
n‖γf(xn)− ηAp‖2 + (1 − ταn)

2‖yn − p‖2 + 2αn(1− ταn)‖γf(xn)

−ηAp‖‖yn − p‖

≤ α2
n‖γf(xn)− ηAp‖2 + (1 − ταn)

2‖xn − p‖2 − (1− ταn)
2βn,0βn,kg(‖J

Bk
rn

xn − xn‖)

+2αn(1− ταn)‖γf(xn)− ηAp‖‖xn − p‖

Thus, for every k ∈ N
∗, we get

(1− ταn)
2βn,0βn,kg(‖J

Bk
rn

xn − xn‖) ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + α2
n‖γf(xn)− ηAp‖2

+2αn(1− ταn)‖γf(xn)− ηAp‖‖xn − p‖. (3.8)

Since {xn} and {f(xn)} are bounded, there exists a constant C > 0 such that

(1− ταn)
2βn,0βn,kg(‖J

Bk
rn

xn − xn‖) ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + αnC. (3.9)

Let V I(A,F ) the solutions set of variational inequality (3.4). Now, we prove V I(A,F ) is nonempty.

Let t0 be a fixed real number such that t0 ∈
(

0,min{1 ,
1

τ
}
)

.We observe thatQF (I+(t0γf−t0ηA))
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is a contraction, where QF is the sunny nonexpansive retraction from E to F. Indeed, for all

x, y ∈ K, by Lemma 16, we have

‖QF (I + (t0γf − t0ηA))x −QF (I + (t0γf − t0ηA))x‖ ≤ ‖(I + (t0γf − t0ηA))x

−(I + (t0γf − t0ηA))x‖

≤ t0γ‖f(x)− f(y)‖

+‖(I − t0ηA)x − (I − t0ηA)y‖

≤ (1− t0(τ − γ))‖x− y‖.

Banach’s Contraction Mapping Principle guarantees that QF (I+(t0γf− t0ηA)) has a unique fixed

point, say x1 ∈ E. That is, x1 = QF (I + (t0γf − t0ηA))x1. Thus, in view of Lemma 11, it is

equivalent to the following variational inequality problem

〈ηAx1 − γf(x1), J(x1 − p)〉 ≤ 0, ∀ p ∈ F.

Hence, x1 ∈ V I(A,F ). By the uniqueness of the solution of (3.4), we have x1 = x∗.

Next, we prove that {xn} converges strongly to x∗. We divide the proof into two cases.

Case 1. Assume that the sequence {‖xn − p‖} is monotonically decreasing. Then {‖xn − p‖} is

convergent. Clearly, we have

‖xn − p‖2 − ‖xn+1 − p‖2 → 0.

It then implies from (3.9) that

lim
n→∞

βn,0βn,kg(‖J
Bk
rn

xn − xn‖) = 0. (3.10)

Since limn→∞ inf βn,0βn,k > 0 and property of g, we have

lim
n→∞

‖xn − JBk
rn

xn‖ = 0. (3.11)

By using the resolvent identity (Lemma 14), for any r > 0, we conclude that

‖xn − JBk
r xn‖ ≤ ‖xn − JBk

rn
xn‖+ ‖JBk

rn
xn − JBk

r xn‖

≤ ‖xn − JBk
rn

xn‖+ ‖JBk
r xn

(

r

rn
xn + (1 −

r

rn
)JBk

rn
xn

)

− JBk
r xn‖

≤ ‖xn − JBk
rn

xn‖+ ‖
r

rn
xn +

(

1−
r

rn

)

JBk
rn

xn − xn‖

≤ ‖xn − JBk
rn

xn‖+|1−
r

rn
| ‖JBk

rn
xn − xn‖ → 0, n → ∞, ∀k ∈ N

∗.

Hence,

lim
n→∞

‖xn − JBk
r xn‖ = 0. (3.12)

We show that lim sup
n→+∞

〈ηAx∗ − γf(x∗), J(x∗ − xn)〉 ≤ 0. Since E is reflexive and {xn} is bounded,

there exists a subsequence {xnj
} of {xn} such that {xnj

} converges weakly to a in K and

lim sup
n→+∞

〈ηAx∗ − γf(x∗), J(x∗ − xn)〉 = lim
j→+∞

〈ηAx∗ − γf(x∗), J(x∗ − xnj
)〉.
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From (3.12), the fact that JBk
r , k ∈ N

∗ are nonexpansive and Lemma 5, we obtain a ∈ F. On

the other hand, the assumption that the duality mapping is weakly continuous and the fact that

x∗ ∈ V I(A,F ), we then have

lim sup
n→+∞

〈ηAx∗ − γf(x∗), J(x∗ − xn)〉 = lim
j→+∞

〈ηAx∗ − γf(x∗), J(x∗ − xnj
)〉

= 〈ηAx∗ − γf(x∗), J(x∗ − a)〉 ≤ 0.

Finally, we show that xn → x∗. Applying Lemma 6, we get that

‖xn+1 − x∗‖2 = ‖QK(αnγf(xn) + (I − ηαnA)yn)− x∗‖2

≤ 〈αnγf(xn) + (I − ηαnA)yn − x∗, J(xn+1 − x∗)〉

= 〈αnγf(xn) + (I − ηαnA)yn − x∗ − αnγf(x
∗) + αnγf(x

∗)− αnηAx
∗

+αnηAx
∗, J(xn+1 − x∗)〉

≤
(

αnγ‖f(xn)− f(x∗)‖+ ‖(I − αnηA)(yn − x∗)‖
)

‖xn+1 − x∗‖

+αn〈ηAx
∗ − γf(x∗), J(x∗ − xn+1)〉

≤ (1− αn(τ − bγ))‖xn − x∗‖‖xn+1 − x∗‖+ αn〈ηAx
∗ − γf(x∗), J(x∗ − xn+1)〉

≤ (1− αn(τ − bγ))‖xn − x∗‖2 + 2αn〈ηAx
∗ − γf(x∗), J(x∗ − xn+1)〉.

From Lemma 7, its follows that xn → x∗.

Case 2. Assume that the sequence {‖xn−x∗‖} is not monotonically decreasing. SetBn = ‖xn−x∗‖

and τ : N → N be a mapping for all n ≥ n0 (for some n0 large enough) by τ(n) = max{k ∈ N :

k ≤ n, Bk ≤ Bk+1}.

We have τ is a non-decreasing sequence such that τ(n) → ∞ as n → ∞ and Bτ(n) ≤ Bτ(n)+1 for

n ≥ n0. Let i ∈ N
∗, from (3.9), we have

(1− τατ(n))
2βτ(n),0βτ(n),ig(‖J

Bi
rτ(n)

xτ(n) − xτ(n)‖) ≤ ατ(n)C → 0 as n → ∞.

Furthermore, we have

βτ(n),0βτ(n),ig(‖J
Bi

rτ(n)
xτ(n) − xτ(n)‖) → 0 as n → ∞.

Hence,

lim
n→∞

‖JBi

rτ(n)
xτ(n) − xτ(n)‖ = 0. (3.13)

By same argument as in Case 1, we can show that xτ(n) and yτ(n) are bounded in K and

lim sup
τ(n)→+∞

〈ηAx∗ − γf(x∗), J(x∗ − xτ(n))〉 ≤ 0. We have for all n ≥ n0,

0 ≤ ‖xτ(n)+1−x∗‖2−‖xτ(n)−x∗‖2 ≤ ατ(n)[−(τ−bγ)‖xτ(n)−x∗‖2+2〈ηAx∗−γf(x∗), J(x∗−xτ(n)+1)〉],

which implies that

‖xτ(n) − x∗‖2 ≤
2

τ − bγ
〈ηAx∗ − γf(x∗), J(x∗ − xτ(n)+1)〉.
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Then, we have

lim
n→∞

‖xτ(n) − x∗‖2 = 0.

Therefore,

lim
n→∞

Bτ(n) = lim
n→∞

Bτ(n)+1 = 0.

Furthermore, for all n ≥ n0, we have Bτ(n) ≤ Bτ(n)+1 if n 6= τ(n) (that is, n > τ(n)); because

Bj > Bj+1 for τ(n) + 1 ≤ j ≤ n. As a consequence, we have for all n ≥ n0,

0 ≤ Bn ≤ max{Bτ(n), Bτ(n)+1} = Bτ(n)+1.

Hence, lim
n→∞

Bn = 0, that is {xn} converges strongly to x∗. This completes the proof.

As a consequence of Theorem 18, we have the following theorem.

Theorem 19. Let q > 1 be a fixed real number and E be a q-uniformly smooth and uniformly

convex real Banach space having a weakly continuous duality map. Let {Bi}, i ∈ N
∗ be an infinite

family of m-accretive operators of E such that F :=
∞
∩
i=1

Bi
−1(0) 6= ∅. Let A : E → E be a k-

strongly accretive and L-Lipschitzian operator and and f : K → E be a b-Lipschitzian mapping

with a constant b ≥ 0. Let {xn} and {yn} be sequences defined iteratively from arbitrary x0 ∈ E

by:










yn = βn,0xn +

∞
∑

i=1

βn,iJ
Bi

rn
xn,

xn+1 = αnγf(xn) + (I − ηαnA)yn.

(3.14)

Let {rn} ⊂]0,∞[, {βn,i} and {αn} be real sequences in (0, 1) satisfying:

(i) lim
n→∞

αn = 0; (ii)

∞
∑

n=0

αn = ∞,

∞
∑

i=0

βn,i = 1,

(iii) lim
n→∞

inf rn > 0, and lim
n→∞

inf βn,0βn,i > 0, for all i ∈ N.

Assume that 0 < η <
( kq

dqLq

)
1

q−1

and 0 < bγ < τ, where τ = η
(

k−
dqL

qηq−1

q

)

. Then the sequence

{xn} generated by (3.14) converges strongly to x∗ ∈ F, which is a unique solution of variational

inequality (3.4) .

Proof. Since Bi are m-accretive operators, we conclude that Bi are accretive and satisfy the con-

dition R(I + rBi) = E for all r > 0. Setting K = E in Theorem 18, we obtain the desired

result.

Corollary 1. Let H be a real Hilbert space. Let K be a nonempty, closed and convex subset of H.

Let {Bi}, i ∈ N
∗ be an infinite family of monotone operators of H such that F :=

∞
⋂

i=1

Bi
−1(0) 6= ∅

and
∞
⋂

i=1

D(Bi) ⊂ K ⊂
∞
⋂

i=1

R(I + rBi), for all r > 0. Let A : K → H be a strongly bounded linear
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operator and and f : K → E be a b-Lipschitzian mapping with a constant b ≥ 0. Let {xn} and

{yn} be sequences defined iteratively from arbitrary x0 ∈ K by:















yn = βn,0xn +
∞
∑

i=1

βn,iJ
Bi

rn
xn,

xn+1 = PK

(

αnγf(xn) + (I − ηαnA)yn

)

.

(3.15)

Let {rn} ⊂]0,∞[, {βn,i} and {αn} be real sequences in (0, 1) satisfying:

(i) lim
n→∞

αn = 0; (ii)

∞
∑

n=0

αn = ∞,

∞
∑

i=0

βn,i = 1,

(iii) lim
n→∞

inf rn > 0, and lim
n→∞

inf βn,0βn,i > 0, for all i ∈ N.

Assume that 0 < η <
2k

‖A‖2
and 0 < bγ < τ, where τ = η

(

k −
‖A‖2η

2

)

. Then the sequence

{xn} generated by (3.15) converges strongly to x∗ ∈ F, which is the optimality condition for the

minimization problem

min
x∈F

η

2
〈Ax, x〉 − h(x), (3.16)

where h is a potential function for γf (i.e. h
′

(x) = γf(x) on K ).

Proof. From Remark 1, we have A is strongly monotone and ‖A‖-Lipschitz. the proof follows

Theorem 18.

4 Applications

In this section, as applications, we will utilize Theorem 18 to deduced several results. As a direct

consequence of Theorem 18, we have the following results:

4.1 Application to equilibrium problems

Let H be a real Hilbert space and let C be a nonempty, closed and convex subset of H. Let F be

a bifunction of C × C into R, where R is the real numbers. The equilibrium problem for F is to

find x ∈ C such that

F (x, y) ≥ 0, ∀y ∈ C. (4.1)

The set of solutions is denoted by EP (F ). Equilibrium problems which were introduced by Fan

[11] and Blum and Oettli [4] have had a great impact and influence on the development of sev-

eral branches of pure and applied sciences. For solving the equilibrium problem for a bifunction

F : C × C → R, let us assume that f satisfies the following conditions:

(A1) F (x, x) = 0 for all x ∈ C;

(A2) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0 for all x, y ∈ C;
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(A3) for each x, y, z ∈ C,

lim
t→0

F (tz + (1 − t)x, y) ≤ F (x, y)

(A4) for each x ∈ C, y → F (x, y) is convex and lower semicontinuous.

Lemma 20. [6] Assume that F : C × C → R satisfying (A1)-(A4). For r > 0 and x ∈ H, define

a mapping Tr : H → C as follows

Tr(x) = {z ∈ C, F (z, y) +
1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C},

for all x ∈ H. Then, the following hold:

1.Tr is single-valued;

2.Tr is firmly nonexpansive, i.e., ‖Tr(x) − Tr(y)‖2 ≤ 〈Trx− Try, x− y〉 for any x, y ∈ H ;

3.F (Tr) = EP (F );

4.EP (F ) is closed and convex.

The following lemma appears implicitly in [29].

Lemma 21. [29] Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let

F : C × C → R satisfy (A1)− (A4). Let AF be a set-valued mapping of H into itself defined by:

AFx =

{

{z ∈ H, F (x, y) ≥ 〈y − x, z〉, ∀y ∈ C, } ∀x ∈ C
∅, x /∈ C.

(4.2)

Then EP (F ) = AF
−1(0) and AF is a maximal monotone operator with D(AF ) ⊂ C. Furthermore,

for any x ∈ H and r > 0, the map Tr defined as Lemma 20 coincides with the resolvent of AF ,

i.e,

Trx =
(

I + rAF

)−1
x.

Using Theorem 18 , we prove a strong convergence theorem for an equilibrium problem in a

Hilbert space.

Theorem 22. Let H be a real Hilbert space and F : H ×H → R satisfying (A1)-(A4) such that

EP (F ) 6= ∅. Let A : H → H be a k-strongly monotone and L-Lipschitzian operator and f : K → E

be a b-Lipschitzian mapping with a constant b ≥ 0. Let {xn}, {un} and {yn} be a sequences defined

iteratively from arbitrary x0 ∈ H by:











F (un, y) +
1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ H

yn = βnxn + (1 − βn)un,
xn+1 = αnγf(xn) + (I − ηαnA)yn.

(4.3)

Let {rn} ⊂]0,∞[, {βn} and {αn} be real sequences in (0, 1) satisfying:

(i) lim
n→∞

αn = 0; (ii)
∞
∑

n=0

αn = ∞, βn ∈ [a, b] ⊂ (0, 1).
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(iii) lim
n→∞

inf rn > 0.

Assume that 0 < η <
2k

L2
and 0 < bγ < τ, where τ = η

(

k −
L2η

2

)

. Then the sequence {xn}

generated by (4.3) converge strongly to x∗ ∈ EP (f), which is a unique solution of variational

inequality

〈ηAx∗ − γf(x∗), x∗ − p〉 ≤ 0, ∀p ∈ EP (F ). (4.4)

Proof. Since F : H × H → R satisfying (A1)-(A4), we have that the mapping AF defined by

Lemma 21 is a maximal and monotone operator. Put B = AF in Theorem 19 (with i=1). Then,

we obtain that un = Trnxn = JB
rn
xn. Therefore, we arrive at the desired results.

4.2 Application to an infinite family of continuous pseudocontractive

mappings.

Let K be a nonempty, closed convex subset of a real Banach spaceE. A mapping T : K → K is

said to be pseudocontractive if there exists j(x − y) ∈ J(x− y) such that

〈Tx− Ty, j(x− y)〉 ≤ ‖x− y‖2, ∀x, y ∈ K.

It is well known that the class of pseudocontractive mapping is more general than the class of non-

expansive mapping. Moreover, there exists a relationship between the class of accretive mappings

and the class of pseudocontractive mappings. A mapping A : K → E is said to be pseudocontrac-

tive if T := I −A is accretive. We can observe that x∗ is a zero of the accretive mapping A if and

only if it is a fixed point of the pseudocontractive mapping T := I −A.

Hence, one has the following result.

Theorem 23. Let q > 1 be a fixed real number and E be a q-uniformly smooth and uniformly

convex real Banach space having a weakly continuous duality map. Let K be a nonempty, closed and

convex subset of E which is a nonexpansive retract of E with QK as the nonexpansive retraction.

Let Ti : K → E, i ∈ N
∗ be an infinite family of continuous pseudo-contractive mappings of such

that
∞
⋂

i=1

F (Ti) 6= ∅. For each r > 0, let J i
r := (I + r(I − Ti))

−1, i ∈ N
∗. Let A : K → E be a

k-strongly accretive and L-Lipschitzian operator and f : K → E be an b-Lipschitzian mapping with

a constant b ≥ 0. Let {xn} and {yn} be sequences defined iteratively from arbitrary x0 ∈ K by:















yn = βn,0xn +

∞
∑

i=1

βn,iJ
i
rn
xn

xn+1 = QK

(

αnγf(xn) + (I − ηαnA)yn

)

.

(4.5)

Let {rn} ⊂]0,∞[, {βn,i} and {αn} be real sequences in (0, 1) satisfying:

(i) lim
n→∞

αn = 0; (ii)
∞
∑

n=0

αn = ∞,
∞
∑

i=0

βn,i = 1,
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(iii) lim
n→∞

inf rn > 0, and lim
n→∞

inf βn,0βn,i > 0, for all i ∈ N
∗.

Assume that 0 < η <
( kq

dqLq

)
1

q−1

and 0 < bγ < τ, where τ = η
(

k −
dqL

qηq−1

q

)

. Then the

sequence {xn} generated by (4.5) converges strongly to x∗ ∈
∞
⋂

i=1

F (Ti), which is a unique solution

of variational inequality

〈ηAx∗ − γf(x∗), J(x∗ − p)〉 ≤ 0, ∀p ∈
∞
⋂

i=1

F (Ti). (4.6)

Proof. For each i ∈ N
∗, we set Bi = I −Ti into Theorem 18. Then F (Ti) = Bi

−1(0), for all i ∈ N
∗

and hence

∞
⋂

i=1

F (Ti) =

∞
⋂

i=1

Bi
−1(0). Furthermore, each Bi is m-accretive. Therefore, the proof is

complete from Theorem 18.
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ABSTRACT

Infection due to Chikungunya virus (CHIKV) has a substantially prolonged recupera-

tion period that is a long period between the stage of infection and recovery. However,

so far in the existing models (SIR and SEIR), this period has not been given due atten-

tion. Hence for this disease, we have modified the existing SEIR model by introducing

a new section of human population which is in the recuperation stage or in other words

the human population that is no more showing acute symptoms but is yet to attain

complete recovery. A mathematical model is formulated and studied by means of exis-

tence and stability of its disease free equilibrium (DFE) and endemic equilibrium (EE)

points in terms of the associated basic reproduction number (R0).

RESUMEN

La infección debida al virus Chikungunya (CHIKV) tiene un peŕıodo de recuperación

sustancialmente prolongado, que es un peŕıodo largo entre la etapa de infección y

recuperación. Sin embargo, hasta ahora en los modelos existentes (SIR y SEIR), este

peŕıodo no ha recibido suficiente atención. Por tanto, para esta enfermedad, hemos

modificado el modelo SEIR existente introduciendo una nueva sección de población

humana que está en la etapa de recuperación o, en otras palabras, la población humana

que ya no muestra śıntomas agudos pero todav́ıa no se recupera completamente. Se

formula y estudia un modelo matemático a través de la existencia y estabilidad de su

equilibrio libre de enfermedad (DFE) y puntos de equilibrio endémico (EE) en términos

del número de reproducción básico asociado (R0).

Keywords and Phrases: Equilibrium point, disease free equilibrium, endemic equilibrium, re-

production number, local stability, global stability.
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1 Introduction

In recent past, the study of vector borne diseases has gained considerable attention and mathemat-

ics have become a useful tool for such studies. Several temporal deterministic models have been

proposed for diseases like dengue, malaria, chikungunya etc. Chikungunya is a disease caused by

the chikungunya virus, an RNA genome which is a member of the Alphavirus genus in the family

of Togaviridae. It is a mosquito borne viral disease which is transmitted to humans through Aedes

aegypti mosquito bite [1]. In 1952, chikungunya was first confirmed as the cause of an epidemic

of dengue like illness on the Comoros islands located on the eastern coast of northern Mozam-

bique [2]. Since its discovery, numerous CHIKV outbreaks with irregular intervals of 2-20 years

have affected Asian, African, European and American countries. In Thailand, the first report of

chikungunya infection occurred in Bangkok in 1958 [3]. In India, the virus emerged in parts of

Vellore, Calcutta and Maharashtra in the early 1960’s [4]. The virus continued to spread in Sri

Lanka in 1969 and many countries of Southeast Asia such as Myanmar, Indonesia and Vietnam

[4]. Later, some irregular cases of chikungunya fever were also seen in many provinces of Thailand

in the period from 1976 to 1995 [3]. From 1999 to 2000, the reemergence of chikungunya occurred

in Democratic Republic of Congo [2], 13,500 cases were reported in Lamu, Kenya in 2004 [5]. In

the years 2005-2007, there occurred an outbreak in Reunion islands in the Indian Ocean. In 2007,

197 cases were reported in Europe due to chikungunya [1]. The outbreak mutated to facilitate the

disease transmission by Aedes albopictus from the tiger mosquito family. It was a mutation in one

of the viral envelope genes which allowed the virus to be present in the mosquito saliva only two

days after the infection and seven days in Aedes aegypti mosquitoes. The results indicated that

the areas where the tiger mosquitoes are present could have a greater risk of outbreak.

After an effective bite from a mosquito infected with CHIKV, the incubation period (i.e., the

time elapsed between exposure to pathogenic organism and when symptoms and signs are first

apparent) usually lasts for 3-7 days with fever as the most prominent symptom. The symptoms

of chikungunya fever differ from the normal fever as they are accompanied with acute joint pains.

Other common symptoms are nausea, rashes, headache and fatigue. Some cases may result in neu-

rological, retinal and carpological complications as well, which makes it difficult for older people

to recover as against young people. In some instances, people live with joint pains for years which

indicates that the recuperation period can last for a long time. The symptoms of chikungunya

are generally mild and the disease may sometimes be misdiagnosed with Zika and Dengue due to

similarity in symptoms. There have been very few cases where chikungunya resulted in death and

mostly infected individuals are expected to make full recovery with lifelong immunity. As such,

there is no preventive vaccine or cure for chikungunya. One can only manage the symptoms by

taking medications for temporary relief. To prevent the spread of disease, breeding sites for the

mosquitoes should be checked. Using mosquito repellents and wearing long sleeve clothes and full
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pants can help in preventing mosquito bite. For more such information one may refer to [1].

Increasing globalization and factors contributing to climate change brought about a sudden

expansion of mosquito breeding sites. This makes it necessary to improve the vector control tech-

niques and to identify the indexes that monitor thresholds for such programs. Through the 20th

century, mathematical modeling has been extensively used to study epidemic diseases. Futher-

more, this branch of mathematics is also being used to devise optimal control strategies for various

infectious diseases. Like M. Barro et al. [6] introduced an optimal control for a SIR model governed

by an ODE system with time delay. And, O. K. Oare [7] considered and analyzed a deterministic

multipatch hepatitis C virus model for it.

In context of infection due to chikungunya virus, Y. Dumont et al. [8] proposed a model

associated with the time course of the first epidemic of chikungunya in several cities of Reunion

Island. A model describing the mosquito population dynamics and the virus transmission to human

population was discussed by D. Moulay et al. [9]. Although simplistic, L. Yacob et al. [10] gave

a model which provided a close approximation of the peak incidence of the outbreak and the final

epidemic size. S. Naowarat and I. M. Tang [11] studied the model taking into consideration the

presence of two species of Aedes mosquito (Aedes aegypti and Aedes albopictus). D. H. Palacio

and J. Ospina [12] derived measures of disease control, by means of three scenarios, namely a single

vector, two vectors, and two vectors and human and non-human reservoirs. It also showed the

need to periodically evaluate the effectiveness of vector control measures. F. B. Agusto et al. [13]

described the chikungunya model of three age structured transmission dynamics by considering

juvenile, adult and senior population, where the dynamics of shift in individuals from one stage to

another was studied.

In this paper, we introduce a deterministic model to study the dynamics and transmission of

chikungunya virus by considering a very significant section from the class of infected individuals.

Usually, the existing models focus on the SIR or the SEIR human population model and SEI

mosquito population model. Since the period from the infected stage to the complete recovery

stage is quite long for this disease, so it becomes significant to study that particular class of

human population which has recovered from acute symptoms of the disease but is yet to attain

full recovery. Though the class no longer shows the immediate symptoms like fever, rashes, nausea

etc. but at the same time they are bearing the latent and the passive effects of the disease like

joint pains, fatigue, headache etc. Generally such ailments continue for a prolonged period which

may vary from individual to individual. But as long as the patient is suffering from these ailments,

he or she cannot be declared as fully recovered [14]. Focussing on this category of patients, we

introduce a new compartment between compartments of the infected and the recovered human

population within the existing SEIR model. We refer to it as the recuperation compartment and

denote it by R′. So, in this paper our aim is to study, analyse and investigate in detail the model

showing the interaction between the human population divided into five compartments resulting
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into a SEIR′R model and the mosquito population into the traditional three compartments which

we denote by XYZ model.

The paper is divided as follows: Section 2 deals with the formulation of the model, section 3

analyses its feasibility, section 4 determines the disease free equilibrium (DFE) and establishes its

local and global stability , section 5 deals with the existence of endemic equilibrium (EE) and its

local stability. Also by means of simulation of the formulated model, we provide a visualization

to the dynamics of this disease, in section 6. Finally related to our model, some conclusions are

stated.

2 Model Formulation

In this section, an epidemic model is formulated for chikungunya disease. Let NH represent the

total human population which is further subdivided into five categories; susceptibles (S), humans

exposed to infection (E), infected humans (I), population in recuperation phase (R′) and finally

the population that has attained complete recovery (R). So, the traditional SEIR epidemic model

has been modified to a more relevant and practically applicable SEIR′R model. Hence in this case,

at any time t

NH(t) = S(t) + E(t) + I(t) +R′(t) +R(t). (2.1)

Let NM represent the total mosquito population which is further subdivided into 3 parts; suscep-

tible mosquitoes (X), mosquitoes exposed to infection (Y) and infectious mosquitoes (Z). So the

total mosquito population is NM (t) = X(t) + Y (t) + Z(t).

For human population, let µ be the constant birth rate and ζ be the natural death rate. Then

the rate of change of susceptible human population is given by

dS

dt
= µ− λHS − ζS, (2.2)

where λH =
βBHZ

NH

. BH is the transmission probability per contact for susceptible humans (S)

and β is the mosquito biting rate for transfer of infection from infectious mosquito class (Z) to

susceptible human population (S). As only the susceptible human population out of the whole

population is prone to get infection, thereby we divide the expression by NH . The rate of change

of exposed human population is given by

dE

dt
= λHS − αE − ζE, (2.3)

where α is the rate of progression from exposed (E) to infected (I) human population. Here the

inflow rate is λH and outflow rate is α + ζ. Similarly, the rate of change of infected human

population is



CUBO
22, 2 (2020)

Mathematical Modeling of Chikungunya Dynamics . . . 181

dI

dt
= αE − γI − (ζ + ζ1)I, (2.4)

where ζ1 is death rate due to infection and γ is progression rate of infected (I) to recuperated

(R′) human population. Now, rate of change of human population in recuperation phase is

dR′

dt
= γI − λR′ − (ζ + ζ2)R

′, (2.5)

where ζ2 is the death rate of humans in recuperated phase due to virus and λ is the rate of

progression from recuperation (R′) to the recovery phase (R). Finally, rate of change of recovered

human population is,

dR

dt
= λR′ − ζR. (2.6)

Again for the mosquito population, let ρ be the constant birth rate and κ be the natural death

rate, then the rate of susceptible mosquito population is given by

dX

dt
= ρ− λMX − κX, (2.7)

where λM =
νBM (I +R′)

NH

. BM is the transmission probability per contact for susceptible

mosquito population (X) and ν is the mosquito biting rate for transfer of infection from infected

(I) or recuperated (R′) human population to susceptible mosquito population (X). Again there

occurs division by NH because infection can be transfered to mosquitoes only by a certain fraction

of human population. Now, the rate of change of exposed mosquito population is given by

dY

dt
= λMX − ψY − κY, (2.8)

where ψ is the progression rate from exposed (Y) to infectious (Z) mosquito population. Here the

inflow rate is λM and outflow rate is ψ + κ. Similarly, the rate of change of mosquito population

carrying infection is

dZ

dt
= ψY − κZ. (2.9)

Compiling the above discussion, we get the eight dimensional system of nonlinear ordinary differ-

ential equations that forms our Chikungunya Model (CM). The parameters and the variables used

in the model (CM) are described in Table 1. To get a clear view of the inter relationships between

various compartments in discussion, one may refer to Figure 1 which shows the schematic flow
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diagram of the model. The model (CM) is as follows:

(CM)
dS

dt
= µ−

βBHZS

NH

− ζS,

dE

dt
=
βBHZS

NH

− αE − ζE,

dI

dt
= αE − γI − (ζ + ζ1)I,

dR′

dt
= γI − λR′ − (ζ + ζ2)R

′,

dR

dt
= λR′ − ζR,

dX

dt
= ρ−

νBM (I +R′)X

NH

− κX,

dY

dt
=
νBM (I +R′)X

NH

− ψY − κY,

dZ

dt
= ψY − κZ.

Figure 1: Schematic diagram of Chikungunya Model (CM)
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Table 1: Description of variables and parameters used in model (CM)

Variables Description
S Susceptible human population.
E Exposed human population.

(Population that is infected but yet to show symptoms).
I Infected Human population showing symptoms.
R′ Human population in recuperation phase.
R Fully recovered human population.
X Susceptible mosquito population.
Y Exposed mosquito population.

(carrying infection but not yet capable to spread it).
Z Infectious mosquito population spreading the disease.

Parameters Description
µ Human birth rate.
β Mosquito biting rate for transfer of infection from

infectious mosquito class (Z) to susceptible human population (S).
α Progression rate of exposed to infected human population.
γ Progression rate of infected to recuperated human population.
λ Progression rate of recuperated to fully recovered human population.
ρ Mosquito birth rate.
ν Mosquito biting rate for transfer of infection from

infected human population(I) or population under recuperation phase (R′)
to susceptible mosquito population (X).

ψ Progression rate from exposed to infectious mosquito population.
ζ Natural death rate for human population.
ζ1 Human death rate in infected stage due to viral infection.
ζ2 Human death rate due to infection under recovery phase.
κ Natural death rate for mosquito population.
BH Transmission probability per contact in susceptible humans.
BM Transmission probability per contact in susceptible mosquitoes.
NH Total human population, i.e. S+E+I+R′+R.



184 Ruchi Arora, Dharmendra Kumar, Ishita Jhamb and Avina Kaur CUBO
22, 2 (2020)

Table 2: Range of Parameters for the model (CM)

Parameters Range References

µ 400×
1

15× 365
- 400×

1

12× 365
[15, 16]

β 0.19 - 0.39 [15, 17]

α
1

4
-
1

2
[4, 15, 18, 19, 20, 21]

γ
1

4
-
1

2
Estimated [14]

λ
1

8
-
1

4
Estimated [14]

ρ 500× 0.015 - 500× 0.33 [15, 16, 22, 23]

ν 0.19 - 0.39 [15, 17]

ψ
1

6
-
1

2
[9, 18, 20, 24]

ζ
1

60× 365
-

1

18× 365
[13]

ζ1
1

105
-

1

104
[25]

ζ2
1

106
-

1

105
[25]

κ
1

42
-

1

14
[9, 18, 19, 20, 21]

BH 0.001 - 0.54 [8, 15, 26, 18, 27]

BM 0.005 - 0.35 [8, 26, 27, 28, 29]
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Table 3: Values of Parameters for Simulation

Parameters R0 < 1 R0 > 1

µ 400×
1

15× 365
400×

1

15× 365

β 0.25 0.30

α
1

3

1

4

γ
1

3

1

4

λ
1

7

1

8

ρ 500× 0.1675 500× 0.2

ν 0.25 0.30

ψ
1

3.5

1

4

ζ
1

40× 365

1

30× 365

ζ1
1

104
1

105

ζ2
1

105
1

106

κ
1

14

1

30

BH 0.24 0.30

BM 0.24 0.30
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3 Preliminary Results

3.1 Positivity of Solutions

In order to establish the epidemiological meaningfullness [13], we prove the non negativity of the

state variables for the formulated model at all t > 0.

Theorem 3.1: The solution M(t) = (S,E, I, R′, R,X, Y, Z) of model (CM) with M(0) ≥ 0, is

non negative for all t > 0. Moreover,

lim
t→∞

sup NH(t) =
µ

ζ
and lim

t→∞

sup NM (t) =
ρ

κ

where NH(t) = S(t) + E(t) + I(t) +R′(t) +R(t) and NM (t) = X(t) + Y (t) + Z(t).

Proof: Let t1 = sup {t > 0 :M(t) > 0}. Clearly t1 > 0. Consider the first equation of the model

(CM),
dS

dt
= µ−

βBHSZ

NH

− ζS.

Solving the differential equation we have,

d

dt

{

S(t) exp

[(
∫ t1

0

βBHZ(τ)

NH(τ)
dτ + ζt

)]}

= µ exp

[(
∫ t1

0

βBHZ(τ)

NH(τ)
dτ + ζt

)]

=⇒ S(t1) exp

[(
∫ t1

0

βBHZ(τ)

NH(τ)
dτ + ζt1

)]

− S(0) =

∫ t1

0

µ exp

[(
∫ u

0

βBHZ(τ)

NH(τ)
dτ + ζu

)]

du.

Furthermore,

S(t1) =S(0) exp

[(

−

∫ t1

0

βBHZ(τ)

NH(τ)
dτ + ζt1

)]

+exp

[(

−

∫ t1

0

βBHZ(τ)

NH(τ)
dτ + ζt1

)]
∫ t1

0

µ exp

[(
∫ u

0

βBHZ(τ)

NH(τ)
dτ + ζu

)]

du > 0.

Similarly, the non negativity can be shown for all the state variables, i.e., M(t1) > 0 and therefore

M(t) > 0 for all t > 0. In fact, we now have, 0 < S(t) ≤ NH(t), 0 < E(t) ≤ NH(t), 0 < I(t) ≤

NH(t), 0 < R′(t) ≤ NH(t), 0 < R(t) ≤ NH(t); 0 < X(t) ≤ NM (t), 0 < Y (t) ≤ NM (t), 0 < Z(t) ≤

NM (t). As the total human population is given by NH(t) = S(t) + E(t) + I(t) +R′(t) +R(t), the

rate of change of human population with respect to time is given by

dNH

dt
= µ− ζ(S + E + I +R′ +R)− ζ1I − ζ2R

′

= µ− ζNH − ζ1I − ζ2R
′

≤ µ− ζNH . (3.1)
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Now for NM (t) = X(t) + Y (t) + Z(t),

dNM

dt
≤ ρ− κNM .

LetN =
µ

ζ
. As t→ ∞, the disease will disappear. Therefore, lim

t→∞

sup I(t) = 0 and lim
t→∞

sup R′(t) =

0. Now,
dNH

dt
= µ − ζNH this implies NH(t) =

µ

ζ
+

(

NH(0)−
µ

ζ

)

e−ζt, which further implies

lim
t→∞

NH(t) =
µ

ζ
= N . This follows that 0 < lim

t→∞

supNH(t) ≤ N =
µ

ζ
if lim

t→∞

sup I(t) = 0 and

lim
t→∞

sup R′(t) = 0. And if NH > N =
µ

ζ
then from (3.1),

dNH

dt
< 0. Similarly, it can be seen that

0 < lim
t→∞

supNM (t) ≤
ρ

κ
.

3.2 Invariant Region

Consider ℜ = ℜH ×ℜM ⊂ R
5
+ × R

3
+, where

ℜH =

{

S,E, I, R′, R : NH(t) ≤
µ

ζ

}

,

ℜM =
{

X,Y, Z : NM (t) ≤
ρ

κ

}

.

Now, we establish the positive invariance [13], of the region ℜ associated to the model (CM). That

is, we show that solutions in ℜ remain in ℜ for all t > 0 .

Theorem 3.2: The region ℜ ⊂ R
8
+ is positively invariant for the model (CM), with non-negative

initial conditions in R
8
+.

Proof : As seen in Theorem 3.1,
dNH

dt
≤ µ − ζNH and

dNM

dt
≤ ρ − κNM . By using standard

comparison theorem [30], it can be seen that, NH(t) ≤
µ

ζ
= N . So, clearly every solution in ℜH

remains in ℜH for all t > 0. Similar is the case for every solution of ℜM . Hence, the region ℜ is

positively invariant and contains all solutions of R8
+ for model (CM).

In the following sections, we show the existence and stability of the disease free equilibrium

(DFE) and endemic equilibrium (EE) for the model (CM).

4 Disease Free Equilibrium (DFE)

In this section, we find a unique disease free equilibrium (DFE) for the model (CM) and then

analyse its stability.
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4.1 Existence of Equilibrium

To determine the disease free equilibrium (DFE) of the model, we consider the sections of pop-

ulations that are free from disease and put their time derivatives equal to zero. Let DFE be

denoted by Ed = (S∗, E∗, I∗, R
′
∗, R∗, X∗, Y ∗, Z∗). As sections of susceptible and recovered hu-

mans as well as susceptible mosquitoes are the only sections free from disease therefore Ed =

(S∗, 0, 0, 0, R∗, X∗, 0, 0). Solving the differential equations of the model (CM), DFE is obtained as

Ed =
(

µ
ζ
, 0, 0, 0, 0, ρ

κ
, 0, 0

)

.

4.2 Reproduction Number

Let the basic reproduction number be denoted by R0, which is defined as the expected number of

secondary cases produced by a single (typical) infection in a population that is completely disease

free. To find the threshold quantity R0 [31, 32], we consider the next generation matrix G, which

comprises of two matrices F and V −1, where F =
dFi(x0)

dxj
and V =

dVi(x0)

dxj
for 1 ≤ i, j ≤ 5.

Here, Fi represents the new infection, whereas Vi corresponds to the transfers of infection from one

compartment to another. Let x0 be the disease free equilibrium state. Hence, the reproduction

number is the largest eigen value of the next generation matrix G (defined as the product of

matrices F and V −1), that is the largest eigen value of the matrix, G = FV −1. Corresponding to

the model (CM),

F =













βBHSZ
NH

0
0

νBM (I+R′)X
NH

0













and V =













αE + ζE

−αE + γI + (ζ + ζ1)I
−γI + λR′ + (ζ + ζ2)R

′

ψY + κY

−ψY + κZ













.

Next, we find the Jacobian F and V of the matrices F and V respectively and the eigen values of

the matrix G = FV −1, gives the reproduction number as

R0 =

√

ρνψζαβBHBM (λ+ γ + ζ + ζ2)

κ
√

µ(ψ + κ)(ζ + α)(ζ + γ + ζ1)(ζ + λ+ ζ2)
.
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4.3 Local Stability

Theorem 4.1 : The DFE of the chikungunya model (CM) is locally asymptotically stable, if

R0 < 1 and unstable if R0 > 1, where R0 is the associated reproduction number.

Proof : We consider the system of non linear differential equations, corresponding to the model

(CM) to evaluate its Jacobian matrix. Let JD denote the Jacobian of the system at DFE that is,

JD =

























−ζ 0 0 0 0 0 0 −BHβ

0 −α− ζ 0 0 0 0 0 BHβ

0 α −γ − ζ − ζ1 0 0 0 0 0
0 0 γ −λ− ζ − ζ2 0 0 0 0
0 0 0 λ −ζ 0 0 0

0 0 − νBMρζ
κµ

− νBMρζ
κµ

0 −κ 0 0

0 0 νBMρζ
κµ

νBMρζ
κµ

0 0 −ψ − κ 0

0 0 0 0 0 0 ψ −κ

























Clearly, the trace of the matrix JD is negative and determinant of matrix JD [33, 34], is given by

det(JD) =
−ζ2[κ2µ(ψ + κ)(ζ(ζ + α+ γ) + αγ + ζζ1 + ζ1α)(−ζ − λ− ζ2)] + ρνζψαβBHBM (ζ + λ+ γ + ζ2)

µ
.

For R0 < 1, we have

√

ρνψζαβBHBM (ζ + γ + λ+ ζ2) < κ
√

µ(ψ + κ)(ζ + α)(ζ + λ+ ζ2)(ζ + γ + ζ1).

Therefore,

κ2µ(ψ + κ)(ζ + λ+ ζ2)(ζ(ζ + α+ γ) + αγ + ζζ1 + ζ1α)− ψ[ρνζαβBHBM (ζ + λ+ γ + ζ2)] > 0

or det(JD) > 0. Hence, DFE is locally asymptotically stable if R0 < 1 .

4.4 Global Stability

Consider the feasible region ℜ1 = {D ∈ ℜ : S ≤ S∗, X ≤ X∗} where D = (S,E, I, R′, R,X, Y, Z),

S∗ and X∗ are the components of DFE (Ed).

Lemma 4.1: The region ℜ1 is positively invariant for the model (CM).
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Proof: From the first equation of the model (CM),

dS

dt
= µ−

βBHZS

NH

− ζS

≤ µ− ζS

≤ ζ

(

µ

ζ
− S

)

≤ ζ(S∗ − S)

S ≤ S∗ + (S(0)− S∗)e−ζt

Thus, if S∗ = µ
ζ
for all t ≥ 0 and S(0) ≤ S∗ , then S ≤ S∗ for all t ≥ 0. Similarly, for

dX

dt
= ρ−

νBM (I +R′)X

NH

− κX

≤ ρ− κX

≤ κ(X∗ −X)

X ≤ X∗ + (X(0)−X∗)e−κt

Thus, if X∗ = ρ
κ
for all t ≥ 0 and X(0) ≤ X∗, then X ≤ X∗ for all t ≥ 0. Hence, it has been shown

that the region ℜ1 is positively invariant and attracts all solutions in ℜ8
+ for the model (CM).

Now in order to establish the global asymptotic stability of DFE [35], we rewrite the model (CM)

as
[

dTU

dt
= F (TU , TI)

dTI

dt
= G(TU , TI), G(TU , 0) = 0

]

(RM)

where TU = (S,R,X) ∈ R
3 and TI = (E, I,R′, Y, Z) ∈ R

5.

Let E∗

D = (T ∗

U , 0) be DFE of (RM) where T ∗

U =
(

µ
ζ
, 0, ρ

κ

)

. We now state the following two condi-

tions which must be satisfied to guarantee global asymptotic stability:

(H1) For
dTU

dt
= F (TU , 0), T

∗

U is globally asymptotically stable.

(H2) G(TU , TI) = ATI − Ĝ(TU , TI), Ĝ(TU , TI) ≥ 0, (TU , TI) ∈ ℜ where A =
∂G(T ∗

U , 0)

∂TI
is an

M-matrix which by definition has the off diagonal elements non-negative.

Theorem 4.2: The fixed point E∗

D = (T ∗

U , 0) is globally asymptotic stable (g.a.s) equilibrium of

(RM) provided that R0 < 1 and that assumptions (H1) and (H2) are satisfied.

Proof: For the system (RM),

dTU

dt
= F (TU , 0) =







µ− ζS

0

ρ− κX






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We solve the above linear differential system to get the S(t) =
µ

ζ
+ S∗(0)e−µt, R(t) = 0 and

X(t) =
ρ

κ
+X∗(0)e−κt which implies S(t) →

µ

ζ
, R(t) → 0 and X(t) →

ρ

κ
as t→ ∞.

Therefore, disease free point T ∗

U is a globally asymptotic stable (g.a.s) equilibrium of
dTU

dt
=

F (TU , 0). Hence (H1) holds. Clearly it can be seen that

G(TU , TI) =













βBHZS
NH

− αE − ζE

αE − γI − (ζ + ζ1)I
γI − λR′ − (ζ + ζ2)R

′

νBM (I+R′)X
NH

− ψY − κY

ψY − κZ













Also from (H2) G(TU , TI) = ATI − Ĝ(TU , TI), where

A =
∂G(T ∗

U , 0)

∂TI
=













−α− ζ 0 0 0 βBH

α −γ − ζ − ζ1 0 0 0
0 γ −λ− ζ − ζ2 0 0

0 νBMρζ
κµ

νBMρζ
κµ

−ψ − κ 0

0 0 0 ψ −κ













.

Therefore,

∂G(T ∗

U , 0)

∂TI
TI =













−αE − ζE − βBHZ

αE − γI − (ζ + ζ1)I
γI − λR′ − (ζ + ζ2)R

′

νBMaζ
κµ

(I +R′)− (ψ + κ)Y

ψY − κZ













.

In view of (H2), Ĝ(TU , TI) =
∂G(T∗

U
,0)

∂TI

TI −G(TU , TI) which gives

Ĝ(TU , TI) =















βBHZ(1−
S

NH

)

0
0

νBM (I +R′)
[

ρζ
µκ

− X
NH

]

0















.

Clearly, βBHZ(1−
S

NH

) ≥ 0 as
S

NH

< 1. Also,
κX

ρ
≤
ζNH

µ
or

ρζ

µκ
≥

X

NH

⇒
X∗

S∗
≥

X

NH

and from

Lemma 4.1 we know X∗ ≥ X and N∗

H = S∗ ≥ NH , which implies νBM (I + R′)

[

ρζ

µκ
−

X

NH

]

≥ 0.

Therefore, (H2) holds true. Hence, E∗

D = (T ∗

U , 0) is globally asymptotically stable in the region ℜ

whenever R0 ≤ 1.

5 Endemic Equilibrium

In this section, we first determine the endemic equilibrium points for the model (CM), establish

its existence and then analyse its stability.
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5.1 Endemic Equilibrium Points

Let endemic equilibrium points be denoted by Ee = (S∗∗, E∗∗, I∗∗, R′∗∗, R∗∗, X∗∗, Y ∗∗, Z∗∗). The

components of Ee are obtained by imposing constant solutions in the model (CM) and solving the

algebraic equations. By computations, we have

S∗∗ =
µNH

ζNH + Z∗∗βBH

,

E∗∗ =
βBHZ

∗∗µ

(α + ζ)(βBHZ∗∗ + ζNH)
,

I∗∗ =
αβBHZ

∗∗µ

(γ + ζ + ζ1)(α + ζ)(βBHZ∗∗ + ζNH)
,

R′∗∗ =
αγβBHZ

∗∗µ

(λ + ζ + ζ2)(γ + ζ + ζ1)(α + ζ)(βBHZ∗∗ + ζNH)
,

R∗∗ =
λαβBHZ

∗∗µγ

ζ(λ + ζ + ζ2)(γ + ζ + ζ1)(α+ ζ)(βBHZ∗∗ + ζNH)
,

X∗∗ =
ρ

λM + κ
,

Y ∗∗ =
ρλM

(λM + κ)(ψ + κ)
,

Z∗∗ =
ρψλM

κ(λM + κ)(ψ + κ)
.

5.2 Existence and Uniqueness of Endemic Equilibrium(E
e
)

Theorem 5.1 : Chikungunya Model (CM) has a unique endemic equilibrium if R0 > 1.

As seen in section 2,

λM =
νBM (I∗∗ +R

′
∗∗)

NH

=
νBMζαβµBHZ

∗∗(ζ + ζ2 + λ+ γ)

µ(βBHZ∗∗ + µ)(α+ ζ)(ζ + ζ1 + γ)(ζ + ζ2 + λ)

=
R2

0µZ
∗∗κ2(ψ + κ)

ρψ(βBHZ∗∗ + µ)

Also, λH =
βBHZ

∗∗

NH

=
βBHρψλM

κNH(λM + κ)(ψ + κ)
, or equivalently λM =

λHµκ
2(ψ + κ)

βBHρψζ − µκ(ψ + κ)λH
.
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Equating both values of λM , we get the following linear equation in terms of λH :

λH(ρψβBH +R2
0µκ(ψ + κ)) = (R2

0 − 1)βBHρψζ.

The unique solution to this equation exists and is given by

λH =
(R2

0 − 1)βBHρψζ

ρψβBH +R2
0µκ(ψ + κ)

,

which is positive if R2
0 > 1. This implies Z∗∗ > 0, for R0 > 1. Hence, unique endemic equilibrium

exists for R0 > 1.

5.3 Local Stability

Theorem 5.2: The endemic equilibrium of the chikungunya model (CM) is locally asymptotically

stable if R0 > 1.

Proof: We evaluate the Jacobian matrix for the system of nonlinear differential equations corre-

sponding to the model (CM). Let Je denote the Jacobian of the system at Ee (which exists for

R0 > 1). Clearly, JE = (J1, J2, J3, J4, J5, J6, J7, J8)
T where

J1 =
(

−βBHZ∗∗

NH
+ βBHZ∗∗S∗∗

(NH )2
− ζ,

βBHZ∗∗S∗∗

(NH)2
,
βBHZ∗∗S∗∗

(NH)2
,
βBHZ∗∗S∗∗

(NH)2
,
βBHZ∗∗S∗∗

(NH)2
, 0, 0, −βBHS∗∗

NH

)

,

J2 =
(

βBHZ∗∗

NH
−

βBHZ∗∗S∗∗

(NH )2
,
−βBHZ∗∗S∗∗

(NH)2
− α− ζ,

−βBHZ∗∗S∗∗

(NH)2
,
−βBHZ∗∗S∗∗

(NH)2
,
−βBHZ∗∗S∗∗

(NH)2
, 0, 0, βBHS∗∗

NH

)

,

J3 = (0, α,−γ − ζ − ζ1, 0, 0, 0, 0, 0) , J4 = (0, 0, γ,−λ− ζ − ζ2, 0, 0, 0, 0) ,

J5 = (0, 0, 0, λ,−ζ, 0, 0, 0) ,

J6 =

(

νBM (I∗∗+R
′
∗∗)X∗∗

(NH )2
,
νBM (I∗∗+R

′
∗∗)X∗∗

(NH)2
,
νBM (I∗∗+R

′
∗∗)X∗∗

(NH )2
−

νBMX∗∗

NH

,
νBM (I∗∗+R

′
∗∗)X∗∗

(NH)2
−

νBMX∗∗

NH

,

0,− νBM (I∗∗+R
′
∗∗)

NH
− κ, 0, 0

)

,

J7 =

(

−νBM (I∗∗+R
′
∗∗)X∗∗

(NH )2
,
−νBM (I∗∗+R

′
∗∗)X∗∗

(NH)2
,
−νBM (I∗∗+R

′
∗∗)X∗∗

(NH)2
+ νBMX∗∗

NH

,
−νBM (I∗∗+R

′
∗∗)X∗∗

(NH)2
+ νBMX∗∗

NH

,

0, νBM (I∗∗+R
′
∗∗)

NH
,−κ− ψ, 0

)

, J8 = (0, 0, 0, 0, 0, 0, ψ,−κ)

Further, we reduce JE to the following upper triangular matrix (UE). UE = (U1, U2, U3, U4, U5, U6, U7, U8)
T

where

U1 =
(

−βBHZ∗∗

NH

+ βBHZ∗∗S∗∗

(NH)2 − ζ, βBHZ∗∗S∗∗

(NH)2 , βBHZ∗∗S∗∗

(NH)2 , βBHZ∗∗S∗∗

(NH)2 , βBHZ∗∗S∗∗

(NH)2 , 0, 0, −βBHS∗∗

NH

)

,

U2 =
(

0, −βBHZ∗∗S∗∗

(NH)2 − α− ζ, −βBHZ∗∗S∗∗

(NH)2 , −βBHZ∗∗S∗∗

(NH)2 , −βBHZ∗∗S∗∗

(NH)2 , 0, 0, βBHS∗∗

NH

)

,

U3 = (0, 0,−γ − ζ − ζ1, 0, 0, 0, 0, 0) , U4 = (0, 0, 0,−λ− ζ − ζ2, 0, 0, 0, 0) ,

U5 = (0, 0, 0, 0,−ζ, 0, 0, 0) , U6 =

(

0, 0, 0, 0, 0,− νBM(I∗∗+R
′
∗∗)

NH

− κ, 0, 0

)

,

U7 = (0, 0, 0, 0, 0, 0,−κ− ψ, 0) , U8 = (0, 0, 0, 0, 0, 0, 0,−κ)
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Attached are the eigen values of UE :
(

−ζ,−κ,−ψ − κ,−γ − ζ − ζ1,−λ− ζ − ζ2,−
νBM (I∗∗+R

′
∗∗)

NH
− κ,

Z∗∗βBH(S∗∗
−NH)

(NH)2 − ζ, −βBHZ∗∗S∗∗

(NH)2 − α− ζ

)

each of which is negative and by the criterion given in [36], the endemic equilibrium point (Ee) is

locally asymptotically stable if R0 > 1.

6 Numerical Simulation

The values of parameters that would be used for simulation of the model (CM) are listed in Table

3. The values used for simulation are taken with reference to their ranges, as stated in Table 2.

Fig. 2a and Fig. 2b are visualizations of the existence and stability of equilibria for the cases,

R0 < 1 and R0 > 1, respectively. Also, it illustrates that for R0 < 1, the infection dies out over a

period of time as it is the case of DFE. However, in the same time period, it can been seen that

the infection continues to persist in the population when R0 > 1 as it is the case of EE.

(a) (b)

Figure 2: Total number of Infected Humans (I) with respect to time.

In Fig. 3a, it is clear that the recuperated population ultimately falls down to zero for the

case when R0 < 1, where finally the disease dies out and ultimately the entire population will shift

to the recovered section with no more inflow into the recuperated part. In contrast, for the same

time period, if R0 > 1 (Fig. 3b), the disease persists in the population. Therefore, we can see a

substantial proportion of population which is still in the recuperated phase.

Fig. 4 and Fig. 5, both show the time duration around which the number of infected popula-

tion comes to a fall which is actually the same for recuperated population to reach the peak.

In Fig. 6a, again for R0 < 1, as the disease dies out so it is evidently a situation when the

population of the infectious mosquitoes dies out. In contrast to it, for R0 > 1 (Fig. 6b), the number
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(a) (b)

Figure 3: Total number of Recuperated Humans (R′) with respect to time.

Figure 4: Total number of Infected (I) and Recuperated (R′) Humans when R0 < 1.

of infectious mosquitoes continue to persist in population as it is the case of endemic equilibrium

(EE).

Fig. 7 shows the change in the number of infected, recuperated and recovered population with

respect to time in accordance with model (CM) whereas Fig. 8 is a simulation of the model (CM)

without recuperated section of population.

The curve representing the recovered population in Fig. 8, is an increasing curve showing a rapid

increase in the number of people attaining full recovery. But this does not fit in accordance to the

case of Chikungunya infection. However, in Fig. 7, we can see the convexity of the curve repre-

senting recovered population for a substantial period of time and this is because of the presence of

recuperation factor which has been considered in our model. During this period, the recuperation

curve is rising higher which is practically more relevant and well in consensus with the nature of

this particular disease.
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Figure 5: Total number of Infected (I) and Recuperated (R′) Humans when R0 > 1.

(a) (b)

Figure 6: Total number of Infectious Mosquitoes (Z) with respect to time.

7 Conclusion

In this paper, a new deterministic model is formulated to study the transmission dynamics of

Chikungunya virus (CHIKV). Making a considerable refinement to the existing models present in

the literature, a so far neglected section of human population is introduced, namely the population

in the recuperation phase. The study shows that the disease free equilibrium (DFE) of the model is

locally as well as globally asymptotically stable whenever existence of an associated reproduction

number R0, is less than 1 and unstable otherwise. Also, an endemic equilibrium (EE) exists

whenever R0 is greater than 1 and is locally asymptotically stable too. Simulations of the model

make it evident that introduction of the said compartment is well justified, as this model provides a

more realistic illustration for Chikungunya infection wherein the quantitative behaviour of disease

has given a better visualisation. Moreover, the qualitative behaviour of the disease as studied by
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Figure 7: Variation of Infected, Recuperated and Recovered Human Population with time for model
(CM).

Figure 8: Variation of Infected and Recovered Human Population with time for model (CM) without
recuperation section.

various researchers in [14] is very well taken into consideration through our model.

If we do not consider the recuperation section in model (CM), then the following model

becomes a special case of our model. It is clearly seen that our model (CM) gives a better

illustration to the dynamics of the Chikungunya virus and hence, the proposed model is indeed



198 Ruchi Arora, Dharmendra Kumar, Ishita Jhamb and Avina Kaur CUBO
22, 2 (2020)

more realistic and practical.

dS

dt
= µ−

βBHZS

NH

− ζS,

dE

dt
=
βBHZS

NH

− αE − ζE,

dI

dt
= αE − γI − (ζ + ζ1)I,

dR

dt
= γI − ζR,

dX

dt
= ρ−

νBMIX

NH

− κX,

dY

dt
=
νBMIX

NH

− ψY − κY,

dZ

dt
= ψY − κZ, where NH(t) = S(t) + E(t) + I(t) +R(t).

Comparison of the above model with our model (CM) is done in section 6 with the help of the

graphs shown in Fig. 7 and Fig. 8.
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ABSTRACT

The purpose of this paper is to establish some coincidence, common fixed point the-

orems for monotone f -non decreasing self mappings satisfying certain rational type

contraction in the context of a metric spaces endowed with partial order. Also, the re-

sults involving an integral type of such classes of mappings are discussed in application

point of view. These results generalize and extend well known existing results in the

literature.

RESUMEN

El propósito de este art́ıculo es establecer teoremas de coincidencia y de punto fijo

común para auto mapeos monótonos f -no decrecientes satisfaciendo ciertas contrac-

ciones de tipo racional en el contexto de espacios métricos dotados de un orden parcial.

Adicionalmente, resultados que involucran clases de mapeos de tipo integral son dis-

cutidos desde un punto de vista de las aplicaciones. Estos resultados generalizan y

extienden resultados bien conocidos, existentes en la literatura.
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1 Introduction

Ever since in Fixed point theory and Approximation theory, the classical Banach contraction

principle plays a vital role to obtain an unique solution of the results. Of course, it is very

important and popular tool in different fields of mathematics to solve the existing problems in

nonlinear analysis. Since then a lot of variety of generalizations of this Banach contraction principle

[1] have been taken place in a metric fixed point theory by improving the underlying contraction

condition [2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. Thereafter vigorous research work has been obtained

by weakening its hypotheses on various spaces such as rectangular metric spaces, pseudo metric

spaces, fuzzy metric spaces, quasi metric spaces, quasi semi-metric spaces, probabilistic metric

spaces, D-metric spaces, G-metric spaces, F -metric spaces, cone metric spaces, and so on to prove

the existing results. Prominent work on the existence and uniqueness of a fixed point and common

fixed point theorems involving monotone mappings on cone metric spaces, partially ordered metric

spaces and others spaces [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30]

generate natural interest to establish usable fixed point results.

The aim of this paper is to prove some coincidence, common fixed point results in the frame

work of partially ordered metric spaces for a pair of self-mappings satisfying a generalized contrac-

tive condition of rational type. These results generalize and extend the results of Harjani et al.[19]

and Chandok [28] in ordered metric space. Also the applications of these results are presented on

taking integral type contractions in the same space.

2 Preliminaries

The following definitions are frequently used in results given in upcoming sections.

Definition 1. The triple (X, d,�) is called a partially ordered metric space, if (X,�) is a partially

ordered set together with (X, d) is a metric space.

Definition 2. If (X, d) is a complete metric space, then the triple (X, d,�) is called a partially

ordered complete metric space.

Definition 3. Let (X,�) be a partially ordered set. A self-mapping f : X → X is said to be

strictly increasing, if f(x) ≺ f(y), for all x, y ∈ X with x ≺ y and is also said to be strictly

decreasing, if f(x) ≻ f(y), for all x, y ∈ X with x ≺ y.

Definition 4. A point x ∈ A, where A is a non-empty subset of a metric space (X, d) is called a

common fixed (coincidence) point of two self-mappings f and T if fx = Tx = x(fx = Tx).

Definition 5. The two self-mappings f and T defined over a subset A of a metric space (X, d)

are called commuting if fTx = Tfx for all x ∈ A.
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Definition 6. Two self-mappings f and T defined over A ⊂ X are compatible, if for any sequence

{xn} with lim
n→+∞

fxn = lim
n→+∞

Txn = µ, for some µ ∈ A then lim
n→+∞

d(Tfxn, fTxn) = 0.

Definition 7. Two self-mappings f and T defined over A ⊂ X are said to be weakly compatible,

if they commute at their coincidence points. i.e., if fx = Tx then fTx = Tfx.

Definition 8. Let f and T be two self-mappings defined over a partially ordered set (X,�). A

mapping T is called a monotone f non-decreasing if

fx � fy implies Tx � Ty, for all x, y ∈ X.

Definition 9. Let A be a non-empty subset of a partially ordered set (X,�). If very two elements

of A are comparable then it is called well ordered set.

Definition 10. A partially ordered metric space (X, d,�) is called an ordered complete, if for each

convergent sequence {xn}
+∞
n=0 ⊂ X, one of the following condition holds

• if {xn} is a nondecreasing sequence in X such that xn → x implies xn � x, for all n ∈ N

that is, x = sup{xn} or

• if {xn} is a nonincreasing sequence in X such that xn → x implies x � xn, for all n ∈ N

that is, x = inf{xn}.

3 Main Results

In this section, we prove some coincidence, common fixed point theorems in the context of ordered

metric space.

Theorem 1. Let (X, d,�) be a complete partially ordered metric space. Suppose that the self-

mappings f and T on X are continuous, T is a monotone f -nondecreasing, T (X) ⊆ f(X) and

satisfying the following condition

d(Tx, T y) ≤ α
d(fx, Tx) d(fy, T y)

d(fx, fy)
+ β [d(fx, Tx) + d(fy, T y)] + γd(fx, fy) (3.1)

for all x, y in X with f(x) 6= f(y) are comparable, where α, β, γ ∈ [0, 1) with 0 ≤ α+ 2β + γ < 1.

If there exists a point x0 ∈ X such that f(x0) � T (x0) and the mappings T and f are compatible,

then T and f have a coincidence point in X.

Proof. Let x0 ∈ X such that f(x0) � T (x0). Since from hypotheses, we have T (X) ⊆ f(X) then,

we can choose a point x1 ∈ X such that fx1 = Tx0. But Tx1 ∈ f(X) then, again there exists

another point x2 ∈ X such that fx2 = Tx1. By continuing the same way, we can construct a

sequence {xn} in X such that fxn+1 = Txn, for all n.
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Again, by hypotheses, we have f(x0) � T (x0) = f(x1) and T is a monotone f -nondecreasing

mapping then, we get T (x0) � T (x1). Similarly, we obtain T (x1) � T (x2), since f(x1) � f(x2)

and then by continuing the same procedure, we obtain that

T (x0) � T (x1) � T (x2) � .........T (xn) � T (xn+1) � ........

The equality T (xn+1) = T (xn) is impossible because f(xn+2) 6= f(xn+1) for all n ∈ N. Thus

d(T (xn), T (xn+1)) > 0 for all n ≥ 0 therefore, from contraction condition (3.1), we have

d(Txn+1, T xn) ≤ α
d(fxn+1, T xn+1) d(fxn, T xn)

d(fxn+1, fxn)
+ β [d(fxn+1, T xn+1) + d(fxn, T xn)]

+γd(fxn+1, fxn)

which intern implies that

d(Txn+1, T xn) ≤ αd(Txn, T xn+1) + β [d(Txn, T xn+1) + d(Txn−1, T xn)]

+ γd(Txn, T xn−1)

Finally, we arrive at

d(Txn+1, T xn) ≤

(

β + γ

1− α− β

)

d(Txn, T xn−1)

Continuing the same process up to (n− 1) times, we get

d(Txn+1, T xn) ≤

(

β + γ

1− α− β

)n

d(Tx1, T x0)

Let k = β+γ
1−α−β

∈ [0, 1), then from triangular inequality for m ≥ n, we have

d(Txm, T xn) ≤ d(Txm, T xm−1) + d(Txm−1, T xm−2) + ........+ d(Txn+1, T xn)

≤
(

km−1 + km−2 + ..........+ kn
)

d(Tx1, T x0)

≤
kn

1− k
d(Tx1, T x0)

as m,n → +∞, d(Txm, T xn) → 0, which shows that the sequence {Txn} is a Cauchy sequence in

X . So, by the completeness of X , there exists a point µ ∈ X such that Txn → µ as n → +∞.

Again, by the continuity of T , we have

lim
n→+∞

T (Txn) = T

(

lim
n→+∞

Txn

)

= Tµ.

But fxn+1 = Txn, then fxn+1 → µ as n → +∞ and from the compatibility for T and f , we have

lim
n→+∞

d(T (fxn), f(Txn)) = 0.

Further by triangular inequality, we have

d(Tµ, fµ) = d(Tµ, T (fxn)) + d(T (fxn), f(Txn)) + d(f(Txn), fµ)
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On taking limit as n → +∞ in both sides of the above equation and using the fact that T and f

are continuous then, we get d(Tµ, fµ) = 0. Thus, Tµ = fµ. Hence, µ is a coincidence point of T

and f in X .

Corollary 1. Let (X, d,�) be a complete partially ordered metric space. Suppose that the self-

mappings f and T on X are continuous, T is a monotone f -nondecreasing, T (X) ⊆ f(X) and

satisfying the following condition

d(Tx, T y) ≤ α
d(fx, Tx) d(fy, T y)

d(fx, fy)
+ β [d(fx, Tx) + d(fy, T y)]

for all x, y in X with f(x) 6= f(y) are comparable and for some α, β ∈ [0, 1) with 0 ≤ α+ 2β < 1.

If there exists a point x0 ∈ X such that f(x0) � T (x0) and the mappings T and f are compatible,

then T and f have a coincidence point in X.

Proof. Set γ = 0 in Theorem 1.

Corollary 2. Let (X, d,�) be a complete partially ordered metric space. Suppose that the self-

mappings f and T on X are continuous, T is a monotone f -nondecreasing, T (X) ⊆ f(X) and

satisfying the following condition

d(Tx, T y) ≤ β [d(fx, Tx) + d(fy, T y)] + γd(fx, fy)

for all x, y in X with f(x) 6= f(y) are comparable and for some β, γ ∈ [0, 1) with 0 ≤ 2β + γ < 1.

If there exists a point x0 ∈ X such that f(x0) � T (x0) and the mappings T and f are compatible,

then T and f have a coincidence point in X.

Proof. The proof can be obtained by setting α = 0 in Theorem 1.

We may remove the continuity criteria of T in Theorem 1 is still valid by assuming the following

hypothesis in X :

If {xn} is a nondecreasing sequence in X such that xn → x, then xn � x for all n ∈ N.

Theorem 2. Let (X, d,�) be a complete partially ordered metric space. Suppose that f and T are

self-mappings on X, T is a monotone f -nondecreasing, T (X) ⊆ f(X) and satisfying

d(Tx, T y) ≤ α
d(fx, Tx) d(fy, T y)

d(fx, fy)
+ β [d(fx, Tx) + d(fy, T y)] + γd(fx, fy) (3.2)

for all x, y in X with f(x) 6= f(y) are comparable and for some α, β, γ ∈ [0, 1) with 0 ≤ α+2β+γ <

1. If there exists a point x0 ∈ X such that f(x0) � T (x0) and {xn} is a nondecreasing sequence

in X such that xn → x, then xn � x for all n ∈ N.

If f(X) is a complete subset of X, then T and f have a coincidence point in X. Further, if

T and f are weakly compatible, then T and f have a common fixed point in X. Moreover, the set
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of common fixed points of T and f is well ordered if and only if T and f have one and only one

common fixed point in X.

Proof. Suppose f(X) is a complete subset of X . As we know from the proof of Theorem 1, the

sequence {Txn} is a Cauchy sequence and hence {fxn} is also a Cauchy sequence in (f(X), d) as

fxn+1 = Txn and T (X) ⊆ f(X). Since f(X) is complete then there exists some fu ∈ f(X) such

that

lim
n→+∞

T (xn) = lim
n→+∞

f(xn) = f(u).

Also note that the sequences {Txn} and {fxn} are nondecreasing and from hypotheses, we have

T (xn) � f(u) and f(xn) � f(u) for all n ∈ N. But T is a monotone f -nondecreasing then, we get

T (xn) � T (µ) for all n. Letting n → +∞, we obtain that f(u) � T (u).

Suppose that f(u) ≺ T (u) then define a sequence {un} by u0 = u and fun+1 = Tun for all

n ∈ N. An argument similar to that in the proof of Theorem 1 yields that {fun} is a nondecreasing

sequence and lim
n→+∞

f(un) = lim
n→+∞

T (un) = f(v) for some v ∈ X . So from hypotheses, it is clear

that sup f(un) � f(v) and supT (un) � f(v), for all n ∈ N. Notice that

f(xn) � f(u) � f(u1) � ........ � f(un) � .... � f(v).

Case:1 Suppose if there exists some n0 ≥ 1 such that f(xn0) = f(un0) then, we have

f(xn0) = f(u) = f(un0) = f(u1) = T (u).

Hence, u is a coincidence point of T and f in X .

Case:2 Suppose that f(xn0) 6= f(un0) for all n then, from (3.2), we have

d(fxn+1, fun+1) =d(Txn, T un)

≤α
d(fxn, T xn) d(fun, T un)

d(fxn, fun)
+ β [d(fxn, T xn) + d(fun, T un)]

+γd(fxn, fun)

Taking limit as n → +∞ on both sides of the above inequality, we get

d(fu, fv) ≤γ d(fu, fv)

< d(fu, fv), since γ < 1.

Thus, we have

f(u) = f(v) = f(u1) = T (u).

Hence, we conclude that u is a coincidence point of T and f in X .
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Now, suppose that T and f are weakly compatible. Let w be a coincidence point then,

T (w) = T (f(z)) = f(T (z)) = f(w), since w = T (z) = f(z), for some z ∈ X.

Now by contraction condition, we have

d(T (z), T (w)) ≤α
d(fz, T z) d(fw, Tw)

d(fz, fw)
+ β [d(fz, T z) + d(fw, Tw)] + γd(fz, fw)

≤γ d(T (z), T (w))

as γ < 1, then d(T (z), T (w)) = 0. Therefore, T (z) = T (w) = f(w) = w. Hence, w is a common

fixed point of T and f in X .

Now suppose that the set of common fixed points of T and f is well ordered, we have to show

that the common fixed point of T and f is unique. Let u and v be two common fixed points of T

and f such that u 6= v then from (3.2), we have

d(u, v) ≤α
d(fu, Tu) d(fv, T v)

d(fu, fv)
+ β [d(fu, Tu) + d(fv, T v)] + γd(fu, fv)

≤γ d(u, v)

< d(u, v), since γ < 1,

which is a contradiction. Thus, u = v. Conversely, suppose T and f have only one common fixed

point then the set of common fixed points of T and f being a singleton is well ordered. This

completes the proof.

Corollary 3. Let (X, d,�) be a complete partially ordered metric space. Suppose that f and T

are self-mappings on X, T is a monotone f -nondecreasing, T (X) ⊆ f(X) and satisfying

d(Tx, T y) ≤ α
d(fx, Tx) d(fy, T y)

d(fx, fy)
+ β [d(fx, Tx) + d(fy, T y)]

for all x, y in X with f(x) 6= f(y) are comparable and for some α, β ∈ [0, 1) with 0 ≤ α+ 2β < 1.

If there exists a point x0 ∈ X such that f(x0) � T (x0) and {xn} is a nondecreasing sequence in X

such that xn → x, then xn � x for all n ∈ N.

If f(X) is a complete subset of X, then T and f have a coincidence point in X. Further, if

T and f are weakly compatible, then T and f have a common fixed point in X. Moreover, the set

of common fixed points of T and f is well ordered if and only if T and f have one and only one

common fixed point in X.

Proof. Set γ = 0 in Theorem 2.

Corollary 4. Let (X, d,�) be a complete partially ordered metric space. Suppose that f and T

are self-mappings on X, T is a monotone f -nondecreasing, T (X) ⊆ f(X) and satisfying

d(Tx, T y) ≤β [d(fx, Tx) + d(fy, T y)] + γd(fx, fy)
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for all x, y in X for which f(x) 6= f(y) are comparable and for some β, γ ∈ [0, 1) with 0 ≤ 2β+γ <

1. If there exists a point x0 ∈ X such that f(x0) � T (x0) and {xn} is a nondecreasing sequence

in X such that xn → x, then xn � x for all n ∈ N.

If f(X) is a complete subset of X, then T and f have a coincidence point in X. Further, if

T and f are weakly compatible, then T and f have a common fixed point in X. Moreover, the set

of common fixed points of T and f is well ordered if and only if T and f have one and only one

common fixed point in X.

Proof. Set α = 0 in Theorem 2.

Remark 1. (i). If β = 0, in Theorem 1 and Theorem 2, we obtain Theorem 2.1 and Theorem

2.3 of Chandok [28].

(ii). If f = I and β = 0, in Theorem 1 and Theorem 2, then we get Theorem 2.1 and Theorem

2.3 of Harjani et al. [19].

4 Applications

In this section, we state some applications of the main result for a self mapping involving the

integral type contractions.

Let us denote τ , a set of all functions ϕ defined on [0,+∞) satisfying the following conditions:

(1) each ϕ is Lebesgue integrable mapping on each compact subset of [0,+∞) and

(2) for any ǫ > 0, we have
∫ ǫ

0 ϕ(t)dt > 0.

Theorem 3. Let (X, d,�) be a complete partially ordered metric space. Suppose that the self-

mappings f and T on X are continuous, T is a monotone f -nondecreasing, T (X) ⊆ f(X) and

satisfying the following condition

∫ d(Tx,Ty)

0

ϕ(t)dt ≤ α

∫
d(fx,Tx) d(fy,Ty)

d(fx,fy)

0

ϕ(t)dt + β

∫ d(fx,Tx)+d(fy,Ty)

0

ϕ(t)dt

+ γ

∫ d(fx,fy)

0

ϕ(t)dt

(4.1)

for all x, y in X with f(x) 6= f(y) are comparable, ϕ(t) ∈ τ and for some α, β, γ ∈ [0, 1) such that

0 ≤ α + 2β + γ < 1. If there exists a point x0 ∈ X such that f(x0) � T (x0) and the mappings T

and f are compatible, then T and f have a coincidence point in X.

Similarly, we can obtain the following results in complete partially ordered metric space, by

putting γ = 0 and α = 0 in an integral contraction of Theorem 3.
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Theorem 4. Let (X, d,�) be a complete partially ordered metric space. Suppose that the self-

mappings f and T on X are continuous, T is a monotone f -nondecreasing, T (X) ⊆ f(X) and

satisfying the following condition

∫ d(Tx,Ty)

0

ϕ(t)dt ≤ α

∫
d(fx,Tx) d(fy,Ty)

d(fx,fy)

0

ϕ(t)dt + β

∫ d(fx,Tx)+d(fy,Ty)

0

ϕ(t)dt (4.2)

for all x, y in X with f(x) 6= f(y) are comparable, ϕ(t) ∈ τ and where α, β ∈ [0, 1) such that

0 ≤ α+ 2β < 1. If there exists a point x0 ∈ X such that f(x0) � T (x0) and the mappings T and

f are compatible, then T and f have a coincidence point in X.

Theorem 5. Let (X, d,�) be a complete partially ordered metric space. Suppose that the self-

mappings f and T on X are continuous, T is a monotone f -nondecreasing, T (X) ⊆ f(X) and

satisfying the following condition

∫ d(Tx,Ty)

0

ϕ(t)dt ≤ β

∫ d(fx,Tx)+d(fy,Ty)

0

ϕ(t)dt + γ

∫ d(fx,fy)

0

ϕ(t)dt (4.3)

for all x, y in X with f(x) 6= f(y) are comparable, ϕ(t) ∈ τ and for some β, γ ∈ [0, 1) such that

0 ≤ 2β + γ < 1. If there exists a point x0 ∈ X such that f(x0) � T (x0) and the mappings T and

f are compatible, then T and f have a coincidence point in X.

Corollary 5. By replacing β = 0 in Theorem 3, we obtain the Corollary 2.5 of Chandok [28].

We illustrate the usefulness of the obtained results for the existence of the coincidence point

in the space.

Example 1. Define a metric d : X × X → [0,+∞) by d(x, y) = |x− y|, where X = [0, 1] with

usual order ≤. Suppose that T and f be two self mappings on X such that Tx = x2

2 and fx = 2x2

1+x
,

then T and f have a coincidence in point X.

Proof. By definition of a metric d, it is clear that (X, d) is a complete metric space. Obviously,

(X, d,≤) is a partially ordered complete metric space with usual order. Let x0 = 0 ∈ X then

f(x0) ≤ T (x0) and also by definition; T , f are continuous, T is a monotone f - nondecreasing and

T (X) ⊆ f(X).

Now for any distinct x, y in X , we have

d(Tx, T y) =
1

2
|x2 − y2| =

1

2
(x+ y)|x− y|

<
α

4

x2y2

(x+ y + xy)

|x− 3||y − 3|

|x− y|
+

β

2

x2(1 + y)|x− 3|+ y2(1 + x)|y − 3|

(1 + x)(1 + y)

+ γ
2(x+ y + xy)

(1 + x)(1 + y)
|x− y|
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< α

x2|x−3|
2(1+x) .

y2|y−3|
2(1+y)

2|x− y| x+y+xy
(1+x)(1+y)

+ β

[

x2|x− 3|

2(1 + x)
+

y2|y − 3|

2(1 + y)

]

+ γ
2(x+ y + xy)

(1 + x)(1 + y)
|x− y|

< α
d(fx, Tx) d(fy, T y)

d(fx, fy)
+ β [d(fx, Tx) + d(fy, T y)] + γd(fx, fy)

Then, the contraction condition in Theorem 1 holds by selecting proper values of α, β, γ in [0, 1)

such that 0 ≤ α+ 2β + γ < 1. Therefore T , f have a coincidence point 0 ∈ X .

Similarly the following is one more example of main Theorem 1.

Example 2. A distance function d : X ×X → [0,+∞) by d(x, y) = |x− y|, where X = [0, 1] with

usual order ≤. Define two self mappings T and f on X by Tx = x2 and fx = x3, then T and f

have two coincidence points 0, 1 in X with x0 = 1
2 .
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ABSTRACT

The aim of this paper is to introduce new hyperbolic classes of functions, which will

be called B∗
α, log and F ∗

log(p, q, s) classes. Furthermore, we introduce D-metrics space

in the hyperbolic type classes B∗
α, log and F ∗

log(p, q, s). These classes are shown to be

complete metric spaces with respect to the corresponding metrics. Moreover, necessary

and sufficient conditions are given for the composition operator Cφ to be bounded and

compact from B∗
α, log to F ∗

log(p, q, s) spaces.

RESUMEN

El objetivo de este art́ıculo es introducir nuevas clases hiperbólicas de funciones, que

serán llamadas clases B∗
α, log y F ∗

log(p, q, s). A continuación, introducimos D-espacios

métricos en las clases de tipo hiperbólicas B∗
α, log y F ∗

log(p, q, s). Mostramos que estas

clases son espacios métricos completos con respecto a las métricas correspondientes.

Más aún, damos condiciones necesarias y suficientes para que el operador composición

Cφ sea acotado y compacto desde el espacio B∗
α, log a F ∗

log(p, q, s).

Keywords and Phrases: D-metric spaces, Logarithmic hyperbolic classes, Composition opera-

tors.
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1 Introduction

Let φ be an analytic self-map of the open unit disk D = {z ∈ C : |z| < 1} in the complex plane C

and let ∂D be its boundary. Let H(D) denote the space of all analytic functions in D and let B(D)

be the subset of H(D) consisting of those f ∈ H(D) for which |f(z)| < 1 for all z ∈ D.

Let the Green’s function of D be defined as g(z, a) = log 1
|ϕa(z)|

, where ϕa(z) = a−z
1−āz

is the

Möbius transformation related to the point a ∈ D.

A linear composition operator Cφ is defined by Cφ(f) = (f ◦ φ) for f in the set H(D) of

analyticfunctions on D (see [9]). A function f ∈ B(D) belongs to α-Bloch space Bα, 0 < α < ∞, if

||f‖Bα
= sup

z∈D

(1− |z|)α|f ′(z)| < ∞.

The little α-Bloch space Bα, 0 consisting of all f ∈ Bα so that

lim
|z|→1−

(1− |z|2)|f ′(z)| = 0.

Definition 1. [15] For an analytic function f on D and 0 < α < ∞, if

||f ||Bα
log

= sup
z∈D

(1− |z|2)α|f ′(z)|

(

log
2

1− |z|2

)

< ∞,

then, f belongs to the weighted α-Bloch spaces Bα
log.

If α = 1, the weighted Bloch space Blog is the set for all analytic functions f in D for which

||f ||Blog
< ∞.

The expression ||f ||Blog
defines a seminorm while the norm is defined by

||f ||Blog
= |f(0)|+ ||f ||Blog

.

Definition 2. [14] For 0 < p, s < ∞, −2 < q < ∞ and q + s > −1, a function f ∈ H(D) is in

F (p, q, s), if

sup
a∈D

∫

D

|f ′(z)|p(1− |z|2)qgs(z, a)dA(z) < ∞.

Moreover, if

lim
|a|→1−

∫

D

|f ′(z)|p(1− |z|2)qgs(z, a)dA(z) = 0,

then f ∈ F0(p, q, s).

El-Sayed and Bakhit [5] gave the following definition:
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Definition 3. For 0 < p, s < ∞, −2 < q < ∞ and q + s > −1, a function f ∈ H(D) is said to

belong to Flog(p, q, s), if

sup
I⊂∂D

(

log 2
|I|

)p

|I|s

∫

S(I)

|f ′(z)|p(1− |z|2)q
(

log
1

|z|

)s

dA(z) < ∞.

Where |I| denotes the arc length of I ⊂ ∂D and S(I) is the Carleson box defined by (see [8, 6])

S(I) = {z ∈ D : 1− |I| < |z| < 1,
z

|z|
∈ |I|}.

The interest in the Flog(p, q, s)-spaces rises from the fact that they cover some well known

function spaces. It is immediate that Flog(2, 0, 1) = BMOAlog and Flog(2, 0, p) = Q
p
log, where

0 < p < ∞.

2 Preliminaries

Definition 4. [11] The hyperbolic Bloch space B∗
α is defined as

B∗
α = {f : f ∈ B(D) and sup

z∈D

(1− |z|
2
)αf∗(z) < ∞}.

Denoting f∗(z) = |f ′(z)|
1−|f(z)|2 , the hyperbolic derivative of f ∈ B(D). [7]

The little hyperbolic Bloch space B∗
α, 0 is a subspace of B∗

α consisting of all f ∈ B∗
α so that

lim
|z|→1−

(1− |z|2)αf∗(z) = 0.

The space B∗
α is Banach space with the norm defined as

||f ||B∗

α
= |f(0)|+ sup

z∈D

(1 − |z|)α|f∗(z)|.

Definition 5. For 0 < p, s < ∞, −2 < q < ∞, α = q+2
p

and q + s > −1, a function f ∈ H(D) is

said to belong to F ∗(p, q, s), if

sup
a∈D

∫

D

(f∗(z))p(1− |z|2)αp−2gs(z, a)dA(z) < ∞.

Definition 6. For f ∈ B(D) and 0 < α < ∞, if

||f ||B∗

α, log
= sup

z∈D

(1− |z|2)α(f∗(z))

(

log
2

1− |z|2

)

< ∞,

then f belongs to the B∗
α, log.
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We must consider the following lemmas in our study:

Lemma 2.1. [12] Let 0 < r ≤ t ≤ 1, then

log
1

t
≤

1

r
(1− t2)

Lemma 2.2. [12] Let 0 ≤ k1 < ∞, 0 ≤ k2 < ∞, and k1 − k2 > −1, then

C(k1, k2) =

∫

D

(

log
1

|z|

)k1

(1− |z|2)−k2dA(z) < ∞.

To study composition operators on B∗
α, log and F ∗

log(p, q, s) spaces, we need to prove the fol-

lowing result:

Theorem 1. If 0 < p < ∞, 1 < s < ∞ and α = q+2
p

with q + s > −1. Then the following are

equivalent:

(A) f ∈ B∗
α, log.

(B) f ∈ F ∗
log(p, q, s).

(C) sup
a∈D

(

log 2
1−|a|2

)p
∫

D
(f∗(z))p(1− |z|2)αp−2(1− |ϕ(z)|2)sdA(z) < ∞,

(D) sup
a∈D

(

log 2
1−|a|2

)p
∫

D
(f∗(z))p(1 − |z|2|αp−2gs(z, a)dA(z) < ∞.

Proof. Let 0 < p < ∞, −2 < q < ∞, 1 < s < ∞ and 0 < r < 1. By subharmonicity we have for

an analytic function g ∈ D that

|g(0)|p ≤
1

πr2

∫

D(0,r)

|g(w)|pdA(w).

For a ∈ D, the substitution z = ϕa(z) results in Jacobian change in measure given by

dA(w) = |ϕ′
a(z)|

2 dA(z).

For a Lebesgue integrable or a non-negative Lebesgue measurable function f on D, we thus have

the following change of variable formula:
∫

D(0,r)

f(ϕa(w))dA(w) =

∫

D(a,r)

f(z)|ϕ′
a(z)|

2dA(z).

Let g = f ′◦ϕa

1−|f◦ϕa|2
then we have

(

|f ′(a)|

1− |f(a)|2

)p

= (f∗(a))p ≤
1

πr2

∫

D(0,r)

(

|f ′(ϕa(w))|

1− |f(ϕa(w))|2

)p

dA(w)

=
1

πr2

∫

D(a,r)

(f∗(z))p|ϕ′
a(z)|

2dA(z).
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Since

|ϕ′
a(z)| =

1− |ϕa(z)|
2

1− |z|2
,

and
1− |ϕa(z)|

2

1− |z|2
≤

4

1− |a|2
a, z ∈ D.

So we obtain that

(f∗(a))p ≤
16

πr2(1− |a|2)2

∫

D(a,r)

(f∗(z))pdA(z).

Again f ∈ B∗
α, log, and (1− |z|2)2 ≈ (1− |a|2)2 ≈ D(a, r), for z ∈ D(a, r). Thus, we have

(

log 2
1−|a|2

)p

(f∗(a))p(1− |a|2)αp

≤
16

πr2(1− |a|2)2−αp
×

(

log
2

1− |a|2

)p∫

D(a,r)

(f∗(z))pdA(z)

≤
16

πr2
×

(

log
2

1− |a|2

)p∫

D(a,r)

(f∗(z))p(1− |z|2)αp−2dA(z)

≤
16

πr2
×

(

log
2

1− |a|2

)p∫

D(a,r)

(f∗(z))p(1− |z|2)αp−2 ×

(

1− |ϕa(z)|
2

1− |ϕa(z)|2

)s

dA(z)

≤
16

πr2(1− r2)s
×

(

log
2

1− |a|2

)p∫

D(a,r)

(f∗(z))p(1− |z|2)αp−2(1 − |ϕa(z)|
2)sdA(z)

≤ M(r) ×

(

log
2

1− |a|2

)p∫

D(a,r)

(f∗(z))p(1 − |z|2)αp−2(1− |ϕ′
a(z)|

2)sdA(z).

Where M(r) is a constant depending on r. Thus, the quantity (A) is less than or equal to

constant times the quantity (C).

From the fact

(1− |ϕa(z)|
2) ≤ 2 log

1

|ϕa(z)|
= 2g(z, a) for a, z ∈ D,

we have

(

log
2

1− |a|2

)p∫

D(a,r)

(f∗(z))p(1 − |z|2)αp−2(1− |ϕa(z)|
2)sdA(z)

≤

(

log
2

1− |a|2

)p∫

D(a,r)

(f∗(z))p(1 − |z|2)αp−2gs(z, a)dA(z).

Hence, the quantity (C) is less than or equal to a constant times (D). By taking α = q+2
p

, it follows

f ∈ F ∗
log(p, q, s). Thus, the quantity (C) is less than or equal to a constant times the quantity (B).
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Finally, from the following inequality, let z = ϕa(w) then w = ϕa(z). Hence,
(

log
2

1− |a|2

)p∫

D

(f∗(ϕa(w)))
p(1− |ϕa(w)|

2)αp−2

(

log
1

|w|

)s

|ϕ′
a(w)|

2dA(w)

=

(

log
2

1− |a|2

)p∫

D

(f∗(ϕa(w)))
p(1− |ϕa(w)|

2)αp
(

log
1

|w|

)s
|ϕ′

a(w)|
2

(1− |ϕa(w)|2)2
dA(w)

=

(

log
2

1− |a|2

)p∫

D

(f∗(ϕa(w)))
p(1− |ϕa(w)|

2)αp
(

log
1

|w|

)s
1

(1− |w|2)2
dA(w)

≤ ||f ||pB∗

α, log

(

log
2

1− |a|2

)p∫

D

(

log
1

|w|

)s

(1− |w|2)−2dA(w)

= C(s, 2)||f ||pB∗

α, log
.

By lemma 2.2, C(s, 2) =
∫

D

(

log 1
|w|

)s

(1− |w|2)−2dA(w) < ∞, for 1 < s < ∞.

Thus, the quantity (D) is less than or equal to a constant times the quantity (A). Hence, it is proved.

Let us we give the following equivalent definition for F ∗
log(p, q, s).

Definition 7. For 0 < p, s < ∞, −2 < q < ∞, α = q+2
p

and q + s > −1, a function f ∈ H(D) is

said to belong to F ∗
log(p, q, s), if

sup
a∈D

(

log
2

1− |a|2

)p∫

D

(f∗(z))p(1− |z|2)αp−2(1 − |ϕa(z)|
2)sdA(z) < ∞.

Definition 8. A composition operator Cφ : B∗
α, log → F ∗

log(p, q, s) is said to be bounded if there is

a positive constant C so that ||Cφf ||F∗

log
(p, q, s) ≤ C||f ||B∗

α, log
for all f ∈ B∗

p, α.

Definition 9. A composition operator Cφ : B∗
α, log → F ∗

log(p, q, s) is said to be compact if it maps

any ball in B∗
p, α onto a precompact set in F ∗(p, q, s).

The following lemma follows by standard arguments similar to those outline in [13]. Hence,

we omit the proof.

Lemma 2.3. Assume φ is a holomorphic mapping from D into itself. Let 0 < p, s, α < ∞,−2 <

q < ∞, then Cφ : B∗
α, log → F ∗

log(p, q, s) is compact if and only if for any bounded sequence

{fn}n∈N ∈ B∗
α, log which converges to zero uniformly on compact subsets of D as n → ∞ we have

lim
n→∞

||Cφfn||F∗

log
(p,q,s) = 0.

3 D-metric space

Topological properties of generalized metric space called D- metric space was introduced in [1],

see for example, ([2] and [3]). This structure of D-metric space is quite different from a 2-metric

space and natural generalization of an ordinary metric space in some sense.
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Definition 10. [4] Let X denote a nonempty set and R the set of real numbers. A function

D : X×X×X → R is said to be a D-metric on X if it satisfies the following properties:

(i) D(x, y, z) ≥ 0 for all x, y, z ∈ X and equality holds if and only if x = y = z (nonnegativ-

ity),

(ii) D(x, y, z) = D(x, z, y) = · · ·· (symmetry),

(iii) D(x, y, z) ≤ D(x, y, a) +D(x, a, z) +D(a, y, z) for all x, y, z, a ∈ X

(tetrahedral inequality).

A nonempty set X together with a D-metric D is called a D-metric space and is represented

by (X,D). The generalization of a D-metric space with D-metric as a function of n variables is

provided in Dhage [2].

Example1.1: [4] Let (X, d) be an ordinary metric space and define a function D1 on X3 by

D1(x, y, z) = max{d(x, y), d(y, z), d(z, x)},

for all x, y, z ∈ X. Then, the function D1 is a D-metric on X and (X,D1) is a D-metric space.

Example1.2: [4] Let (X, d) be an ordinary metric space and define a function D2 on X3 by

D2(x, y, z) = d(x, y) + d(y, z) + d(z, x)

for x, y, z ∈ X. Then, D2 is a metric on X and (X,D2) is a D-metric space.

Remark 1. Geometrically, the D-metric D1 represents the diameter of a set consisting of three

points x, y and z in X and the D-metric D2(x, y, z) represents the perimeter of a triangle formed

by three points x, y, z in X as its vertices.

Definition 11. (Cauchy sequence , completeness)[10] For every m,n > N. A sequence (xn) in a

metric space X = (X, d) is said to be-Cauchy if for every ε > 0 there is an N = N(ε) such that

d(xm, xn) < ε.

The space X is said to be complete if every Cauchy sequence in X converges (that is, has a limit

which is an element of X ).

The following theorem can be found in [4]:

Theorem 2. [4] Let d be an ordinary metric on X and let D1 and D2 be corresponding associated

D-metrics on X. Then, (X,D1) and (X,D2) are complete if and only if (X, d) is complete.
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4 D-metrics in B∗
α, log and F ∗

log(p, q, s)

In this section, we introduce a D-metric on B∗
α, log and F ∗

log(p, q, s).

Let 0 < p, s < ∞,−2 < q < ∞, and 0 < α < 1. First, we can find a D-metric in B∗
α, log, for

f, g, h ∈ B∗
α, log by defining

D(f, g, h;B∗
α, log) := DB∗

α, log
(f, g, h) + ||f − g||Bα, log

+ ||g − h||Bα, log
+ ||h− f ||Bα, log

+|f(0)− g(0)|+ |g(0)− h(0)|+ |h(0)− f(0)|,

where

DB∗

α, log
(f, g, h) := dB∗

α, log
(f, g) + dB∗

α, log
(g, h) + dB∗

α, log
(h, f)

and

DB∗

α, log
(f, g, h) :=

(

sup
z∈D

|f∗(z)− g∗(z)|+ sup
z∈D

|g∗(z)− h∗(z)|+ sup
z∈D

|h∗(z)− f∗(z)|

)

×

(

(1− |z|2)α
(

log
2

1− |z|2

))

.

Also, for f, g, h ∈ F ∗
log(p, q, s) we introduce a D-metric on F ∗

log(p, q, s) by defining

D(f, g, h;F ∗
log(p, q, s)) := DF∗

log(p,q,s)
(f, g, h) + ||f − g||Flog(p,q,s) + ||g − h||Flog(p,q,s)

+

||h− f ||Flog(p,q,s)
+ |f(0)− g(0)|+ |g(0)− h(0)|+ |h(0)− f(0)|,

where

DF∗

log(p,q,s)
(f, g, h) := dF∗

log(p,q,s)
(f, g) + dF∗

log(p,q,s)
(g, h) + dF∗

log(p,q,s)
(h, f)

and

dF∗

log(p,q,s)
(f, g) :=

(

sup
z∈D

ℓp(a)

∫

D

|f∗(z)− g∗(z)|p(1− |z|2)q(1− |ϕ(z)|2)sdA(z)

)
1
p

.

Proposition 1. The class B∗
α, log equipped with the D-metric D(., .;B∗

α, log) is a complete metric

space. Moreover, B∗
α, log, 0 is a closed (and therefore complete) subspace of B∗

α, log.

Proof. Let f, g, h, a ∈ B∗
α, log. Then, clearly

(i) D(f, g, h;B∗
α, log) ≥ 0, for all f, g, h ∈ B∗

α, log.
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(ii)D(f, g, h;B∗
α, log) = D(f, h, g;B∗

α, log) = D(g, h, f ;B∗
α, log).

(iii)D(f, g, h;B∗
α, log) ≤ D(f, g, a;B∗

α, log) +D(f, a, h;B∗
α, log) +D(a, g, h;B∗

α, log)

for all f, g, h, a ∈ B∗
α, log.

(iv)D(f, g, h;B∗
α, log) = 0 implies f = g = h.

Hence, D is a D-metric on B∗
α, log, and (B∗

α, log, D) is D-metric space.

To prove the completeness, we use Theorem 2, let (fn)
∞
n=1 be a Cauchy sequence in the metric

space (B∗
α, log, d), that is, for any ε > 0 there is an N = N(ε) ∈ N such that d(fn, fm;B∗

α, log) < ε,

for all n,m > N. Since (fn) ⊂ B(D), the family (fn) is uniformly bounded and hence normal

in D. Therefore, there exists f ∈ B(D) and a subsequence (fnj
)∞j=1 such that fnj

converges to f

uniformly on compact subsets of D. It follows that fn also converges to f uniformly on compact

subsets, and by the Cauchy formula, the same also holds for the derivatives. Now let m > N.

Then, the uniform convergence yields

∣

∣

∣

∣

f∗(z)− f∗
m(z)

∣

∣

∣

∣

(1 − |z|2)α
(

log
2

1− |z|2

)

= lim
n→∞

∣

∣

∣

∣

f∗
n(z)− f∗

m(z)

∣

∣

∣

∣

(1− |z|2)α
(

log
2

1− |z|2

)

≤ lim
n→∞

d(fn, fm;B∗
α, log) ≤ ε

for all z ∈ D, and it follows that ||f ||B∗

α, log
≤ ||fm||B∗

α, log
+ε. Thus f ∈ B∗

α, log as desired. Moreover,

the above inequality and the compactness of the usual B∗
α, log space imply that (fn)

∞
n=1 converges

to f with respect to the metric d, and (B∗
α, log, D) is complete D-metric space.

Since lim
n→∞

d(fn, fm;B∗
α, log) ≤ ε, the second part of the assertion follows.

Next we give characterization of the complete D-metric space D(., .;F ∗
log(p, q, s)).

Proposition 2. The class F ∗
log(p, q, s) equipped with the D-metric D(., .;F ∗

log(p, q, s)) is a complete

metric space. Moreover, F ∗
log, 0(p, q, s) is a closed (and therefore complete) subspace of F ∗

log(p, q, s).

Proof. Let f, g, h, a ∈ F ∗
log(p, q, s). Then clearly

(i) D(f, g, h;F ∗
log(p, q, s)) ≥ 0, for all f, g, h ∈ F ∗

log(p, q, s).

(ii)D(f, g, h;F ∗
log(p, q, s)) = D(f, h, g;F ∗

log(p, q, s)) = D(g, h, f ;F ∗
log(p, q, s)).
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(iii)D(f, g, h;F ∗
log(p, q, s)) ≤ D(f, g, a;F ∗

log(p, q, s)) +D(f, a, h;F ∗
log(p, q, s))

+D(a, g, h;F ∗
log(p, q, s))

for all f, g, h, a ∈ F ∗
log(p, q, s).

(iv)D(f, g, h;F ∗
log(p, q, s)) = 0 implies f = g = h.

Hence, D is a D-metric on F ∗
log(p, q, s), and (F ∗

log(p, q, s), D) is D-metric space.

For the complete proof, by using Theorem 2, let (fn)
∞
n=1 be a Cauchy sequence in the metric

space (F ∗
log(p, q, s), d), that is, for any ε > 0 there is anN = N(ε) ∈ N so that d(fn, fm;F ∗

log(p, q, s)) <

ε, for all n,m > N. Since (fn) ⊂ B(D), such that fnj
converges to f uniformly on compact subsets

of D. It follows that fn also converges to f uniformly on compact subsets, now let m > N, and

0 < r < 1. Then, the Fatou’s yields
∫

D(0,r)

∣

∣

∣

∣

f∗(z)− f∗
m(z)

∣

∣

∣

∣

p

(1− |z|2)q(1− |ϕa(z)|
2)sdA(z)

=

∫

D(0,r)

lim
n→∞

∣

∣

∣

∣

f∗
n(z)− f∗

m(z)

∣

∣

∣

∣

p

(1 − |z|2)q(1 − |ϕa(z)|
2)sdA(z)

≤ lim
n→∞

∫

D(0,r)

∣

∣

∣

∣

f∗(z)− f∗
m(z)

∣

∣

∣

∣

p

(1 − |z|2)q(1 − |ϕa(z)|
2)sdA(z) ≤ εp,

and by taking r → 1
−

, it follows that,
∫

D

(f∗(z))p(1− |z|2)q(1− |ϕa(z)|
2)sdA(z)

≤ 2pεp + 2p
∫

D

(f∗
m(z))p(1− |z|2)q(1− |ϕa(z)|

2)sdA(z).

This yields

||f ||p
F∗

log(p,q,s)
≤ 2p||fm||p

F∗

log(p,q,s)
+ 2pεp.

And thus f ∈ F ∗
log(p, q, s).We also find that fn → f with respect to the metric of (F ∗

log(p, q, s), D)

and (F ∗
log(p, q, s), D) is complete D-metric space. The second part of the assertion follows.

5 Composition operators of Cφ : B∗
α, log → F ∗

log(p, q, s)

In this section, we study boundedness and compactness of composition operators on B∗
α, log and

F ∗
log(p, q, s) spaces. We need the following notation:

Φφ(α, p, s; a) = ℓp(a)

∫

D

|φ′(z)|p
(1− |z|2)αp−2(1 − |ϕa(z)|

2)s

(1− |φ(z)|2)αp
(

log 2
(1−|φ(z)|2)

)p dA(z),
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where ℓp(a) =

(

log 2
1−|a|2

)p

.

For 0 < α < 1, we suppose there exist two functions f, g ∈ B∗
α, log such that for some constant

C,

(|f∗(z)|+ |g∗(z)|) ≥
C

(1− |z|2)α
(

log 2
1−|a|2

)p > 0, for each z ∈ D.

Now, we provide the following theorem:

Theorem 3. Assume φ is a holomorphic mapping from D into itself and let 0 < p, 1 < s < ∞, 0 <

α ≤ 1. Then the induced composition operator Cφ maps B∗
α, log into F ∗

log(p, αp− 2, s) is bounded if

and only if,

sup
z∈D

Φφ(α, p, s; a) < ∞. (5.1)

Proof. First assume that sup
z∈D

Φφ(α, p, s; a) < ∞ is held, and f ∈ B∗
α, log with ||f ||Bα, log

≤ 1, we

can see that

||Cφf ||
p

F∗

log(p,αp−2,s)

= sup
a∈D

ℓp(a)

∫

D

((f ◦ φ)∗(z))p(1− |z|2)αp−2(1− |ϕa(z)|
2)sdA(z)

= sup
a∈D

ℓp(a)

∫

D

(f∗(φ(z)))p|φ′(z)|αp−2(1 − |ϕa(z)|
2)sdA(z)

≤ ||f ||pB∗

α, log
sup
a∈D

ℓp(a)

∫

D

|φ′(z)|p(1− |z|2)αp−2(1− |ϕa(z)|
2)s

(1− |φ(z)2|)pα(log 2
1−|z|2 )

dA(z)

= ||f ||pB∗

α, log
Φφ(α, p, s; a) < ∞.

For the other direction, we use the fact that for each function f ∈ B∗
α, log, the analytic function
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Cφ(f) ∈ F ∗
log(p, αp− 2, s). Then, using the functions of lemma 1.2

2p
{

||Cφf1||
p

F∗

log(p,αp−2,s) + ||Cφf2||
p

F∗

log(p,αp−2,s)

}

= 2p
{

sup
a∈D

ℓp(a)

∫

D

[

((f1 ◦ φ)
∗(z))p + ((f2 ◦ φ)

∗(z))p
]

×(1− |z|2)αp−2(1− |ϕa(z)|
2)sdA(z)

}

≥

{

sup
a∈D

ℓp(a)

∫

D

[

(f1 ◦ φ)
∗(z) + (f2 ◦ φ)

∗(z)

]p

×(1− |z|2)αp−2(1− |ϕa(z)|
2)sdA(z)

}

≥

{

sup
a∈D

ℓp(a)

∫

D

[

(f∗
1 (φ))(z) + (f∗

2 (φ))(z)

]p

×|φ′(z)|p(1− |z|2)αp−2(1− |ϕa(z)|
2)sdA(z)

}

≥ C

{

sup
a∈D

ℓp(a)

∫

D

|φ′(z)|p
(1− |z|2)αp−2(1− |ϕa(z)|

2)s

(1− |φ(z)|2)αp
(

log 2
(1−|φ(z)|2)

)p dA(z)

}

≥ C sup
a∈D

Φφ(α, p, s; a).

Hence Cφ is bounded, the proof is completed.

The composition operator Cφ : B∗
α, log → F ∗

log(p, αp− 2, s) is compact if and only if for every

sequence fn ∈ N ⊂ F ∗
log(p, αp− 2, s) is bounded in F ∗

log(p, αp − 2, s) norm andfn → 0, n → ∞,

uniformly on compact subset of the unit disk (where N be the set of all natural numbers), hence,

||Cφ(fn)||F∗

log(p,αp−2,s) → 0, n → ∞.

Now, we describe compactness in the following result:

Theorem 4. Let 0 < p, 1 < s < ∞, α < ∞. If φ is an analytic self-map of the unit disk,

then the induced composition operator Cφ : B∗
α, log → F ∗

log(p, αp − 2, s) is compact if and only if

φ ∈ F ∗
log(p, αp− 2, s), and

lim
r→1

sup
a∈D

Φφ(α, p, s; a) → 0. (5.2)

Proof. Let Cφ : B∗
α, log → F ∗

log(p, αp− 2, s) be compact. This means that

φ ∈ F ∗
log(p, αp− 2, s).

Let

U1
r = {z : |φ(z)| > r, r ∈ (0, 1)},
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and

U2
r = {z : |φ(z)| ≤ r, r ∈ (0, 1)}.

Let fn(z) =
zn

n
if α ∈ [0,∞) or fn(z) =

zn

n1−α if α ∈ (0, 1). Without loss of generality, we only

consider α ∈ (0, 1). Since ||fn||B∗

α, log
≤ M and fn(z) → 0 as n → ∞, locally uniformly on the unit

disk, then ||Cφ(fn)||F∗

log(p,αp−2,s), n → ∞. This means that for each r ∈ (0, 1) and for all ε > 0,

there exist N ∈ N so that if n ≥ N, then

Nαp

rp(1−N)
sup
a∈D

ℓp(a)

∫

U1
r

|φ′(z)|p(1− |z|2)αp−2(1− |ϕa(z)|
2)sdA(z) < ε.

If we choose r so that Nαp

rp(1−N) = 1, then

sup
a∈D

ℓp(a)

∫

U1
r

|φ′(z)|p(1− |z|2)αp−2(1− |ϕa(z)|
2)sdA(z) < ε. (5.3)

Let now f be with ||f ||B∗

α, log
≤ 1. We consider the functions ft(z) = f(tz), t ∈ (0, 1). ft → f

uniformly on compact subset of the unit disk as t → 1 and the family (ft) is bounded on B∗
α, log, thus

||(ft ◦ φ )− (f ◦ φ )|| → 0.

Due to compactness of Cφ, we get that for ε > 0 there is t ∈ (0, 1) so that

sup
a∈D

ℓp(a)

∫

D

|Ft(φ(z))|
p(1− |z|2)αp−2(1− |ϕa(z)|

2)sdA(z) < ε,

where

Ft(φ(z)) =
[

(f ◦ φ )∗ − (ft ◦ φ )∗
]

.

Thus, if we fix t, then

sup
a∈D

ℓp(a)

∫

U1
r

((f ◦ φ)∗(z))p(1 − |z|2)αp−2(1− |ϕa(z)|
2)sdA(z)

≤ 2p sup
a∈D

ℓp(a)

∫

U1
r

|Ft(φ(z))|
p(1− |z|2)αp−2(1− |ϕa(z)|

2)sdA(z)

+2p sup
a∈D

ℓp(a)

∫

U1
r

((ft ◦ φ)
∗(z))p(1− |z|2)αp−2(1− |ϕa(z)|

2)sdA(z)

≤ 2pε+ ||f∗
t ||

p
H∞ sup

a∈D

ℓp(a)

∫

U1
r

|φ′(z)|p(1 − |z|2)αp−2(1− |ϕa(z)|
2)sdA(z)

≤ 2pε+ 2pε||f∗
t ||

p
H∞ .
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i.e,

sup
a∈D

ℓp(a)

∫

U1
r

((f ◦ φ)∗(z))p(1− |z|2)αp−2(1 − |ϕa(z)|
2)sdA(z)

≤ 2pε(1 + ||f∗
t ||

p
H∞), (5.4)

where we have used (4). On the other hand, for each ||f ||B∗

α, log
≤ 1 and ε > 0, there exists a δ

depending on f and ε, so that for r ∈ [δ, 1),

sup
a∈D

ℓp(a)

∫

U1
r

((f ◦ φ)∗(z))p(1− |z|2)αp−2(1− |ϕa(z)|
2)sdA(z) < ε. (5.5)

Since Cφ is compact, then it maps the unit ball of B∗
α, log to a relatively compact subset of

F ∗
log(p, q, s). Thus, for each ε > 0, there exists a finite collection of functions f1, f2, ..., fn in the

unit ball of B∗
α, log so that for each ||f ||B∗

α, log
, there is k ∈ {1, 2, 3, ..., n} so that

sup
a∈D

ℓp(a)

∫

U1
r

|Fk(φ(z))|
p(1− |z|2)αp−2(1− |ϕa(z)|

2)sdA(z) < ε,

where

Fk(φ(z)) =
[

(f ◦ φ )∗ − (fk ◦ φ )∗
]

.

Also, using (5), we get for δ = max1≤k≤nδ(fk, ε) and r ∈ [δ, 1), that

sup
a∈D

ℓp(a)

∫

U1
r

((fk ◦ φ)∗(z))p(1− |z|2)αp−2(1− |ϕa(z)|
2)sdA(z) < ε.

Hence, for any f, ||f ||B∗

α, log
≤ 1, combining the two relations as above, we get the following

sup
a∈D

ℓp(a)

∫

U1
r

((f ◦ φ)∗(z))p(1− |z|2)αp−2(1− |ϕa(z)|
2)sdA(z) ≤ 2pε.

Therefore, we get that (2) holds. For the sufficiency, we use that φ ∈ F ∗
log(p, αp − 2, s) and (2)

holds.

Let {fn}n∈N be a sequence of functions in the unit ball of B∗
α, log so that fn → 0 as n → ∞,

uniformly on the compact subsets of the unit disk. Let also r ∈ (0, 1). Then,

||fn ◦ φ||p
F∗

log(p,αp−2,s) ≤ 2p|fn(φ(0))|

+2p sup
a∈D

ℓp(a)

∫

U2
r

((fn ◦ φ)∗(z))p(1− |z|2)αp−2(1− |ϕa(z)|
2)sdA(z)

+2p sup
a∈D

ℓp(a)

∫

U1
r

((fn ◦ φ)∗(z))p(1− |z|2)αp−2(1− |ϕa(z)|
2)sdA(z)

= 2p(I1 + I2 + I3).
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Since fn → 0 as n → ∞, locally uniformly on the unit disk, then I1 = |fn(φ(0))| goes to zero as

n → ∞ and for each ε > 0, there is N ∈ N so that for each n > N,

I2 = sup
a∈D

ℓp(a)

∫

U2
r

((fn ◦ φ)∗(z))p(1− |z|2)αp−2(1− |ϕa(z)|
2)sdA(z)

≤ ε||φ||p
F∗

log(p,αp−2,s).

We also observe that

I3 = sup
a∈D

ℓp(a)

∫

U1
r

((fn ◦ φ)∗(z))p(1− |z|2)αp−2(1− |ϕa(z)|
2)sdA(z)

≤ ||f ||pB∗

α, log

× sup
a∈D

ℓp(a)

∫

U1
r

|φ′(z)|p
(1− |z|2)αp−2(1 − |ϕa(z)|

2)s

(1− |φ(z)|2)αp
(

log 2
(1−|φ(z)|2)

)p dA(z).

Under the assumption that (2) holds, then for every n > N and for every ε > 0, there exists

r1 so that for every r > r1, I3 < ε.

Thus, if φ(z) ∈ F ∗
log(p, αp− 2, s), we get

||fn ◦ φ||p
F∗

log(p,αp−2,s) ≤ 2p
{

0 + ε||φ||p
F∗

log(p,αp−2,s) + ε

}

≤ Cε.

Combining the above, we get ||Cφ(fn)||
p

F∗

log(p,αp−2,s) → 0 as n → ∞ which proves compactness.

Thus, the theorem we presented is proved.

6 Conclusions

We have obtained some essential and important D-metric spaces. Moreover, the important prop-

erties for D-metric on B∗
α, log and F ∗

log(p, q, s) are investigated in Section 4. Finally, we introduced

composition operators in hyperbolic weighted family of function spaces.
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ABSTRACT

In this paper, we introduce the following (a, b, c)-mixed type functional equation of the

form

g(ax1 + bx2 + cx3)− g(−ax1 + bx2 + cx3) + g(ax1 − bx2 + cx3)− g(ax1 + bx2 − cx3) +

2a2[g(x1) + g(−x1)] + 2b2[g(x2) + g(−x2)] + 2c2[g(x3) + g(−x3)] + a[g(x1)− g(−x1)] +

b[g(x2)− g(−x2)] + c[g(x3)− g(−x3)] = 4g(ax1 + cx3) + 2g(−bx2) + 2g(bx2)

where a, b, c are positive integers with a > 1, and investigate the solution and the

Hyers-Ulam stability of the above functional equation in Banach spaces by using two

different methods.
RESUMEN

En este art́ıculo introducimos la siguiente ecuación funcional de tipo (a, b, c)-mixta de

la forma

g(ax1 + bx2 + cx3)− g(−ax1 + bx2 + cx3) + g(ax1 − bx2 + cx3)− g(ax1 + bx2 − cx3) +

2a2[g(x1) + g(−x1)] + 2b2[g(x2) + g(−x2)] + 2c2[g(x3) + g(−x3)] + a[g(x1)− g(−x1)] +

b[g(x2)− g(−x2)] + c[g(x3)− g(−x3)] = 4g(ax1 + cx3) + 2g(−bx2) + 2g(bx2)

donde a, b, c son enteros positivos con a > 1, e investigamos la solución y la estabilidad

de Hyers-Ulam de la ecuación funcional anterior en espacios de Banach usando dos

métodos diferentes.

Keywords and Phrases: Hyers-Ulam stability, mixed type functional equation, Banach space,

fixed point.
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1 Introduction

The stability problem of functional equations originated form a question of Ulam [28] concerning

the stability of group homomorphisms. Hyers [12] gave a first affirmative partial answer to the

question of Ulam [28] for Banach spaces. Hyers theorem was generalized by Aoki [3] for additive

mappings and Rassias [12] for quadratic mappings. During the last three decades the stability

theorem of Rassias [26] provided a lot of influence for the development of stability theory of a large

variety of functional equations (see [1, 2, 4, 7, 9, 11, 14, 17, 18, 21, 22, 23, 27]). One of the most

famous functional equations is the following additive functional equation

g(x+ y) = g(x) + g(y) (1.1)

In 1821, it was first solved by Cauchy in the class of continuous real-valued functions. It is

often called Cauchy additive functional equation in honour of Cauchy. The theory of additive func-

tional equations is frequently applied to the development of theories of other functional equations.

Moreover, the properties of additive functional equations are powerful tools in almost every field

of natural and social science ([6, 24, 26]). Every solution of the additive functional equation (1.1)

is called an additive mapping.

The function g(x) = x2 satisfies the functional equation

g(x+ y) + g(x− y) = 2g(x) + 2g(y) (1.2)

and therefore, the functional equation (1.2) is called quadratic functional equation. The Hyers-

Ulam stability theorem for the quadratic functional equation (1.2) was proved by Skof [25] for the

mapping g : E1 → E2, where E1 is a normed space and E2 is a Banach space.

Moslehian and Rassias [20] studied the Hyers-Ulam stability problem in non-Archimedean

normed spaces. Mirzavaziri and Moslehian [19] studied the Hyers-Ulam stability of a quadratic

functional equation in Banach spaces by using the fixed point method and Ciepliński [5] sur-

veyed the Hyers-Ulam stability of functional equations by using the fixed point method. Ebadian,

Ghobadipour and Eshaghi Gordji [8] proved the Hyers-Ulam stability of bimultipliers and Jordan

bimultipliers in C∗-ternary algebras by using the fixed point method for a three variable additive

functional equation.

Motivated by Ebadian et al. [8], we introduce the following three variable generalized additive-

quadratic functional equation of the form Dg(x1, x2, x3) :=

g(ax1 + bx2 + cx3)− g(−ax1 + bx2 + cx3) + g(ax1 − bx2 + cx3)− g(ax1 + bx2 − cx3)

+ 2a2[g(x1) + g(−x1)] + 2b2[g(x2) + g(−x2)] + 2c2[g(x3) + g(−x3)]

+ a[g(x1)− g(−x1)] + b[g(x2)− g(−x2)] + c[g(x3)− g(−x3)]
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− [4g(ax1 + cx3) + 2g(−bx2) + 2g(bx2)] = 0 (1.3)

where a, b, c are positive integers with a > 1, and investigate the solution and the Hyers-Ulam

stability of the three variable generalized additive-quadratic functional equation (1.3) in Banach

spaces by using the direct method and the fixed point method.

2 Solution of the functional equation (1.3): when g is odd

In this section, we investigate the solution of the functional equation (1.3) for an odd mapping

case. Throughout this section, let X and Y be real vector spaces.

Theorem 1. If an odd mapping g : X → Y satisfies the functional equation (1.1) if and only if

g : X → Y satisfies the functional equation (1.3).

Proof. Assume that g : X → Y satisfies the functional equation (1.1).

Since g is odd, g(0) = 0.

Replacing (x, y) by (x, x) and by (x, 2x) respectively in (1.1), we obtain

g(2x) = 2g(x) and g(3x) = 3g(x) (2.1)

for all x ∈ X . In general for any positive integer d, we have

g(dx) = dg(x) (2.2)

for all x ∈ X . It is easy to verify from (1.1) that

g(d2x) = d2g(x) and g(d3x) = d3g(x) (2.3)

for all x ∈ X . Replacing (x, y) by (ax1 + bx2, cx3) in (1.1), we get

g(ax1 + bx2 + cx3) = g(ax1 + bx2) + g(cx3) (2.4)

for x1, x2, x3 ∈ X . Replacing x1 by −x1 in (2.4), we get

g(−ax1 + bx2 + cx3) = g(−ax1 + bx2) + g(cx3) (2.5)

for x1, x2, x3 ∈ X . Replacing x2 by −x2 in (2.4), we have

g(ax1 − bx2 + cx3) = g(ax1 − bx2) + g(cx3) (2.6)

for x1, x2, x3 ∈ X . Replacing x3 by −x3 in (2.4), we obtain

g(ax1 + bx2 − cx3) = g(ax1 + bx2) + g(−cx3) (2.7)
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for x1, x2, x3 ∈ X . By (2.4), (2.5), (2.6), (2.7), (1.1) and (2.3), we get

g(ax1 + bx2 + cx3)− g(−ax1 + bx2 + cx3) + g(ax1 − bx2 + cx3)− g(ax1 + bx2 − cx3)

= 2ag(x1)− 2bg(x2) + 2cg(x3) (2.8)

for x1, x2, x3 ∈ X . Adding 2ag(x1)− 2bg(x2) + 2cg(x3) + 2a2g(x1) + 2b2g(x2) + 2c2g(x3) to both

sides and using the oddness of g, we get (1.3).

Conversely, assume that g satisfies (1.3). Letting x3 = 0 in (1.3), we have

g(ax1 + bx2 + cx3)− g(−ax1 + bx2 + cx3) + g(ax1 − bx2 + cx3)− g(ax1 + bx2 − cx3)

+ 2a2[g(x1) + g(−x1)] + 2b2[g(x2) + g(−x2)] + 2c2[g(x3) + g(−x3)] + a[g(x1)− g(−x1)]

+ b[g(x2)− g(−x2)] + c[g(x3)− g(−x3)]

= 2g(ax1 − bx2) + 2ag(x1) + 2bg(x2)

for all x1, x2 ∈ X , since g is odd. So

2g(ax1 − bx2) + 2ag(x1) + 2bg(x2) = 4g(ax1) (2.9)

for all x1, x2 ∈ X . Letting x2 = 0 in (2.9), we have 2g(ax1) + 2ag(x1) = 4g(ax1) and so g(ax1) =

ag(x1) for all x1 ∈ X . Letting x1 = 0 in (2.9), we have −2g(bx2) + 2bg(x2) = 0 and so g(bx2) =

bg(x2) for all x2 ∈ X . It follows from (2.9) that

2g(ax1 − bx2) + 2g(ax1) + 2g(bx2) = 4g(ax1)

for all x1, x2 ∈ X and so

g(x− y) + g(y) = g(x)

for all x, y ∈ X . Letting z = x − y in the above equation, we get g(z) + g(y) = g(z + y) for all

z, y ∈ X .

3 Solution of the functional equation (1.3): when g is even

In this section, we investigate the solution of the functional equation (1.3) for an even mapping

case. Throughout this section, let X and Y to be real vector spaces.

Theorem 2. If an even mapping g : X → Y satisfies the functional equation (1.2) if and only if

g : X → Y satisfies the functional equation (1.3).

Proof. Assume that g : X → Y satisfies the functional equation (1.2).

Setting x = y = 0 in (1.2), we get g(0) = 0.
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Replacing (x, y) by (x, x) and by (x, 2x), respectively, in (1.2), we obtain

g(2x) = 4g(x) and g(3x) = 9g(x) (3.1)

for all x ∈ X . In general for any positive integer d, we have

g(dx) = d2g(x) (3.2)

for all x ∈ X . It is easy to verify from (1.2) that

g(d2x) = d4g(x) and g(d3x) = d6g(x) (3.3)

for all x ∈ X . Replacing (x, y) by (ax1, cx3) in (1.2), we get

g(ax1 + cx3) + g(ax1 − cx3) = 2g(ax1) + 2g(cx3) (3.4)

for x1, x2, x3 ∈ X .

Multiplying 2 on both sides and using (3.3), we get

2g(ax1 + cx3) + 2g(ax1 − cx3) = 4a2g(x1) + 4c2g(x3) (3.5)

for x1, x2, x3 ∈ X .

Adding 2g(ax1 + cx3) to (3.5) on both sides and using (3.3), we obtain

2g(ax1 + cx3) + 2g(ax1 − cx3) + 2g(ax1 + cx3) = 4a2g(x1) + 4c2g(x3) + 2g(ax1 + cx3) (3.6)

for x1, x2, x3 ∈ X . So

4g(ax1 + cx3) = 4a2g(x1) + 4c2g(x3) + 2g(ax1 + cx3)− 2g(ax1 − cx3). (3.7)

Adding and subtracting 2g(bx2) to (3.7), we get

4g(ax1 + cx3) = 4a2g(x1) + 4c2g(x3) + g(ax1 + cx3 + bx2) + g(ax1 + cx3 − bx2)

− g(ax1 − cx3 + bx2)− g(ax1 − cx3 − bx2) (3.8)

for x1, x2, x3 ∈ X .

Adding 4g(bx2) to (3.8) on both sides, we obtain

4g(ax1 + cx3) + 4g(bx2) = 4a2g(x1) + 4c2g(x3) + g(ax1 + cx3 + bx2) + g(ax1 + cx3 − bx2)

− g(ax1 − cx3 + bx2)− g(ax1 − cx3 − bx2) + 4g(bx2) (3.9)

for x1, x2, x3 ∈ X . By (3.9) and (3.3), we get

4g(ax1 + cx3) + 4g(bx2) = 4a2g(x1) + 4c2g(x3) + 4b2g(x2) + g(ax1 + cx3 + bx2)

+ g(ax1 + cx3 − bx2)− g(ax1 − cx3 + bx2)− g(−ax1 + cx3 + bx2) (3.10)
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for x1, x2, x3 ∈ X . Using (3.10), (3.3) and the evenness of g, we get

g(ax1 + bx2 + cx3) + g(ax1 − bx2 + cx3)− g(ax1 + bx2 − cx3)− g(−ax1 + bx2 + cx3)

+ 4a2g(x1) + 4b2g(x2) + 4c2g(x3) = 4g(ax1 + cx3) + 4g(bx2) (3.11)

for all x1, x2, x3 ∈ X .

Conversely, assume that g : X → Y satisfies the functional equation (1.3).

Replacing (x1, x2, x3) by
(

x
a
, 0, y

c

)

in (1.3), we get

g(x− y)− g(−x+ y) + g(x+ y)− g(x− y) + 4g(x) + 4g(y) = 4g(x+ y) (3.12)

for all x, y ∈ X . Using (1.3) and the evenness of g, we get

g(x+ y) + g(x− y) = 2g(x) + 2g(y),

which is quadratic.

4 Stability results for (1.3): Odd case and direct method

In this section, we present the Hyers-Ulam stability of the functional equation (1.3) for an odd

mapping case.

Theorem 3. Let j ∈ {−1, 1} and α : X3 → [0,∞) be a function such that

∞
∑

k=0

α(akjx1, a
kjx2, a

kjx3)

akj
< ∞

for all x1, x2, x3 ∈ X. Let g : X → Y be an odd mapping satisfying the inequality

‖Dg(x1, x2, x3)‖ ≤ α(x1, x2, x3) (4.1)

for all x1, x2, x3 ∈ X. There exists a unique additive mapping A : X → Y which satisfies the

functional equation (1.3) and

‖g(x)−A(x)‖ ≤
1

2

∞
∑

k= 1−j
2

α(akjx1, 0, 0)

akj
(4.2)

for all x1 ∈ X. The mapping A(x) is defined by,

A(x) = lim
k→∞

g(akjx1)

akj
for all x ∈ X

Proof. Assume that j = 1. Replacing (x1, x2, x3) by (x, 0, 0) in (4.2) and using the oddness of g,

we get

‖2g(ax)− 2ag(x)‖ ≤ α(x, 0, 0) (4.3)
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for all x ∈ X . It follows from (4.3) that
∥

∥

∥

∥

g(ax)

a
− g(x)

∥

∥

∥

∥

≤
1

2a
α(x, 0, 0) (4.4)

for all x ∈ X . Replacing x by ax in (4.4) and dividing by a, we obtain
∥

∥

∥

∥

g(a2x)

a2
−

g(ax)

a

∥

∥

∥

∥

≤
1

2a2
α(ax, 0, 0) (4.5)

for all x ∈ X . It follows from (4.4) and (4.5) that
∥

∥

∥

∥

g(a2x)

a2
− g(x)

∥

∥

∥

∥

≤
1

2a

[

α(x, 0, 0) +
α(ax, 0, 0)

a

]

(4.6)

for all x ∈ X . Similarly, for any positive integer n, we have

∥

∥

∥

∥

g(x)−
g(anx)

an

∥

∥

∥

∥

≤
1

2a

n−1
∑

k=0

α(akx, 0, 0)

ak
≤

1

2a

∞
∑

k=0

α(akx, 0, 0)

ak
(4.7)

for all x ∈ X . In order to prove convergence of the sequence
{

g(akx)
ak

}

, replacing x by amx and

dividing am in (4.7) for any m,n > 0, we get
∥

∥

∥

∥

g(amx)

am
−

g(am+nx)

am+n

∥

∥

∥

∥

=
1

2am

∥

∥

∥

∥

g(amx)−
g(amanx)

an

∥

∥

∥

∥

≤
1

2a

n−1
∑

m=0

α(am+nx, 0, 0)

am+n

≤
1

2a

n−1
∑

m=0

α(am+nx, 0, 0)

am+n

→ 0 as m → ∞.

Hence the sequence
{

g(anx)
an

}

is a Cauchy sequence. Since Y is complete, there exists a mapping

A : X → Y such that

A(x) = lim
n→∞

g(anx)

an
, ∀x ∈ X. (4.8)

Letting n → ∞ in (4.8), we see that (4.8) holds for x ∈ X .

To prove that A satisfies (1.3), replacing (x1, x2, x3) by (anx, anx, anx) and dividing an in (4.1),

we obtain
1

an
‖Dg(anx, anx, anx)‖ ≤

1

an
α(anx, anx, anx)

for all x1, x2, x3 ∈ X . Letting m → ∞ in the above inequality and using the definition of A(x), we

see that DA(x1, x2, x3) = 0. Hence A satisfies (1.3) for all x1, x2, x3 ∈ X .

To show that A is unique, let B(x) be another additive mapping satisfying (4.2). Then

‖A(x)−B(x)‖ =
1

an
‖A(anx)−B(anx)‖

≤
1

an
{‖A(anx)− g(anx)‖ + ‖g(anx)−B(anx)‖}

→ 0 as n → ∞.
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Hence A is unique.

Assume that j = −1. Replacing x by x
a
in (4.3), we get

∥

∥

∥
ag(x)− a2g

(x

a

)∥

∥

∥
≤ α

(x

a
, 0, 0

)

(4.9)

for all x ∈ X . The rest of the proof is similar to the proof of the case j = 1. This completes the

proof of the theorem.

The following corollary is an immediate consequence of Theorem 3 concerning the stability of

(1.3).

Corollary 1. Let ǫ and p be nonnegative real numbers. Let g : X → Y be an odd mapping

satisfiying the inequality

‖Dg(x1, x2, x3)‖ (4.10)

≤















ǫ;

ǫ (‖x1‖
p + ‖x2‖

p + ‖x3‖
p) ; p > 1 or p < 1

ǫ
(

‖x1‖
p + ‖x2‖

p + ‖x3‖
p + ‖x1‖

3p‖x2‖
3p‖x3‖

3p
)

; p > 1
3 or p < 1

3

for all x1, x2, x3 ∈ X. Then there exists a unique additive mapping A : X → Y such that

‖g(x)−A(x)‖ ≤















ǫ
2|a−1| ;
ǫ‖x‖p

2|a−ap| ; p > 1 or p < 1
ǫ‖x‖3p

2|a−a3p| ; p > 1
3 or p < 1

3

(4.11)

for all x ∈ X.

Proof. Letting

α(x1, x2, x3) =















ǫ;

ǫ (‖x1‖
p + ‖x2‖

p + ‖x3‖
p) ;

ǫ
(

‖x1‖
p + ‖x2‖

p + ‖x3‖
p + ‖x1‖

3p‖x2‖
3p‖x3‖

3p
)

for all x1, x2, x3 ∈ X , we can get the result.

5 Stability results for (1.3): Even case and direct method

In this section, we discuss the Hyers-Ulam stability of the functional equation (1.3) for an even

mapping case by using the direct method.
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Theorem 4. Let j ∈ {−1, 1} and α : X3 → [0,∞) be a function such that

∞
∑

k=0

α(akjx1, a
kjx2, a

kjx3)

akj
< ∞ (5.1)

for all x1, x2, x3 ∈ X. Let g : X → Y be an even mapping satisfying g(0) = 0 and the inequality

‖Dg(x1, x2, x3)‖ ≤ α(x1, x2, x3) (5.2)

for all x1, x2, x3 ∈ X. There exists a unique additive mapping Q : X → Y which satisfies the

functional equation (1.3) and

‖g(x)−Q(x)‖ ≤
1

4a2

∞
∑

k= 1−j
2

α(akjx, 0, 0)

a2kj
(5.3)

for all x ∈ X. The mapping Q(x) is defined by

Q(x) = lim
n→∞

g(akjx)

a2kj
(5.4)

for all x ∈ X.

Proof. Assume that j = 1. Replacing (x1, x2, x3) by (x, 0, 0) in (5.2), we get

‖4g(ax)− 4a2g(x)‖ ≤ α(x, 0, 0) (5.5)

for all x ∈ X . It follows from (5.5) that

∥

∥

∥

∥

g(ax)

a2
− g(x)

∥

∥

∥

∥

≤
1

4a2
α(x, 0, 0) (5.6)

for all x ∈ X . Replacing x by ax in (5.6) and dividing by a2, we obtain

∥

∥

∥

∥

g(a2x)

a4
−

g(ax)

a2

∥

∥

∥

∥

≤
1

4a4
α(ax, 0, 0) (5.7)

for all x ∈ X . It follows from (5.6) and (5.7) that

∥

∥

∥

∥

g(a2x)

a4
− g(x)

∥

∥

∥

∥

≤
1

4a2

[

α(x, 0, 0) +
α(ax, 0, 0)

a2

]

(5.8)

for all x ∈ X . Inductively, we have

∥

∥

∥

∥

g(x)−
g(anx)

a2n

∥

∥

∥

∥

≤
1

4a2

n−1
∑

k=0

α(akx, 0, 0)

a2k
≤

1

a3

∞
∑

k=0

α(akx, 0, 0)

a2k
(5.9)
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for all x ∈ X . In order to prove convergence of the sequence
{

g(akx)
a2k

}

, replacing x by amx and

dividing am in (5.9) for any m,n > 0, we get

∥

∥

∥

∥

g(amx)

a2m
−

g(am+nx)

a2(m+n)

∥

∥

∥

∥

=
1

a2m

∥

∥

∥

∥

g(amx)−
g(amanx)

a2n

∥

∥

∥

∥

≤
1

a3

n−1
∑

m=0

α(am+nx, 0, 0)

a2(m+n)

≤
1

a3

n−1
∑

m=0

α(am+nx, 0, 0)

a2(m+n)

→ 0 as m → ∞.

Hence the sequence
{

g(anx)
a2n

}

is a Cauchy sequence. Since Y is complete, there exists a mapping

Q : X → Y such that

Q(x) = lim
n→∞

g(anx)

a2n
, ∀x ∈ X. (5.10)

Letting n → ∞ in (5.10) we see that (5.10) holds for x ∈ X .

To prove that Q satisfies (1.3), replacing (x1, x2, x3) by (anx, anx, anx) and dividing a2n in (5.2),

we obtain
1

a2n
‖Dg(anx, anx, anx)‖ ≤

1

a2n
α(anx, anx, anx)

for all x1, x2, x3 ∈ X . Letting n → ∞ in the above inequality and using the definition of Q(x), we

see that DQ(x1, x2, x3) = 0. Hence Q satisfies (1.3) for all x1, x2, x3 ∈ X .

To show that Q is unique, let B(x) be another quadratic mapping satisfying (5.4). Then

‖Q(x)−B(x)‖ =
1

a2n
‖Q(anx) −B(anx)‖

≤
1

a2n
{‖Q(anx)− g(anx)‖ + ‖g(anx) −B(anx)‖}

→ 0 as n → ∞.

Hence Q is unique.

Assume that j = −1. Replacing x by x
a
in (5.5), we get

∥

∥

∥
ag(x)− a2g

(x

a

)∥

∥

∥
≤

1

4
α
(x

a
, 0, 0

)

(5.11)

for all x ∈ X . The rest of the proof is similar to the proof of the case j = 1. This completes the

proof of the theorem.

The following corollary is an immediate consequence of Theorem 4 concerning the stability of

(1.3).
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Corollary 2. Let ǫ and p be nonnegative real numbers. Let gq : X → Y be an even mapping

satisfiying g(0) = 0 and the inequality

‖Dg(x1, x2, x3)‖ (5.12)

≤















ǫ;

ǫ (‖x1‖
p + ‖x2‖

p + ‖x3‖
p) ; p > 2 or p < 2

ǫ
(

‖x1‖
p‖x2‖

p‖x3‖
p + {‖x1‖

3p‖x2‖
3p‖x3‖

3p}
)

; p > 2
3 or p < 2

3

for all x1, x2, x3 ∈ X. Then there exists a unique quadratic mapping Q : X → Y such that

‖g(x)−Q(x)‖ ≤















ǫ
4|a2−1|
ǫ‖x‖p

4|a2−ap|
ǫ‖x‖3p

4|a2−a3p|

(5.13)

for all x ∈ X.

Proof. Letting

α(x1, x2, x3) =















ǫ;

ǫ (‖x1‖
p + ‖x2‖

p + ‖x3‖
p) ;

ǫ
(

‖x1‖
p‖x2‖

p‖x3‖
p + {‖x1‖

3p‖x2‖
3p‖x3‖

3p}
)

;

for all x1, x2, x3 ∈ X , we get the result.

6 Stability results of (1.3): Mixed case

In this section, we establish the Hyers-Ulam stability of the functional equation(1.3) for a mixed

mapping case.

Theorem 5. Let j ∈ {−1, 1} and α : X3 → [0,∞) be a function satisfying (1.3) for all x1, x2, x3 ∈

X. Let g : X → Y be a mapping satisfying the inequality

‖Dg(x1, x2, x3)‖ ≤ α(x1, x2, x3) (6.1)

for all x1, x2, x3 ∈ X. There exist a unique additive mapping A : X → Y and a unique quadratic

mapping Q : X → Y which satisfies the functional equation (1.3) and

‖f(x)−A(x)−Q(x)‖ ≤
1

2

{[ 1

2a

∞
∑

k= 1−j
2

[α(akjx, 0, 0)

akj
+

α(−akjx, 0, 0)

akj

]

]

+
1

4n2

[

∞
∑

k= 1−j
2

[α(akjx, 0, 0)

a2kj
+

α(−akjx, 0, 0)

a2kj

]

]}

for all x ∈ X. The mapping A(x) and Q(x) are defined in (4.2) and (5.10), respectively.
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Proof. Let go(x) = ga(x)−ga(−x)
2 for all x ∈ X . Then go(0) = 0 and go(−x) = −go(x) for all

x ∈ X .

Hence

‖Dgo(x1, x2, x3)‖ ≤
1

2

{

‖Dga(x1, x2, x3)‖+ ‖Dga(−x1,−x2,−x3)‖
}

≤
α(x1, x2, x3)

2
+

α(−x1,−x2,−x3)

2

for all x1, x2, x3 ∈ X . By Theorem 3, we have

‖go(x) −A(x)‖ ≤
1

4a

∞
∑

k= 1−j
2

[α(akjx, 0, 0)

akj
+

α(−akjx, 0, 0)

akj

]

(6.2)

for all x ∈ X .

Let ge(x) =
gq(x)+gq(−x)

2 for all x ∈ X . Then ge(0) = 0 and ge(−x) = ge(x) for all x ∈ X .

Hence,

‖Dge(x1, x2, x3)‖ ≤
1

2

{

‖Dgq(x1, x2, x3)‖+ ‖Dgq(−x1,−x2,−x3)‖
}

≤
α(x1, x2, x3)

2
+

α(−x1,−x2,−x3)

2

for all x1, x2, x3 ∈ X .

By Theorem 4, we have

‖ge(x) −Q(x)‖ ≤
1

8a2

∞
∑

k= 1−j
2

[α(akjx, 0, 0)

a2kj
+

α(−akjx, 0, 0)

a2kj

]

(6.3)

for all x ∈ X . Then

g(x) = ge(x) + go(−x) (6.4)

for all x ∈ X . It follows from (6.2), (6.3) and (6.4) that

‖g(x)−A(x)−Q(x)‖ = ‖ge(x) + go(−x)−A(x) −Q(x)‖

≤ ‖go(−x)−A(x)‖ + ‖ge(x) −Q(x)‖

≤
1

4a

∞
∑

k= 1−j
2

[α(akjx, 0, 0)

akj
+

α(−akjx, 0, 0)

akj

]

+
1

8a2

∞
∑

k= 1−j
2

[α(akjx, 0, 0)

a2kj
+

α(−akjx, 0, 0)

a2kj

]

for all x ∈ X . Hence the theorem is proved.

Using Corollaries 1 and 2, we have the following corollary concerning the stability of (1.3).
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Corollary 3. Let λ and s be a nonnegative real numbers. Let gq : X → Y be a mapping satisfiying

the inequality

‖Dg(x1, x2, x3)‖ ≤















λ;

λ(‖x1‖
s + ‖x2‖

s + ‖x3‖
s); s 6= 1, 2

λ(‖x1‖
s + ‖x2‖

s + ‖x3‖
s) + {‖x1‖

3s + ‖x2‖
3s + ‖x3‖

3s}; s 6= 1
3 ,

2
3

(6.5)

for all x1, x2, x3 ∈ X. Then there exist a unique additive function A : X → Y and a unique

quadratic mapping Q : X → Y such that

‖g(x)−A(x) −Q(x)‖ ≤



















λ
2

[

1
|a−1| +

1
2|a2−1|

]

λ‖x‖S

2

[

1
|a−aS| +

1
2|a2−aS|

]

λ‖x‖3S

2

[

1
|a−a3S | +

1
2|a2−a3S |

]

(6.6)

for all x ∈ X.

7 Fixed point stability of (1.3): Odd mapping case

The following theorems are useful to prove our fixed point stability results.

Theorem 6. [12] (Banach Contraction Principle) Let (X, d) be a complete metric space and

consider a mapping T : X → X which is strictly contractive mapping.

(A1) d(Tx, T y) ≤ Ld(x, y) for some (Lipschitz constant) L < 1.

(i) The mapping T has one and only fixed point x∗ = T (x∗);

(ii) The fixed point for each given element x∗ is globally contractive, that is,

(A2) limn→∞ T nx = x∗ for any starting point x ∈ X;

(iii) One has the following estimation inequalities

(A3) d(T nx, x∗) ≤ 1
1−L

d(T nx, T n+1x), ∀n ≥ 0, ∀x ∈ X;

(A4) d(x, x∗) = 1
1−L

d(x, x∗), ∀x ∈ X.

Theorem 7. [12] (Alternative Fixed Point Theorem) Suppose that for a complete generalized

metric space (X, d) and a strictly contractive mapping T : X → X with Lipschitz constant L. Then

for each given element x ∈ X,

(B1) d(T nx, T n+1x) = ∞, ∀n ≥ 0;

(B2) there exists a natural number n0 such that
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(i) d(T nx, T n+1x) < ∞, ∀n ≥ 0;

(ii) The sequence {T nx} is convergent to a fixed point y∗ of T ;

(iii) y∗ is the unique fixed point of T in the set Y = {y ∈ Y : d(T n0 , y) < ∞};

(iv) d(y∗, y) ≤ 1
1−L

d(y, T y) for all y ∈ Y .

In this method, we investigate the Hyers-Ulam stability of the functional equation (1.3) for

an odd mapping case by using fixed point method.

Theorem 8. Let g : W → B be an odd mapping for which there exists a function α : W 3 → [0,∞)

with the condition

lim
n→∞

α(aki x1, a
k
i x2, a

k
i x3)

aki
= 0, (7.1)

for ai =











a i = 0

1
a

i = 1,
such that the functional inequality

‖Dg(x1, x2, x3)‖ ≤ α(x1, x2, x3) (7.2)

for all x1, x2, x3 ∈ W . If there exists L = L(i) such that the function x → β(x) = 1
2α

(

x
a
, 0, 0

)

has

the property
1

ai
β(aix) = L (β(x)) (7.3)

for all x ∈ W . Then there exists a unique additive function A : W → B satisfying the functional

equation (1.3) and

‖g(x)−A(x)‖ ≤
L1−i

1− L
β(x) (7.4)

for all x ∈ W .

Proof. Consider the set X = {P |P : W → B,P (0) = 0} and introduce the generalized metric on

X .

d(p, q) = inf{k ∈ (0,∞) : ‖p(x)− q(x)‖ ≤ β(x), x ∈ W}

It is easy to see that (X, d) is complete.

Define T : X → X by Tp(x) =
1
ai
p(aix) for all x ∈ W . Now p, q ∈ X ,

d(p, q) ≤ k

⇒ ‖p(x)− q(x)‖ ≤ kβ(x), x ∈ W.

⇒

∥

∥

∥

∥

1

ai
p(aix)−

1

ai
q(aix)

∥

∥

∥

∥

≤
1

ai
kβ(aix), ∀x ∈ W

⇒ ‖Tp(x)− Tq(x)‖ ≤ Lkβ(x), ∀x ∈ W

⇒ d(Tp, Tq) ≤ Lk.
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This implies d(Tp, Tq) ≤ Ld(p, q) for all p, q ∈ X . That is, T is a strictly contractive mapping on

X with Lipschitz constant L. It follows from (4.3) that

‖2g(ax)− 2ag(x)‖ ≤ α(x, 0, 0) (7.5)

for all x ∈ W . It follows from (7.5) that,
∥

∥

∥

∥

g(x)−
g(ax)

a

∥

∥

∥

∥

≤
1

2a
α(x, 0, 0) (7.6)

for all x ∈ W . Using (6.2), for this case i = 0, it reduces to
∥

∥

∥

∥

g(x)−
g(ax)

a

∥

∥

∥

∥

≤
1

a
β(x) (7.7)

for all x ∈ W . Thus

d(ga, T ga) ≤
1

a
= L = L1 < ∞.

Again replacing x by x
a
in (7.5), we get

∥

∥

∥
g(x)− ag

(x

a

)
∥

∥

∥
≤

1

2
α
(x

a
, 0, 0

)

(7.8)

for all x ∈ W .

By using (7.3) for the case i = 1, it reduces to
∥

∥

∥
g(x)− ag

(x

a

)∥

∥

∥
≤ β(x). (7.9)

That is, d(g, T g) ≤ 1 ⇒ d(g, T g) ≤ 1 = L0 < ∞. In the above case, we have d(g, T g) ≤ L1−i.

Therefore (B2(i)) holds. From (B2(ii)), it follows that there exists a fixed point A of T in X such

that

A(x) = lim
i→∞

ga(a
k
i x)

aki
, ∀x ∈ W. (7.10)

In order to prove A : W → B is additive, replacing (x1, x2, x3) by (aki x1, a
k
i x2, a

k
i x3) in (7.2)

and dividing aki , it follows from (7.3) and (7.10) that A satisfies (1.3) for all x1, x2, x3 ∈ W . By

(B2(iii)), A is the unique fixed point of T in the set, Y = {g ∈ X : d(Tg,A) < ∞}.

Using the fixed point alternative result, A is the unique function such that

‖g(x)−A(x)‖ ≤ kβ(x)

for all x ∈ W and k > 0. Finally, by (B2(iv)), we obtain

d(g,A) ≤
1

1− L
d(g, T g).

That is, d(g,A) ≤ L1−i

1−L
. Hence we conclude that

‖g(x)−A(x)‖ ≤
L1−i

1− L
β(x)

for all x ∈ W . This completes the proof of the theorem.
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Corollary 4. Let g : W → B be an odd mapping and assume that there exist real numbers λ and

s such that

‖Dga(x1, x2, x3)‖ ≤















λ;

λ(‖x1‖
s + ‖x2‖

s + ‖x3‖
s);

λ(‖x1‖
s + ‖x2‖

s + ‖x3‖
s) + {‖x1‖

3s + ‖x2‖
3s + ‖x3‖

3s}

(7.11)

for all x1, x2, x3 ∈ X. Then there exists a unique additive mapping A : W → B such that

‖g(x)−A(x)‖ ≤















λ
2|a−1| ;
λ‖x‖s

2|a−as| ; s 6= 1
λ‖x‖3s

2|a−a3s| ; s 6= 1
3

(7.12)

for all x ∈ X.

Proof. Let

α(x1, x2, x3) =















λ;

λ(‖x1‖
S + ‖x2‖

S + ‖x3‖
S);

λ(‖x1‖
S + ‖x2‖

S + ‖x3‖
S) + {λ(‖x1‖

3S + ‖x2‖
3S + ‖x3‖

3S)};

for all x1, x2, x3 ∈ W .

Now,

α(aki x1, a
k
i x2, a

k
i x3)

aki

=































λ

aki
;

λ

aki
(‖aki x1‖

S + ‖aki x2‖
S + ‖aki x3‖

S);

λ

aki
(‖aki x1‖

S + ‖aki x2‖
S + ‖aki x3‖

S) + {‖aki x1‖
3S + ‖aki x2‖

3S + ‖aki x3‖
3S}

=















→ 0 as k → ∞

→ 0 as k → ∞

→ 0 as k → ∞.

(7.13)

That is, (7.1) holds. But we have β(x) = 1
2α

(

x
a
, 0, 0

)

. Hence

β(x) =
1

2
α
(x

a
, 0, 0

)

=















λ
2

λ
2aS (‖x‖

S)

λ
2aS (‖x‖

S).
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Also

1

ai
β(ai, x) =















λ
2ai

λ
2ai

(‖aix‖
S)

λ
2ai

(‖aix‖
S)

=















a−1
i β(x)

aS−1
i β(x)

a3S−1
i β(x).

Hence the inequality (7.7) holds. Either L = a−1 for s = 0 if i = 0 and L = 1
a−1 for s = 0 if

i = 1.

Either L = as−1 for s < 1 if i = 0 and L = 1
as−1 for s > 1 if i = 1.

Either L = a3s−1 for s < 1 if i = 0 and L = 1
a3s−1 for s > 1 if i = 1.

Now from (7.2), we prove the following cases:

Case: 1 L = a−1, i = 0

‖ga(x)−A(x)‖ ≤
L1−i

1− L
β(x) =

(a−1)1−0

1− a−1

λ

2
=

λ

2(a− 1)
. (7.14)

Case: 2 L =
(

1
a

)−1
, i = 1

‖ga(x) −A(x)‖ ≤
L1−i

1− L
β(x) =

(a)1−1

1− a

λ

2
=

λ

2(1− a)
. (7.15)

Case: 3 L = as−1, s < 1, i = 0

‖ga(x) −A(x)‖ ≤
L1−i

1− L
β(x) =

(as−1)1−0

1− aS−1

λ

2aS
‖x‖S =

λ‖x‖S

2|a− aS |
. (7.16)

Case: 4 L =
(

1
a

)S−1
, S > 1, i = 1

‖ga(x)−A(x)‖ ≤
L1−i

1− L
β(x) =

(a1−s)1−1

1− a1−S

λ

2aS
‖x‖S =

λ‖x‖S

2(aS − a)
. (7.17)

Case: 5 L = a3s−1, S < 1
3 , i = 0

‖ga(x)−A(x)‖ ≤
L1−i

1− L
β(x) =

(a3S−1)1−0

1− a3S−1

λ

2a3S
‖x‖S =

λ‖x‖S

2(a− a3S)
. (7.18)

Case: 6 L =
(

1
a

)−1
, i = 1

‖ga(x)−A(x)‖ ≤
L1−i

1− L
β(x) =

(a1−3S)1−1

1− a1−3S

λ

2a3S
‖x‖S =

λ‖x‖S

2(a3S − a)
. (7.19)

Hence the proof of the corollary is completed.

8 Fixed point stability of (1.3): Even mapping case

In this method, we investigate the Hyers-Ulam stability of the functional equation (1.3) for an even

case mapping by using fixed point method.
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Theorem 9. Let g : W → B be an even mapping for which there exists a function α : W 3 → [0,∞)

with the condition

lim
n→∞

α(aki x1, a
k
i x2, a

k
i x3)

a2ki
= 0 (8.1)

for ai =











a i = 0

1
a

i = 1,
such that the functional inequality

‖Dg(x1, x2, x3)‖ ≤ α(x1, x2, x3) (8.2)

for all x1, x2, x3 ∈ W . If there exists L = L(i) such that the function

x → β(x) =
1

2
α
(x

a
, 0, 0

)

(8.3)

has the property
1

a2i
β(aix) = L (β(x)) (8.4)

for all x ∈ W , then there exists a unique quadratic mapping Q : W → B satisfying the functional

equation (1.3) and

‖g(x)−Q(x)‖ ≤
L1−i

1− L
β(x) (8.5)

for all x ∈ W .

Proof. Consider the set X = {P |P : W → B,P (0) = 0} and introduce the generalized metric on

X .

d(p, q) = inf{k ∈ (0,∞) : ‖p(x)− q(x)‖ ≤ β(x), x ∈ W}

It is easy to see that (X, d) is complete.

Define T : X → X by Tp(x) =
1
a2

i

p(aix) for all x ∈ W . Now p, q ∈ X ,

d(p, q) ≤ k

⇒ ‖p(x)− q(x)‖ ≤ kβ(x), x ∈ W.

⇒

∥

∥

∥

∥

1

a2i
p(aix)−

1

a2i
q(aix)

∥

∥

∥

∥

≤
1

a2i
kβ(aix), ∀x ∈ W

⇒ ‖Tp(x) − Tq(x)‖ ≤ Lkβ(x), ∀x ∈ W

⇒ d(Tp, Tq) ≤ Lk.

This implies d(Tp, Tq) ≤ Ld(p, q) for all p, q ∈ X . That is, T is a strictly contractive mapping on

X with Lipschitz constant L.

Replacing (x1, x2, x3) by (x, 0, 0) in (9.1) and using the evenness of g, we get

‖4g(ax)− 4a2g(x)‖ ≤ α(x, 0, 0), (8.6)
∥

∥

∥

∥

g(x)−
g(ax)

n2

∥

∥

∥

∥

≤ 1
4a2α(x, 0, 0) (8.7)
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for all x ∈ W . By using (8.4), for this case i = 0, it reduces to
∥

∥

∥

∥

g(x)−
g(ax)

a2

∥

∥

∥

∥

≤
1

2a2
β(x) (8.8)

for all x ∈ W . That is,

d(g, T g) ≤
1

a2
⇒ d(g, T g) ≤

1

a2
= L = L1 < ∞.

Again replacing x by x
a
in (8.6), we get

∥

∥

∥
g(x)− a2g

(x

a

)∥

∥

∥
≤

1

4
α
(x

a
, 0, 0

)

(8.9)

for all x ∈ W . That is,

d(g, T g) ≤
1

2
< 1 ⇒ d(g, T g) ≤ 1 = L0 < ∞.

In above case, we get d(g, T g) ≤ L1−i.

The rest of the proof is similar to that of the previous theorem. This completes the proof of

the theorem.

Corollary 5. Let g : W → B be an even mapping and assume that there exist real numbers λ and

s such that

‖Dg(x1, x2, x3)‖ ≤















λ;

λ(‖x1‖
s + ‖x2‖

s + ‖x3‖
s); s 6= 2

λ(‖x1‖
s + ‖x2‖

s + ‖x3‖
s) + {‖x1‖

3s + ‖x2‖
3s + ‖x3‖

3s}; s 6= 1
3

(8.10)

for all x1, x2, x3 ∈ X. Then there exists a unique quadratic mapping Q : W → B such that

‖gq(x) −Q(x)‖ ≤















λ
4|a2−1| ;
λ‖x‖s

4|a2−as|
λ‖x‖3s

4|a2−a3s|

(8.11)

for all x ∈ X.

9 Fixed point stability of (1.3): Mixed mapping case

In this method, we present the Hyers-Ulam stability of the functional equation (1.3) for a mixed

mapping case by using fixed point method.

Theorem 10. Let g : W → B be a mapping for which there exists a function α : W 3 → [0,∞)

with the condition (7.1) and (8.1) for ai =











a i = 0

1
a

i = 1,
such that the functional inequality

‖Dg(x1, x2, x3)‖ ≤ α(x1, x2, x3) (9.1)
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for all x1, x2, x3 ∈ W . If there exists L = L(i) such that the function

x → β(x) =
1

2
α
(x

a
, 0, 0

)

satisfies (7.3) and (8.3) for all x ∈ W , then there exist a unique additive mapping A : W → B and

a quadratic mapping Q : W → B satisfying the functional equation (1.3) and

‖g(x)−A(x) −Q(x)‖ ≤
L1−i

1− L
[β(x) + β(−x)]

holds for all x ∈ W .

Proof. It follows from (6.2) and Theorem 8 that

‖go(x)−A(x)‖ ≤
1

2

L1−i

1− L
[β(x) + β(−x)]. (9.2)

Similarly, it follows from (7.5) and Theorem 9 that

‖ge(x)−Q(x)‖ ≤
1

2

L1−i

1− L
[β(x) + β(−x)] (9.3)

for all x ∈ W . Then g(x) = go(x) + ge(x) for all x ∈ W .

From (8.11), (9.2) and (9.3), we have

‖g(x)−A(x) −Q(x)‖ = ‖ge(x) + go(x) −A(x)−Q(x)‖

≤ ‖go(x) −A(x)‖ + ‖ge(x)−Q(x)‖

=
L1−i

1− L
[β(x) + β(−x)]

for all x ∈ W . Hence the theorem is proved.

Corollary 6. Let g : W → B be a mapping and assume that there exist real numbers λ and s such

that

‖Dg(x1, x2, x3)‖ ≤















λ;

λ(‖x1‖
s + ‖x2‖

s + ‖x3‖
s); s 6= 1, 2

λ(‖x1‖
s + ‖x2‖

s + ‖x3‖
s) + {‖x1‖

3s + ‖x2‖
3s + ‖x3‖

3s}; s 6= 1
3 ,

2
3

for all x1, x2, x3 ∈ X. Then there exist a unique additive mapping A : W → B and a unique

quadratic mapping Q : W → B such that

‖g(x)−A(x) −Q(x)‖ ≤















λ
2|a−1| +

λ
4|a2−1|

λ‖x‖S

2|a−aS | +
λ‖x‖S

4|a2−aS |
λ‖x‖3S

2|a−a3S | +
λ‖x‖3S

4|a2−a3S |

for all x ∈ X.



CUBO
22, 2 (2020)

Hyers-Ulam stability of an additive-quadratic functional equation 253

Declarations

Availablity of data and materials

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Fundings

This work was supported by Basic Science Research Program through the National Research Foun-

dation of Korea funded by the Ministry of Education, Science and Technology (NRF-2017R1D1A1B04032937).

Authors’ contributions

The authors equally conceived of the study, participated in its design and coordination, drafted the

manuscript, participated in the sequence alignment, and read and approved the final manuscript.



254 V. Govindan, C. Park, S. Pinelas & T. M. Rassias CUBO
22, 2 (2020)

References

[1] J. Aczél and J. Dhombres, Functional equations in several variables, Encyclopedia of Mathe-

matics and its Applications, 31, Cambridge University Press, Cambridge, 1989.

[2] L. Aiemsomboon and W. Sintunavarat, Stability of the generalized logarithmic functional

equations arising from fixed point theory, Rev. R. Acad. Cienc. Exactas F́ıs. Nat. Ser. A Mat.

RACSAM 112 (2018), no. 1, 229–238.

[3] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan

2 (1950), 64–66.

[4] I. Chang, E. Lee and H. Kim, On the Hyers-Ulam-Rassias stability of a quadratic functional

equations, Math. Inequal. Appl. 6 (2003), 87–95.
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ABSTRACT

In this paper we have studied pseudosymmetric, Ricci-pseudosymmetric and projec-

tively pseudosymmetric para-Sasakian manifold admitting a quarter-symmetric metric

connection and constructed examples of 3-dimensional and 5-dimensional para-Sasakian

manifold admitting a quarter-symmetric metric connection to verify our results.

RESUMEN

En este art́ıculo hemos estudiado variedades para-Sasakianas seudosimétricas, Ricci-

seudosimétricas y proyectivamente seudosimétricas que admiten una conexión métrica

cuarto-simétrica, y construimos ejemplos de variedades para-Sasakianas 3-dimensional

y 5-dimensional que admiten una conexión métrica cuarto-simétrica para verificar nue-

stros resultados.
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1 Introduction

One of the most important geometric property of a space is symmetry. Spaces admitting some

sense of symmetry play an important role in differential geometry and general relativity. Cartan

[5] introduced locally symmetric spaces, i.e., the Riemannian manifold (M, g) for which ∇R = 0,

where ∇ denotes the Levi-Civita connection of the metric. The integrability condition of ∇R = 0

is R · R = 0. Thus, every locally symmetric space satisfies R · R = 0, whereby the first R stands

for the curvature operator of (M, g), i.e., for tangent vector fields X and Y one has R(X,Y ) =

∇X∇Y −∇Y ∇X−∇[X,Y ], which acts as a derivation on the second R which stands for the Riemann-

Christoffel curvature tensor. The converse however does not hold in general. The spaces for which

R · R = 0 holds at every point were called semi-symmetric spaces and which were classified by

Szabo [19].

Semisymmetric manifolds form a subclass of the class of pseudosymmetric manifolds. In some

spaces R · R is not identically zero, these turn out to be the pseudo-symmetric spaces of Deszcz

[9, 10, 11], which were characterized by the condition R ·R = LQ(g,R), where L is a real function

on M and Q(g,R) is the Tachibana tensor of M .

If at every point of M the curvature tensor satisfies the condition

R(X,Y ) · J = LJ [(X ∧g Y ) · J ], (1.1)

then a Riemannian manifold M is called pseudosymmetric (resp., Ricci-pseudosymmetric, projec-

tively pseudosymmetric) when J = R(resp., S, P ) . Here (X ∧g Y ) is an endomorphism and is

defined by (X ∧g Y )Z = g(Y, Z)X− g(X,Z)Y and LJ is some function on UJ = {x ∈ M : J 6= 0}

at x. A geometric interpretation of the notion of pseudosymmetry is given in [13]. It is also easy to

see that every pseudosymmetric manifold is Ricci-pseudosymmetric, but the converse is not true.

An analogue to the almost contact structure, the notion of almost paracontact structure was

introduced by Sato [18]. An almost contact manifold is always odd-dimensional but an almost

paracontact manifold could be of even dimension as well. Kaneyuki and Williams [14] studied

the almost paracontact structure on a pseudo-Riemannian manifold. Recently, almost paracontact

geometry in particular, para-Sasakian geometry has taking interest, because of its interplay with

the theory of para-Kahler manifolds and its role in pseudo-Riemannian geometry and mathematical

physics ([4, 7, 8], etc.,).

As a generalization of semi-symmetric connection, quarter-symmetric connection was intro-

duced. Quarter-symmetric connection on a differentiable manifold with affine connection was

defined and studied by Golab [12]. From thereafter many geometers studied this connection on

different manifolds.

Para-Sasakian manifold with respect to quarter-symmetric metric connection was studied by
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De et.al., [16, 1], Pradeep Kumar et.al., [17] and Bisht and Shanker [15].

Motivated by the above studies in this article we study properties of projective curvature

tensor on para-Sasakian manifold admitting a quarter-symmetric metric connection. The organi-

zation of the paper is as follows: In Section 2, we present some basic notions of para-Sasakian

manifold and quarter-symmetric metric connection on it. Section 3 and 4 are respectively devoted

to study the pseudosymmetric and Ricci-pseudosymmetric para-Sasakian manifold admitting a

quarter-symmetric metric connection. Here we prove that if a para-Sasakian manifold Mn admit-

ting a quarter-symmetric metric connection is Pseudosymmetric (resp., Ricci pseudosymmetric)

then Mn is an Einstein manifold with respect to quarter-symmetric metric connection or it satisfies

LR̃ = −2 (resp., LS̃ = −2). Section 5 and 6 are concerned with projectively flat and projectively

pseudosymmetric para-Sasakian manifold Mn admitting a quarter-symmetric metric connection.

Finally, we construct examples of 3-dimensional and 5-dimensional para-Sasakian manifold admit-

ting a quarter-symmetric metric connection and we find some of its geometric characteristics.

2 Preliminaries

A differential manifoldMn is said to admit an almost paracontact Riemannian structure (φ, ξ, η, g),

where φ is a tensor field of type (1, 1), ξ is a vector field, η is a 1-form and g is a Riemannian

metric on Mn such that

φ2X = X − η(X)ξ, η(ξ) = 1, φ(ξ) = 0, η(φX) = 0, (2.1)

g(X, ξ) = η(X), g(φX, φY ) = g(X,Y )− η(X)η(Y ), (2.2)

for all vector fields X,Y ∈ χ(Mn). If (φ, ξ, η, g) on Mn satisfies the following equations

(∇Xφ)Y = −g(X,Y )ξ − η(Y )X + 2η(X)η(Y )ξ, (2.3)

dη = 0 and ∇Xξ = φX, (2.4)

then Mn is called para-Sasakian manifold [3].

In a para-Sasakian manifold, the following relations hold [6]:

(∇Xη)Y = −g(X,Y ) + η(X)η(Y ), (2.5)

η(R(X,Y )Z) = g(X,Z)η(Y )− g(Y, Z)η(X), (2.6)

R(X,Y )ξ = η(X)Y − η(Y )X, R(ξ,X)Y = η(Y )X − g(X,Y )ξ, (2.7)

S(X, ξ) = −(n− 1)η(X), (2.8)

S(φX, φY ) = S(X,Y ) + (n− 1)η(X)η(Y ), (2.9)

for every vector fields X,Y, Z on Mn. Here ∇ denotes the Levi-Civita connection, R denotes the

Riemannian curvature tensor and S denotes the Ricci curvature tensor.
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Here we consider a quarter-symmetric metric connection ∇̃ on a para-Sasakian manifold [16]

given by

∇̃XY = ∇XY + η(Y )φX − g(φX, Y )ξ. (2.10)

The relation between curvature tensor R̃(X,Y )Z of Mn with respect to quarter-symmetric

metric connection ∇̃ and the curvature tensor R(X,Y )Z with respect to the Levi-Civita connection

∇ is given by

R̃(X,Y )Z = R(X,Y )Z + 3g(φX,Z)φY − 3g(φY, Z)φX

+{η(X)Y − η(Y )X}η(Z)− [g(Y, Z)η(X)− η(Y )g(X,Z)]ξ. (2.11)

Also from (2.11) we obtain

S̃(Y, Z) = S(Y, Z) + 2g(Y, Z)− (n+ 1)η(Y )η(Z)− 3traceφ g(φY, Z), (2.12)

where S̃ and S are Ricci tensors of connections ∇̃ and ∇ respectively.

3 Pseudosymmetric para-Sasakian manifold admitting a quarter-

symmetric metric connection

A para-Sasakian manifold Mn admitting a quarter-symmetric metric connection is said to be

pseudosymmetric if

R̃(X,Y ) · R̃ = LR̃[(X ∧g Y ) · R̃], (3.1)

holds on the set UR̃ = {x ∈ Mn : R̃ 6= 0 at x}, where LR̃ is some function on UR̃.

Suppose that Mn be pseudosymmetric, then in view of (3.1) we have

R̃(ξ, Y )R̃(U, V )W − R̃(R̃(ξ, Y )U, V )W − R̃(U, R̃(ξ, Y )V )W

−R̃(U, V )R̃(ξ, Y )W = LR̃[(ξ ∧g Y )R̃(U, V )W − R̃((ξ ∧g Y )U, V )W

−R̃(U, (ξ ∧g Y )V )W − R̃(U, V )(ξ ∧g Y )W ]. (3.2)

By virtue of (2.7) and (2.11), (3.2) takes the form

(LR̃ + 2)[η(R̃(U, V )W )Y − g(Y, R̃(U, V )W )ξ − η(U)R̃(Y, V )W + g(Y, U)R̃(ξ, V )W

−η(V )R̃(U, Y )W + g(Y, V )R̃(U, ξ)W − η(W )R̃(U, V )Y + g(Y,W )R̃(U, V )ξ] = 0. (3.3)

Taking inner product of (3.3) with ξ and using (2.6) and (2.11), we get

(LR̃ + 2)[g(Y,R(U, V )W ) + 3g(φU,W )g(φV, Y )− 3g(φV,W )g(φU, Y )

+η(W ){η(U)g(V, Y )− η(V )g(U, Y )} − {g(V,W )η(U)− η(V )g(U,W )}η(Y )

+2{g(V,W )g(Y, U)− g(V, Y )g(U,W )}] = 0. (3.4)
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Assuming that LR̃ + 2 6= 0, the above equation becomes

g(Y,R(U, V )W ) + 3g(φU,W )g(φV, Y )− 3g(φV,W )g(φU, Y )

+η(W ){η(U)g(V, Y )− η(V )g(U, Y )} − [g(V,W )η(U)− η(V )g(U,W )]η(Y )

+2[g(V,W )g(Y, U)− g((V, Y )g(U,W )] = 0. (3.5)

Putting V = W = ei, where {ei} is an orthonormal basis of the tangent space at each point

of the manifold and taking summation over i, i = 1, 2, 3, · · · , n, we get

S̃(Y, U) = −2(n− 1)g(Y, U). (3.6)

Hence, we can state the following:

Theorem 1. If a para-Sasakian manifold Mn admitting a quarter-symmetric metric connection

is pseudosymmetric then Mn is an Einstein manifold with respect to quarter-symmetric metric

connection or it satisfies LR̃ = −2.

4 Ricci-pseudosymmetric para-Sasakian manifold admitting

a quarter-symmetric metric connection

A para-Sasakian manifold Mn admitting a quarter-symmetric metric connection is said to be

Ricci-pseudosymmetric if the following condition is satisfied

R̃(X,Y ) · S̃ = LS̃ [(X ∧g Y ) · S̃], (4.1)

on US̃.

Let para-Sasakian manifold Mn admitting a quarter-symmetric metric connection be Ricci-

pseudosymmetric. Then we have

S̃(R̃(X,Y )Z,W ) + S̃(Z, R̃(X,Y )W ) = LS̃ [S̃((X ∧g Y )Z,W ) + S̃(Z, (X ∧g Y )W )]. (4.2)

By taking Y = W = ξ and making use of (2.7), (2.8) and (2.11), the above equation turns

into

(LS̃ + 2)[S̃(X,Z) + 2(n− 1)g(X,Z)] = 0 (4.3)

Thus, we have the following assertion:

Theorem 2. If a para-Sasakian manifold Mn admitting a quarter-symmetric metric connection is

Ricci-pseudosymmetric then Mn is an Einstein manifold with respect to quarter-symmetric metric

connection or it satisfies LS̃ = −2.
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5 Projectively flat para-Sasakian manifold admitting a quarter-

symmetric metric connection

The projective curvature tensor on a Riemannian manifold is defined by [2]

P (X,Y )Z = R(X,Y )Z −
1

(n− 1)
[S(Y, Z)X − S(X,Z)Y ]. (5.1)

For an n-dimensional para-Sasakian manifold Mn admitting a quarter-symmetric metric con-

nection, the projective curvature tensor is given by

P̃ (X,Y )Z = R̃(X,Y )Z −
1

(n− 1)
[S̃(Y, Z)X − S̃(X,Z)Y ]. (5.2)

Theorem 3. A projectively flat para-Sasakian manifold Mn admitting a quarter-symmetric metric

connection is an Einstein manifold with respect to quarter-symmetric metric connection.

Proof. Consider a projectively flat para-Sasakian manifold admitting a quarter-symmetric metric

connection. Then from (5.2) we have

g(R̃(X,Y )Z,W ) =
1

(n− 1)
[S̃(Y, Z)g(X,W )− S̃(X,Z)g(Y,W )]. (5.3)

Setting X = W = ξ in (5.3) and using (2.7), (2.8), (2.11) and (2.12), we get

S̃(X,Z) = −2(n− 1)g(X,Z). (5.4)

Hence, the proof is completed.

6 Projectively pseudosymmetric para-Sasakian manifold ad-

mitting a quarter-symmetric metric connection

A para-Sasakian manifold admitting a quarter-symmetric metric connection is said to be projec-

tively pseudosymmetric if

R̃(X,Y ) · P̃ = LP̃ [(X ∧g Y ) · P̃ ], (6.1)

holds on the set UP̃ = {x ∈ Mn : P̃ 6= 0 at x}, where LP̃ is some function on UP̃ .

Let Mn be projectively pseudosymmetric, then we have

R̃(X, ξ)P̃ (U, V )ξ − P̃ (R̃(X, ξ)U, V )ξ − P̃ (U, R̃(X, ξ)V )ξ

−P̃ (U, V )R̃(X, ξ)ξ = LP̃ [(X ∧g ξ)P̃ (U, V )ξ − P̃ ((X ∧g ξ)U, V )ξ

−P̃ (U, (X ∧g ξ)V )ξ − P̃ (U, V )(X ∧g ξ)ξ]. (6.2)
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By virtue of (2.11), (2.12) and (5.2), (6.2) becomes

(LP̃ + 2)P̃ (U, V )X = 0. (6.3)

So, one can state that:

Theorem 4. If a para-Sasakian manifold Mn admitting a quarter-symmetric metric connection is

projectively pseudosymmetric then Mn is projectively flat with respect to quarter-symmetric metric

connection or LP̃ = −2.

In view of theorem 3, one can state the above theorem as

Theorem 5. If a para-Sasakian manifold Mn admitting a quarter-symmetric metric connection is

projectively pseudosymmetric then Mn is an Einstein manifold with respect to quarter-symmetric

metric connection or LP̃ = −2.

7 Examples

7.1 Example

We consider a 3-dimensional manifold M = {(x, y, z) ∈ R
3 : z 6= 0}, where (x, y, z) are standard

coordinates in R
3. Let {E1, E2, E3} be a linearly independent global frame field on M given by

E1 = ez
∂

∂y
, E2 = ez(

∂

∂y
−

∂

∂x
), E3 =

∂

∂z
,

If g is a Riemannian metric defined by

g(Ei, Ej) =











1, i = j

0, i 6= j

for 1 ≤ i, j ≤ 3, and if η is the 1-form defined by η(Z) = g(Z,E3) for any vector field Z ∈ χ(M).

We define the (1, 1)-tensor field φ as

φ(E1) = E1, φ(E2) = −E2, φ(E3) = 0.

The linearity property of φ and g yields that

η(E3) = 1,

φ2U = U − η(U)E3,

g(φU, φV ) = g(U, V )− η(U)η(V ),
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for any U, V ∈ χ(M).

Now we have

[E1, E2] = 0, [E1, E3] = E1, [E2, E3] = E2.

The Riemannian connection ∇ of the metric g known as Koszul’s formula and is given by

2g(∇XY, Z) = Xg(Y, Z) + Y g(Z,X)− Zg(X,Y )− g(X, [Y, Z])

−g(Y, [X,Z]) + g(Z, [X,Y ]).

Using Koszul’s formula we get the followings in matrix form









∇E1
E1 ∇E1

E2 ∇E1
E3

∇E2
E1 ∇E2

E2 ∇E2
E3

∇E3
E1 ∇E3

E2 ∇E3
E3









=









−E3 0 E1

0 −E3 E2

0 0 0









.

Clearly (φ, ξ, η, g) is a para-Sasakian structure on M . Thus M(φ, ξ, η, g) is a 3-dimensional

para-Sasakian manifold.

Using (2.10) and the above equation, one can easily obtain the following:









∇̃E1
E1 ∇̃E1

E2 ∇̃E1
E3

∇̃E2
E1 ∇̃E2

E2 ∇̃E2
E3

∇̃E3
E1 ∇̃E3

E2 ∇̃E3
E3









=









−2E3 0 2E1

0 −2E3 2E2

0 0 0









.

With the help of the above results it can be easily verified that

R(E1, E2)E3 = 0, R(E2, E3)E3 = −E2, R(E1, E3)E3 = −E1,

R(E1, E2)E2 = −E1, R(E2, E3)E2 = E3, R(E1, E3)E2 = 0,

R(E1, E2)E1 = E2, R(E2, E3)E1 = 0, R(E1, E3)E1 = E3.

and

R̃(E1, E2)E3 = 0, R̃(E2, E3)E3 = −2E2, R̃(E1, E3)E3 = −2E1,

R̃(E1, E2)E2 = −4E1, R̃(E2, E3)E2 = 2E3, R̃(E1, E3)E2 = 0,

R̃(E1, E2)E1 = 4E2, R̃(E2, E3)E1 = 0, R̃(E1, E3)E1 = 2E3. (7.1)

Since E1, E2, E3 forms a basis, any vector field X,Y, Z ∈ χ(M) can be written as X =

a1E1 + b1E2 + c1E3, Y = a2E1 + b2E2 + c2E3, Z = a3E1 + b3E2 + c3E3, where ai, bi, ci ∈ R,

i = 1, 2, 3. Using the expressions of the curvature tensors, we find values of Riemannian curvature
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and Ricci curvature with respect to quarter-symmetric metric connection as;

R̃(X,Y )Z = [−4{a1b2 − b1a2}b3 + 2{c1a2 − a1c2}c3]E1

+ [−4{b1a2 − a1b2}a3 + 2{c1b2 − b1c2}c3]E2

+ [−2{c1a2 − a1c2}a3 − 2{c1b2 − b1c2}b3]E3, (7.2)

S̃(E1, E1) = S̃(E2, E2) = −6, S̃(E3, E3) = −4. (7.3)

Using (7.1), (7.3) and the expression of the endomorphism (X∧g Y )Z = g(Y, Z)X−g(X,Z)Y ,

one can easily verify that

S̃(R̃(X,E3)Y,E3) + S̃(Y, R̃(X,E3)E3) = −2[S̃((X ∧g E3)Y,E3) + S̃(Y, (X ∧g E3)E3)], (7.4)

here LS̃ = −2. Thus, the above equation verify one part of the Theorem 2 of section 4.

Moreover, the manifold under consideration satisfies

R̃(X,Y )Z = −R̃(Y,X)Z,

R̃(X,Y )Z + R̃(Y, Z)X + R̃(Z,X)Y = 0.

Hence, from the above equations one can say that this example verifies the condition (c) of Theorem

3.1 in [1] and first Bianchi identity.

7.2 Example

We consider a 5-dimensional manifold M = {(x1, x2, x3, x4, x5) ∈ R
5}, where (x1, x2, x3, x4, x5)

are standard coordinates in R
5. We choose the vector fields

E1 =
∂

∂x1
, E2 =

∂

∂x2
, E3 =

∂

∂x3
, E4 =

∂

∂x4
, E5 = x1

∂

∂x1
+ x2

∂

∂x2
+ x3

∂

∂x3
+ x4

∂

∂x4
+

∂

∂x5
,

which are linearly independent at each point of M .

Let g be a Riemannian metric defined by

g(Ei, Ej) =











1, i = j

0, i 6= j

for 1 ≤ i, j ≤ 5, and if η is the 1-form defined by η(Z) = g(Z,E5) for any vector field Z ∈ χ(M).

Let φ be the (1, 1)-tensor field defined by

φ(E1) = E1, φ(E2) = E2, φ(E3) = E3, φ(E4) = E4, φ(E5) = 0.
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The linearity property of φ and g yields that

η(E5) = 1,

φ2U = U − η(U)E5,

g(φU, φV ) = g(U, V )− η(U)η(V ),

for any U, V ∈ χ(M).

Now we have

[E1, E2] = 0, [E1, E3] = 0, [E1, E4] = 0, [E1, E5] = E1,

[E2, E3] = 0, [E2, E4] = 0, [E2, E5] = E2,

[E3, E4] = 0, [E3, E5] = E3, [E4, E5] = E4.

By virtue of Koszul’s formula we get the followings in matrix form




















∇E1
E1 ∇E1

E2 ∇E1
E3 ∇E1

E4 ∇E1
E5

∇E2
E1 ∇E2

E2 ∇E2
E3 ∇E2

E4 ∇E2
E5

∇E3
E1 ∇E3

E2 ∇E3
E3 ∇E3

E4 ∇E3
E5

∇E4
E1 ∇E4

E2 ∇E4
E3 ∇E4

E4 ∇E4
E5

∇E5
E1 ∇E5

E2 ∇E5
E3 ∇E5

E4 ∇E5
E5





















=





















−E5 0 0 0 E1

0 −E5 0 0 E2

0 0 −E5 0 E3

0 0 0 −E5 E4

0 0 0 0 0





















.

Above expressions satisfies all the properties of para-Sasakian manifold. Thus M(φ, ξ, η, g) is

a 5-dimensional para-Sasakian manifold.

From the above expressions and the relation of quarter symmetric metric connection and

Riemannian connection, one can easily obtain the following:




















∇̃E1
E1 ∇̃E1

E2 ∇̃E1
E3 ∇̃E1

E4 ∇̃E1
E5

∇̃E2
E1 ∇̃E2

E2 ∇̃E2
E3 ∇̃E2

E4 ∇̃E2
E5

∇̃E3
E1 ∇̃E3

E2 ∇̃E3
E3 ∇̃E3

E4 ∇̃E3
E5

∇̃E4
E1 ∇̃E4

E2 ∇̃E4
E3 ∇̃E4

E4 ∇̃E4
E5

∇̃E5
E1 ∇̃E5

E2 ∇̃E5
E3 ∇̃E5

E4 ∇̃E5
E5





















=





















−2E5 0 0 0 2E1

0 −2E5 0 0 2E2

0 0 −2E5 0 2E3

0 0 0 −2E5 2E4

0 0 0 0 0





















.

With the help of the above results it can be easily obtain the non-zero components of curvature

tensors as

R(E1, E2)E1 = E2, R(E1, E2)E2 = −E1, R(E1, E3)E1 = E3, R(E1, E3)E3 = −E1,

R(E1, E4)E1 = E4, R(E1, E4)E4 = −E1, R(E1, E5)E1 = E5, R(E1, E5)E5 = −E1,

R(E2, E3)E2 = E3, R(E2, E3)E3 = −E2, R(E2, E4)E2 = E4, R(E2, E4)E4 = −E2,

R(E2, E5)E2 = E5, R(E2, E5)E5 = −E2, R(E3, E4)E3 = E4, R(E3, E4)E4 = −E3,

R(E3, E5)E3 = E5, R(E3, E5)E5 = −E3, R(E4, E5)E4 = E5, R(E4, E5)E5 = −E4,
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and

R̃(E1, E2)E1 = 4E2, R̃(E1, E2)E2 = −4E1, R̃(E1, E3)E1 = 4E3, R̃(E1, E3)E3 = −4E1,

R̃(E1, E4)E1 = 4E4, R̃(E1, E4)E4 = −4E1, R̃(E1, E5)E1 = 2E5, R̃(E1, E5)E5 = −2E1,

R̃(E2, E3)E2 = 4E3, R̃(E2, E3)E3 = −4E2, R̃(E2, E4)E2 = 4E4, R̃(E2, E4)E4 = −4E2,

R̃(E2, E5)E2 = 2E5, R̃(E2, E5)E5 = −2E2, R̃(E3, E4)E3 = 4E4, R̃(E3, E4)E4 = −4E3,

R̃(E3, E5)E3 = 2E5, R̃(E3, E5)E5 = −2E3, R̃(E4, E5)E4 = 2E5, R̃(E4, E5)E5 = −2E4. (7.5)

Since E1, E2, E3, E4, E5 forms a basis, any vector field X,Y, Z ∈ χ(M) can be written as

X = a1E1 + b1E2 + c1E3 + d1E4 + f1E5, Y = a2E1 + b2E2 + c2E3 + d2E4 + f2E5, Z = a3E1 +

b3E2 + c3E3 + d3E4 + f3E5, where ai, bi, ci, di, fi ∈ R, i = 1, 2, 3, 4, 5. Using the expressions of

the curvature tensors, we find values of Riemannian curvature and Ricci curvature with respect to

quarter-symmetric metric connection as;

R̃(X,Y )Z = [−4{a1(b2b3 + c2c3 + d2d3)− a2(b1b3 + c1c3 + d1d3)} − 2(a1f2 − f1a2)f3]E1

+ [−4{b1(a2a3 + c2c3 + d2d3)− b2(a1a3 + c1c3 + d1d3)} − 2(b1f2 − f1b2)f3]E2

+ [−4{c1(a2a3 + b2b3 + d2d3)− c2(a1a3 + b1b3 + d1d3)} − 2(c1f2 − f1c2)f3]E3

+ [−4{d1(a2a3 + b2b3 + c2c3)− d2(a1a3 + b1b3 + c1c3)} − 2(d1f2 − f1d2)f3]E4

+ [2{(a1f2 − f1a2)a3 + (b1f2 − f1b2)b3 + (c1f2 − f1c2)c3 + (d1f2 − f1d2)d3}]E5,

S̃(E1, E1) = S̃(E2, E2) = S̃(E3, E3) = S̃(E4, E4) = −14, S̃(E5, E5) = −8. (7.6)

In view of (7.5), (7.6) and the expression of the endomorphism one can easily verify the

equation (7.4) and hence the Theorem 2 of section 4 is verified. This example also verifies the

condition (c) of Theorem 3.1 in [1] and first Bianchi identity.

Above two examples verifies the one part of the Theorem 2, that is, if a para-Sasakian manifold

Mn admitting a quarter-symmetric metric connection is Ricci pseudosymmetric then Mn satisfies

LS̃ = −2 (Mn is not Einstein manifold with respect to quarter-symmetric metric connection).

Another part of the theorem is that, if a para-SasakianmanifoldMn admitting a quarter-symmetric

metric connection is Ricci pseudosymmetric then Mn is an Einstein manifold with respect to

quarter-symmetric metric connection (LS̃ 6= −2). Now, the second part of the Theorem 2 can be

verified by using the proper example.

7.3 Example

We consider a 5-dimensional manifold M = {(x, y, z, u, v) ∈ R
5}, where (x, y, z, u, v) are standard

coordinates in R
5. Let {E1, E2, E3, E4, E5} be a linearly independent global frame field on M given
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by

E1 =
∂

∂x
, E2 = e−x ∂

∂y
, E3 = e−x ∂

∂z
, E4 = e−x ∂

∂u
, E5 = e−x ∂

∂v
.

Let g be a Riemannian metric defined by

g(Ei, Ej) =











1, i = j

0, i 6= j

for 1 ≤ i, j ≤ 5, and if η is the 1-form defined by η(Z) = g(Z,E1) for any vector field Z ∈ χ(M).

Let the (1, 1)-tensor field φ be defined by

φ(E1) = 0, φ(E2) = E2, φ(E3) = E3, φ(E4) = E4, φ(E5) = E5.

With the help of linearity property of φ and g, we have

η(E1) = 1,

φ2V = V − η(V )E1,

g(φX, φY ) = g(X,Y )− η(X)η(Y ),

for any X,Y ∈ χ(M).

Now we have

[E1, E2] = −E2, [E1, E3] = −E3, [E1, E4] = −E4, [E1, E5] = −E5,

[E2, E3] = [E2, E4] = [E2, E5] = [E3, E4] = [E3, E5] = E4, E5] = 0.

With the help of Koszul’s formula we get the followings in matrix form




















∇E1
E1 ∇E1

E2 ∇E1
E3 ∇E1

E4 ∇E1
E5

∇E2
E1 ∇E2

E2 ∇E2
E3 ∇E2

E4 ∇E2
E5

∇E3
E1 ∇E3

E2 ∇E3
E3 ∇E3

E4 ∇E3
E5

∇E4
E1 ∇E4

E2 ∇E4
E3 ∇E4

E4 ∇E4
E5

∇E5
E1 ∇E5

E2 ∇E5
E3 ∇E5

E4 ∇E5
E5





















=





















0 0 0 0 0

E2 −E1 0 0 0

E3 0 −E1 0 0

E4 0 0 −E1 0

E5 0 0 0 −E1





















.

In this case, (φ, ξ, η, g) is a para-Sasakian structure on M and hence M(φ, ξ, η, g) is a 5-

dimensional para-Sasakian manifold.

Using (2.10) and the above equation, one can easily obtain the following:




















∇̃E1
E1 ∇̃E1

E2 ∇̃E1
E3 ∇̃E1

E4 ∇̃E1
E5

∇̃E2
E1 ∇̃E2

E2 ∇̃E2
E3 ∇̃E2

E4 ∇̃E2
E5

∇̃E3
E1 ∇̃E3

E2 ∇̃E3
E3 ∇̃E3

E4 ∇̃E3
E5

∇̃E4
E1 ∇̃E4

E2 ∇̃E4
E3 ∇̃E4

E4 ∇̃E4
E5

∇̃E5
E1 ∇̃E5

E2 ∇̃E5
E3 ∇̃E5

E4 ∇̃E5
E5





















=





















0 0 0 0 0

2E2 −2E1 0 0 0

2E3 0 −2E1 0 0

2E4 0 0 −2E1 0

2E5 0 0 0 −2E1





















.
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From above results it can be easily obtain the non-zero components of Riemannian curvature

and Ricci curvature tensors as

R(E1, E2)E1 = E2, R(E1, E2)E2 = −E1, R(E1, E3)E1 = E3, R(E1, E3)E3 = −E1,

R(E1, E4)E1 = E4, R(E1, E4)E4 = −E1, R(E1, E5)E1 = E5, R(E1, E5)E5 = −E1,

R(E2, E3)E2 = E3, R(E2, E3)E3 = −E2, R(E2, E4)E2 = E4, R(E2, E4)E4 = −E2,

R(E2, E5)E2 = E5, R(E2, E5)E5 = −E2, R(E3, E4)E3 = E4, R(E3, E4)E4 = −E3,

R(E3, E5)E3 = E5, R(E3, E5)E5 = −E3, R(E4, E5)E4 = E5, R(E4, E5)E5 = −E4,

and

R̃(E1, E2)E1 = 2E2, R̃(E1, E2)E2 = −2E1, R̃(E1, E3)E1 = 2E3, R̃(E1, E3)E3 = −2E1,

R̃(E1, E4)E1 = 2E4, R̃(E1, E4)E4 = −2E1, R̃(E1, E5)E1 = 2E5, R̃(E1, E5)E5 = −2E1,

R̃(E2, E3)E2 = 2E3, R̃(E2, E3)E3 = −2E2, R̃(E2, E4)E2 = 2E4, R̃(E2, E4)E4 = −2E2,

R̃(E2, E5)E2 = 2E5, R̃(E2, E5)E5 = −2E2, R̃(E3, E4)E3 = 2E4, R̃(E3, E4)E4 = −2E3,

R̃(E3, E5)E3 = 2E5, R̃(E3, E5)E5 = −2E3, R̃(E4, E5)E4 = 2E5, R̃(E4, E5)E5 = −2E4, (7.7)

S̃(E1, E1) = S̃(E2, E2) = S̃(E3, E3) = S̃(E4, E4) = S̃(E5, E5) = −8, (7.8)

S̃(X,Y ) = −2(5− 1)g(X,Y ) = −8g(X,Y ),

where X = a1E1 + b1E2 + c1E3 + d1E4 + f1E5 and Y = a2E1 + b2E2 + c2E3 + d2E4 + f2E5.

From (7.7), (7.8) and the expression of the endomorphism one can easily substantiate, the

equation (7.4) and hence second part of the Theorem 2 (for LS̃ 6= −2).
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An. Univ. Vest Timiş. Ser. Mat.-Inform. 53 (2015), 1, 137–150.

[17] K.T. Pradeep Kumar, Venkatesha and C.S. Bagewadi, On φ-recurrent para-Sasakian manifold

admitting quarter-symmetric metric connection, ISRN Geometry, (2012), 1-10.

[18] I. Sato, On a structure similar to the almost contact structure, Tensor (N.S.) 30 (1976), 3,

219–224.
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ABSTRACT

In this paper, we establish some fixed point theorems in the framework of cone S-metric

spaces using implicit relation. Our results extend, unify and generalize several results

from the current existing literature. Especially, they extend the corresponding results

of Sedghi and Dung [24] to the setting of complete cone S-metric spaces.

RESUMEN

En este art́ıculo, establecemos algunos teoremas de punto fijo en el marco de espa-

cios S-métricos del cono usando una relación impĺıcita. Nuestros resultados extienden,

unifican y generalizan diversos resultados de la literatura actual existente. Especial-

mente, extienden los resultados correspondientes de Sedghi y Dung [24] en el contexto

de espacios S-métricos de cono completo.
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1 Introduction and Preliminaries

In 2007, Huang and Zhang [8] introduced the concept of cone metric spaces as a generalization of

metric spaces by replacing the set of real numbers by a general Banach space E which is partially

ordered with respect to a cone P ⊂ E and establish some fixed point theorems for contractive

mappings in normal cone metric spaces.

In 2012, Sedghi et al. [23] introduced the concept of S-metric space which is different from

other space and proved fixed point theorems in S-metric space. They also give some examples of

S-metric space which shows that S-metric space is different from other spaces.

In 2016, Rahman and Sarwar [20] have discussed the fixed point results of Altman integral

type mappings in S-metric spaces and in the same year Ozgur and Tas [14] have studied new

contractive conditions of integral type in complete S-spaces.

Recently, Dhamodharan and Krishnakumar [6] introduced the concept of cone S-metric space

and proved some fixed point theorems using various contractive conditions in the above said space.

Due to great importance of the fixed point theory, it is immensely interesting to study fixed

point theorems on different concepts. Many authors studied the fixed points for mappings satisfying

contractive conditions in complete S-metric spaces (see, e.g., [6, 11, 13, 14, 20, 23, 25, 26]) and

others).

Popa [15] and [16], on the other hand, considered an implicit contraction type condition

instead of the usual explicit condition. This direction of research produced a consistent literature

on fixed point and common fixed point theorems in various ambient spaces. For more details see

[1, 2, 3, 9, 17, 18, 19, 24].

Motivated and inspired by Popa [15, 16], Sedghi and Dung [24] and others, this paper is aimed

to study and establish some fixed point theorems in the setting of complete cone S-metric spaces

under implicit contractive condition which is used in [24]. Following the current literature there

is ample vicinity to explore and improve this new avenue of research area. Here, we prove an

important result of cone S-metric space and then obtain some classical fixed point theorems as

corollaries, for example, Banach’s contraction mapping principle, Kannan’s fixed point theorem,

Chatterjae’s fixed point theorem, Reich fixed point theorem and Ćirić’s fixed point theorem in this

setting. Our results extend and generalize several results from the existing literature, especially,

the results of Sedghi and Dung [24] from complete S-metric spaces to the setting of complete cone

S-metric spaces.

The present work is to encouraged by its possible application, especially in discrete models

for numerical analysis, where iterative schemes are extensively used due to their versatility for

computer simulation. These models play an important role in applied mathematics.
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We need the following definitions and lemmas in the sequel.

Definition 1. ([8]) Let E be a real Banach space. A subset P of E is called a cone whenever the

following conditions hold:

(c1) P is closed, nonempty and P 6= {0};

(c2) a, b ∈ R, a, b ≥ 0 and x, y ∈ P imply ax+ by ∈ P ;

(c3) P ∩ (−P ) = {0}.

Given a cone P ⊂ E, we define a partial ordering ≤ in E with respect to P by x ≤ y if and

only if y − x ∈ P . We shall write x < y to indicate that x ≤ y but x 6= y, while x ≪ y will stand

for y− x ∈ P 0, where P 0 stands for the interior of P . If P 0 6= ∅ then P is called a solid cone (see

[28]).

There exist two kinds of cones- normal (with the normal constant K) and non-normal ones

([7]).

Let E be a real Banach space, P ⊂ E a cone and ≤ partial ordering defined by P . Then P is

called normal if there is a number K > 0 such that for all x, y ∈ P ,

0 ≤ x ≤ y imply ‖x‖ ≤ K‖y‖, (1.1)

or equivalently, if (∀n) xn ≤ yn ≤ zn and

lim
n→∞

xn = lim
n→∞

zn = x imply lim
n→∞

yn = x. (1.2)

The least positive number K satisfying (1.1) is called the normal constant of P .

The cone P is called regular if every increasing sequence which is bounded from above is

convergent, that is, if {xn} is a sequence such that x1 ≤ x2 ≤ · · · ≤ xn ≤ · · · ≤ y for some y ∈ E,

then there is x ∈ E such that ‖xn − x‖ → 0 as n→ ∞. Equivalently, the cone P is regular if and

only if every decreasing sequence which is bounded from below is convergent. It is well known that

a regular cone is a normal cone. Suppose E is a Banach space, P is a cone in E with int(P ) 6= ∅

and ≤ is partial ordering in E with respect to P .

Example 1. ([12]) Let K > 1 be given. Consider the real vector space

E =
{

ax+ b : a, b ∈ R;x ∈
[

1−
1

K
, 1
]}

with supremum norm and the cone

P =
{

ax+ b ∈ E : a ≥ 0, b ≥ 0
}

in E. The cone P is regular and so normal.
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Definition 2. ([8, 29]) Let X be a nonempty set. Suppose that the mapping d : X × X → E

satisfies:

(CM1) 0 ≤ d(x, y) for all x, y ∈ X with x 6= y and d(x, y) = 0 ⇔ x = y;

(CM2) d(x, y) = d(y, x) for all x, y ∈ X;

(CM3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a cone metric [8] on X and (X, d) is called a cone metric space [8] or simply

CMS.

The concept of a cone metric space is more general than that of a metric space, because each

metric space is a cone metric space where E = R and P = [0,+∞).

Lemma 1. ([22]) Every regular cone is normal.

Example 2. ([8]) Let E = R
2, P = {(x, y) ∈ R

2 : x ≥ 0, y ≥ 0}, X = R and d : X × X → E

defined by d(x, y) = (|x − y|, α|x − y|), where α ≥ 0 is a constant. Then (X, d) is a cone metric

space with normal cone P where K = 1.

Clearly, the above example shows that the class of cone metric spaces contains the class of

metric spaces.

Definition 3. ([23, 14]) Let X be a nonempty set and S : X3 → [0,∞) be a function satisfying

the following conditions for all x, y, z, t ∈ X:

(SM1) S(x, y, z) ≥ 0;

(SM2) S(x, y, z) = 0 if and only if x = y = z;

(SM3) S(x, y, z) ≤ S(x, x, t) + S(y, y, t) + S(z, z, t).

Then the function S is called an S-metric on X and the pair (X,S) is called an S-metric

space or simply SMS.

Example 3. ([27]) Let X be a nonempty set and d be the ordinary metric on X. Then S(x, y, z) =

d(x, z) + d(y, z) is an S-metric on X.

Example 4. ([23]) Let X = R
n and ‖.‖ a norm on X, then S(x, y, z) = ‖y + z − 2x‖ + ‖y − z‖

is an S-metric on X.

Example 5. ([23]) Let X = R
n and ‖.‖ a norm on X, then S(x, y, z) = ‖x− z‖+ ‖y − z‖ is an

S-metric on X.

Example 6. ([24]) Let X = R be the real line. Then S(x, y, z) = ‖x − z‖ + ‖y − z‖ for all

x, y, z ∈ R is an S-metric on X. This S-metric on X is called the usual S-metric on X.
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Definition 4. ([6]) Suppose that E is a real Banach space, P is a cone in E with int P 6= ∅ and

≤ is partial ordering with respect to P . Let X be a nonempty set and let the function S : X3 → E

satisfy the following conditions:

(CSM1) S(x, y, z) ≥ 0;

(CSM2) S(x, y, z) = 0 if and only if x = y = z;

(CSM3) S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a),∀x, y, z, a ∈ X.

Then the function S is called a cone S-metric on X and the pair (X,S) is called a cone

S-metric space or simply CSMS.

Example 7. ([6]) Let E = R
2, P = {(x, y) ∈ R

2 : x ≥ 0, y ≥ 0}, X = R and d be the ordinary

metric on X. Then the function S : X3 → E defined by S(x, y, z) =
(

d(x, z) + d(y, z), α(d(x, z) +

d(y, z))
)

, where α > 0 is a cone S-metric on X.

Lemma 2. ([6]) Let (X,S) be a cone S-metric space. Then we have S(x, x, y) = S(y, y, x).

Definition 5. ([6]) Let (X,S) be a cone S-metric space.

(i) A sequence {un} in X converges to u if and only if S(un, un, u) → 0 as n → ∞, that is,

there exists n0 ∈ N such that for all n ≥ n0, S(un, un, u) ≪ c for each c ∈ E, 0 ≪ c. We denote

this by limn→∞ un = u or limn→∞ S(un, un, u) = 0.

(ii) A sequence {un} in X is called a Cauchy sequence if S(un, un, um) → 0 as n,m → ∞,

that is, there exists n0 ∈ N such that for all n,m ≥ n0, S(un, un, um) ≪ c for each c ∈ E, 0 ≪ c.

(iii) The cone S-metric space (X,S) is called complete if every Cauchy sequence is convergent.

In the following lemma, we see the relationship between a cone metric and a cone S-metric.

Lemma 3. ([6]) Let (X, d) be a cone metric space. Then, the following properties are satisfied:

(1) S(u, v, z) = d(u, z) + d(v, z) for all u, v, z ∈ X, is a cone S-metric on X.

(2) un → u in (X, d) if and only if un → u in (X,Sd).

(3) {un} is Cauchy in (X, d) if and only if {un} is Cauchy in (X,Sd).

(4) (X, d) is complete if and only if (X,Sd) is complete.

Lemma 4. ([24]) Let f : X → Y be a map from an S-metric space X to an S-metric space Y .

Then f is continuous at x ∈ X if and only if f(xn) → f(x) whenever xn → x.

Now, we introduce an implicit relation to investigate some fixed point theorems on cone S-

metric spaces. Let ψ be the family of all continuous functions of five variables φ : R5
+ → R+. For

some k ∈ [0, 1), we consider the following conditions.
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(A1) For all x, y, z ∈ R+, if y ≤ φ(x, x, y, z, 0) with z ≤ 2x+ y, then y ≤ kx.

(A2) For all y ∈ R+, if y ≤ φ(y, 0, 0, y, y), then y = 0.

(A3) If xi ≤ yi + zi for all xi, yi, zi ∈ R+, i ≤ 5, then

φ(x1, . . . , x5) ≤ φ(y1, . . . , y5) + φ(z1, . . . , z5).

Moreover, for all y ∈ X , φ(0, 0, 2y, y, 0) ≤ ky.

Remark 1. Note that the coefficient k in conditions (A1) and (A3) may be different, for example,

k1 and k3 respectively. But we may assume that they are equal by taking k = max{k1, k3}.

2 Main Results

In this section, we shall prove some fixed point theorems using implicit relation in the setting of

cone S-metric spaces.

Theorem 1. Let T be a self-map on a complete cone S-metric space (X,S), P be a normal cone

with normal constant K and

S(Tx, Tx, T y) ≤ φ
(

S(x, x, y), S(x, x, Tx), S(y, y, T y),

S(x, x, T y), S(y, y, Tx)
)

(2.1)

for all x, y ∈ X and some φ ∈ ψ. Then we have

(1) If φ satisfies the condition (A1), then T has a fixed point. Moreover, for any x0 ∈ X and

the fixed point x, we have

S(Txn, T xn, x) ≤
( 2kn

1− k

)

S(x0, x0, T x0).

(2) If φ satisfies the condition (A2) and T has a fixed point, then the fixed point is unique.

(3) If φ satisfies the condition (A3) and T has a fixed point x, then T is continuous at x.
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Proof. (1) For each x0 ∈ X and n ∈ N, put xn+1 = Txn. It follows from (2.1) and Lemma 2 that

S(xn+1, xn+1, xn+2) = S(Txn, T xn, T xn+1)

≤ φ
(

S(xn, xn, xn+1), S(xn, xn, T xn), S(xn+1, xn+1, T xn+1),

S(xn, xn, T xn+1), S(xn+1, xn+1, T xn)
)

= φ
(

S(xn, xn, xn+1), S(xn, xn, xn+1), S(xn+1, xn+1, xn+2),

S(xn, xn, xn+2), S(xn+1, xn+1, xn+1)
)

= φ
(

S(xn, xn, xn+1), S(xn, xn, xn+1), S(xn+1, xn+1, xn+2),

S(xn, xn, xn+2), 0
)

. (2.2)

By condition (CSM3) and Lemma 2, we have

S(xn, xn, xn+2) ≤ 2S(xn, xn, xn+1) + S(xn+2, xn+2, xn+1)

= 2S(xn, xn, xn+1) + S(xn+1, xn+1, xn+2). (2.3)

Since φ satisfies the condition (A1), there exists k ∈ [0, 1) such that

S(xn+1, xn+1, xn+2) ≤ kS(xn, xn, xn+1) ≤ kn+1S(x0, x0, x1). (2.4)

Thus for all n < m, by using (CSM3), Lemma 2 and equation (2.4), we have

S(xn, xn, xm) ≤ 2S(xn, xn, xn+1) + S(xm, xm, xn+1)

= 2S(xn, xn, xn+1) + S(xn+1, xn+1, xm)

. . .

≤ 2[kn + · · ·+ km−1]S(x0, x0, x1)

≤
( 2kn

1− k

)

S(x0, x0, x1).

This implies that

‖S(xn, xn, xm)‖ ≤
(2knK

1− k

)

‖S(x0, x0, x1)‖.

Taking the limit as n,m→ ∞, we get

‖S(xn, xn, xm)‖ → 0,

since 0 < k < 1. Thus, we have S(xn, xn, xm) → 0 as n,m→ ∞.

This shows that the sequence {xn} is a Cauchy sequence in the complete cone S-metric space

(X,S). By the completeness of the space, we have limn→∞ xn = x ∈ X . Moreover, taking the

limit as m→ ∞ we get

S(xn, xn, x) ≤
(2kn+1

1− k

)

S(x0, x0, x1).
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It implies that

S(Txn, T xn, x) ≤
( 2kn

1− k

)

S(x0, x0, T x0).

Now we prove that x is a fixed point of T . By using inequality (2.1) again we obtain

S(xn+1, xn+1, T x) = S(Txn, T xn, T x)

≤ φ
(

S(xn, xn, x), S(xn, xn, T xn), S(x, x, Tx),

S(xn, xn, T x), S(x, x, Txn)
)

= φ
(

S(xn, xn, x), S(xn, xn, xn+1), S(x, x, Tx),

S(xn, xn, T x), S(x, x, xn+1)
)

.

Note that φ ∈ ψ, then using Lemma 3 and taking the limit as n→ ∞, we get

S(x, x, Tx) ≤ φ
(

0, 0, S(x, x, Tx), S(x, x, Tx), 0
)

.

Since φ satisfies the condition (A1), then S(x, x, Tx) ≤ k.0 = 0. This shows that x = Tx. Thus x

is a fixed point of T .

(2) Let x1, x2 be fixed points of T . We shall prove that x1 = x2. It follows from equation

(2.1) and Lemma 2 that

S(x1, x1, x2) = S(Tx1, T x1, T x2)

≤ φ
(

S(x1, x1, x2), S(x1, x1, T x1), S(x2, x2, T x2),

S(x1, x1, T x2), S(x2, x2, T x1)
)

= φ
(

S(x1, x1, x2), S(x1, x1, x1), S(x2, x2, x2),

S(x1, x1, x2), S(x2, x2, x1)
)

= φ
(

S(x1, x1, x2), 0, 0, S(x1, x1, x2), S(x2, x2, x1)
)

= φ
(

S(x1, x1, x2), 0, 0, S(x1, x1, x2), S(x1, x1, x2)
)

.

Since φ satisfies the condition (A2), then S(x1, x1, x2) = 0. This shows that x1 = x2. Thus the

fixed point of T is unique.

(3) Let x be the fixed point of T and yn → x ∈ X . By Lemma 4, we need to prove that



CUBO
22, 2 (2020)

Fixed point theorems on cone S-metric spaces using implicit relation 281

Tyn → Tx. It follows from inequality (2.1) and Lemma 2 that

S(x, x, T yn) = S(Tx, Tx, T yn)

≤ φ
(

S(x, x, yn), S(x, x, Tx), S(yn, yn, T yn),

S(x, x, T yn), S(yn, yn, T x)
)

= φ
(

S(x, x, yn), S(x, x, x), S(yn, yn, T yn),

S(x, x, T yn), S(yn, yn, x)
)

= φ
(

S(x, x, yn), 0, S(Tyn, T yn, yn),

S(Tyn, T yn, x), S(x, x, yn)
)

.

Since φ satisfies the condition (A3), by Lemma 2 and (CSM3), we have

S(Tyn, T yn, yn) ≤ 2S(Tyn, T yn, x) + S(yn, yn, x)

= 2S(Tyn, T yn, x) + S(x, x, yn)

then we have

S(x, x, T yn) ≤ φ
(

S(x, x, yn), 0, 0, 0, S(x, x, yn)
)

+φ
(

0, 0, 2S(Tyn, T yn, x), S(Tyn, T yn, x), 0
)

≤ φ
(

S(x, x, yn), 0, 0, 0, S(x, x, yn)
)

+kS(Tyn, T yn, x)

= φ
(

S(x, x, yn), 0, 0, 0, S(x, x, yn)
)

+kS(x, x, T yn). (by Lemma 2)

Therefore

S(x, x, T yn) ≤
( 1

1− k

)

φ
(

S(x, x, yn), 0, 0, 0, S(x, x, yn)
)

.

Note that φ ∈ ψ, hence taking the limit as n → ∞, we get S(x, x, T yn) → 0. This shows that

Tyn → x = Tx. This completes the proof.

Next, we give some analogues of fixed point theorems in metric spaces for cone S-metric

spaces by combining Theorem 1 with φ ∈ ψ and φ satisfies the conditions (A1), (A2) and (A3).

The following corollary is an analogue of Banach’s contraction principle.

Corollary 1. Let (X,S) be a complete cone S-metric space and P be a normal cone with normal

constant K. Suppose that the mapping T : X → X satisfies the following condition:

S(Tx, Tx, T y) ≤ hS(x, x, y)
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for all x, y ∈ X, where h ∈ [0, 1) is a constant. Then T has a unique fixed point in X. Moreover,

T is continuous at the fixed point.

Proof. The assertion follows using Theorem 1 with φ(x, y, z, s, t) = hx for some h ∈ [0, 1) and all

x, y, z, s, t ∈ R+.

The following corollary is an analogue of R. Kannan’s result [10].

Corollary 2. Let (X,S) be a complete cone S-metric space and P be a normal cone with normal

constant K. Suppose that the mapping T : X → X satisfies the following condition:

S(Tx, Tx, T y) ≤ q [S(x, x, Tx) + S(y, y, T y)]

for all x, y ∈ X, where q ∈ [0, 1
2
) is a constant. Then T has a unique fixed point in X. Moreover,

T is continuous at the fixed point.

Proof. The assertion follows using Theorem 1 with φ(x, y, z, s, t) = q(y + z) for some q ∈ [0, 1
2
)

and all x, y, z, s, t ∈ R+. Indeed, φ is continuous. First, we have φ(x, x, y, z, 0) = q(x + y). So,

if y ≤ φ(x, x, y, z, 0) with z ≤ 2x + y, then y ≤
(

q

1−q

)

x with
(

q

1−q

)

< 1. Thus, T satisfies the

condition (A1).

Next, if y ≤ φ(y, 0, 0, y, y), then y = 0. Thus, T satisfies the condition (A2).

Finally, if xi ≤ yi + zi for i ≤ 5, then

φ(x1, . . . , x5) = q(x2 + x3)

≤ q[(y2 + z2) + (y3 + z3)]

= q(y2 + y3) + q(z2 + z3)

= φ(y1, . . . , y5) + φ(z1, . . . , z5).

Moreover

φ(0, 0, 2y, y, 0) = q(0 + 2y) = 2qy

where 2q < 1. Thus, T satisfies the condition (A3).

The following corollary is an analogue of S. K. Chatterjae’s result [4].

Corollary 3. Let (X,S) be a complete cone S-metric space and P be a normal cone with normal

constant K. Suppose that the mapping T : X → X satisfies the following condition:

S(Tx, Tx, T y) ≤ p [S(x, x, T y) + S(y, y, Tx)]

for all x, y ∈ X, where p ∈ [0, 1
2
) is a constant. Then T has a unique fixed point in X. Moreover,

T is continuous at the fixed point.
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Proof. The assertion follows using Theorem 1 with φ(x, y, z, s, t) = p(s + t) for some p ∈ [0, 1
2
)

and all x, y, z, s, t ∈ R+. Indeed, φ is continuous. First, we have φ(x, x, y, z, 0) = p(z + 0). So,

if y ≤ φ(x, x, y, z, 0) with z ≤ 2x + y, then y ≤
(

2p

1−p

)

x with
(

2p

1−p

)

< 1. Thus, T satisfies the

condition (A1).

Next, if y ≤ φ(y, 0, 0, y, y) = 2py, then y = 0 since p < 1

2
. Thus, T satisfies the condition (A2).

Finally, if xi ≤ yi + zi for i ≤ 5, then

φ(x1, . . . , x5) = p(x4 + x5)

≤ p[(y4 + z4) + (y5 + z5)]

= p(y4 + y5) + p(z4 + z5)

= φ(y1, . . . , y5) + φ(z1, . . . , z5).

Moreover

φ(0, 0, 2y, y, 0) = p(y + 0) = py

where p < 1. Thus, T satisfies the condition (A3).

The following corollary is an analogue of S. Reich’s result [21].

Corollary 4. Let (X,S) be a complete cone S-metric space and P be a normal cone with normal

constant K. Suppose that the mapping T : X → X satisfies the following condition:

S(Tx, Tx, T y) ≤ aS(x, x, y) + b S(x, x, Tx) + c S(y, y, T y)

for all x, y ∈ X, where a, b, c ≥ 0 are constants with a+ b+ c < 1. Then T has a unique fixed point

in X. Moreover, if c < 1

2
, then T is continuous at the fixed point.

Proof. The assertion follows using Theorem 1 with φ(x, y, z, s, t) = ax+ by+ cz for some a, b, c ≥ 0

are constants with a + b+ c < 1 and all x, y, z, s, t ∈ R+. Indeed, φ is continuous. First, we have

φ(x, x, y, z, 0) = ax + bx + cy. So, if y ≤ φ(x, x, y, z, 0) with z ≤ 2x + y, then y ≤
(

a+b
1−c

)

x with
(

a+b
1−c

)

< 1. Thus, T satisfies the condition (A1).

Next, if y ≤ φ(y, 0, 0, y, y) = ay, then y = 0 since a < 1. Thus, T satisfies the condition (A2).

Finally, if xi ≤ yi + zi for i ≤ 5, then

φ(x1, . . . , x5) = ax1 + bx2 + cx3

≤ a(y1 + z1) + b(y2 + z2) + c(y3 + z3)

= (ay1 + by2 + cy3) + (az1 + bz2 + cz3)

= φ(y1, . . . , y5) + φ(z1, . . . , z5).
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Moreover

φ(0, 0, 2y, y, 0) = a.0 + b.0 + c.2y = 2cy

where 2c < 1. Thus, T satisfies the condition (A3).

The following corollary is an analogue of L. B. Ćirić’s result [5].

Corollary 5. Let (X,S) be a complete cone S-metric space and P be a normal cone with normal

constant K. Suppose that the mapping T : X → X satisfies the following condition:

S(Tx, Tx, T y) ≤ h max
{

S(x, x, y), S(x, x, Tx), S(y, y, T y),

S(x, x, T y), S(y, y, Tx)
}

for all x, y ∈ X, where h ∈ [0, 1
3
) is a constant. Then T has a unique fixed point in X. Moreover,

T is continuous at the fixed point.

Proof. The assertion follows using Theorem 1 with φ(x, y, z, s, t) = h max{x,

y, z, s, t} for some h ∈ [0, 1
3
) and all x, y, z, s, t ∈ R+. Indeed, φ is continuous. First, we have

φ(x, x, y, z, 0) = h max{x, x, y, z, 0}. So, if y ≤ φ(x, x, y, z, 0) with z ≤ 2x + y, then y ≤ hx or

y ≤ hz ≤ h(2x + y). Then y ≤ kx with k = max
{

h, 2h
1−h

}

< 1. Thus, T satisfies the condition

(A1).

Next, if y ≤ φ(y, 0, 0, y, y) = h max{y, 0, 0, y, y} = hy, then y = 0 since h < 1

3
. Thus, T

satisfies the condition (A2).

Finally, if xi ≤ yi + zi for i ≤ 5, then

φ(x1, . . . , x5) = h max{x1, . . . , x5}

≤ h max{y1 + z1, . . . , y5 + z5}

≤ h max{y1, . . . , y5}+ h max{z1, . . . , z5}

= φ(y1, . . . , y5) + φ(z1, . . . , z5).

Moreover

φ(0, 0, 2y, y, 0) = h max{0, 0, 2y, y, 0} = 2hy

where 2h < 1. Thus, T satisfies the condition (A3).

Example 8. Let E = R
2, the Euclidean plane, P = {(x, y) ∈ R

2 : x ≥ 0, y ≥ 0} a normal cone

in E and X = R. Then the function S : X3 → E defined by S(x, y, z) = |x − z| + |y − z| for all

x, y, z ∈ X. Then (X,S) is a cone S-metric space. Now, we consider the mapping T : X → X by

T (x) = x
2
and {xn} = { 1

2n
} for all n ∈ N is a sequence converging to zero.
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Result Analysis

(1) Taking x = xn−1 and y = xn in inequality (2.1) and using (CSM3), we have

S(xn, xn, xn+1) = S(Txn−1, T xn−1, T xn)

≤ φ
(

S(xn−1, xn−1, xn), S(xn−1, xn−1, T xn−1), S(xn, xn, T xn),

S(xn−1, xn−1, T xn), S(xn, xn, T xn−1)
)

= φ
(

S(xn−1, xn−1, xn), S(xn−1, xn−1, xn), S(xn, xn, xn+1),

S(xn−1, xn−1, xn+1), S(xn, xn, xn)
)

= φ
(

S(xn−1, xn−1, xn), S(xn−1, xn−1, xn), S(xn, xn, xn+1),

S(xn−1, xn−1, xn+1), 0
)

≤ φ
(

S(xn−1, xn−1, xn), S(xn−1, xn−1, xn), S(xn, xn, xn+1),

2S(xn−1, xn−1, xn) + S(xn, xn, xn+1), 0
)

.

Since φ satisfies the condition (A1), so there exists k ∈ [0, 1) such that

S(xn, xn, xn+1) ≤ k S(xn−1, xn−1, xn)

or

2
(

xn − xn+1

)

) ≤ k .2
(

xn−1 − xn
)

or

( 1

2n
−

1

2n+1

)

) ≤ k
( 1

2n−1
−

1

2n

)

or

k ≥
1

2
.

If we take 0 < k < 1, then inequality (2.1) is satisfied. Thus all the conditions of Theorem 1 are

satisfied. Hence by Theorem 1, T has a unique fixed point. Here, note that ′0′ is the unique fixed

point of T .

(2) Let {yn} = { 1

3n
} be a sequence in X converging to the fixed point z = 0, then we have to

show that Tyn → z as n→ ∞, that is, T is continuous at the fixed point of T , we have

lim
n→∞

Tyn = T ( lim
n→∞

yn) = T (0) = 0 = z.
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That is,

Tyn → z as n→ ∞.

Thus, T is continuous at the fixed point of T .

Example 9. Let E = R
2, the Euclidean plane, P = {(x, y) ∈ R

2 : x ≥ 0, y ≥ 0} a normal cone

in E and X = R. Then the function S : X3 → E defined by S(x, y, z) = |x − z| + |y − z| for all

x, y, z ∈ X. Then (X,S) is a cone S-metric space. Now, we consider the mapping T : X → X by

T (x) = x
3
. Then

S(Tx, Tx, T y) = |Tx− Ty|+ |Tx− Ty|

= 2|Tx− Ty| = 2
∣

∣

∣

(x

3

)

−
(y

3

)
∣

∣

∣

=
2

3
|x− y|

=
1

3

(

2|x− y|
)

≤
1

2

(

2|x− y|
)

= hS(x, x, y)

where h = 1

2
< 1. Thus T satisfies all the conditions of Corollary 1 and clearly 0 ∈ X is the unique

fixed point of T .

3 Conclusion

In this paper, we establish some fixed point theorems using implicit relation in the framework of

complete cone S-metric spaces. Our results extend, unify and generalize several results from the

existing literature. Especially, they extend the corresponding results of Sedghi and Dung [24] from

complete S-metric spaces to the setting of complete cone S-metric spaces. However, these results

have vast potential in solving various nonlinear problems in functional analysis, differential and

integral equations, computer science and engineering.
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