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David Békollè, Khalil Ezzinbi, Samir Fatajou, Duplex Elvis Houpa Danga,
and Fritz Mbounja Béssémè
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ABSTRACT

In this paper, we introduce a new general class of trigono-

metric distributions based on the tangent function, called the

Tan-G class. A mathematical procedure of the Tan-G class

is carried out, including expansions for the probability den-

sity function, moments, central moments and Rényi entropy.

The estimates are acquired in a non-closed form by the max-

imum likelihood estimation method. Then, an emphasis is

put on a particular member of this class defined with the

Burr XII distribution as baseline, called the Tan-BXII dis-

tribution. The inferential properties of the Tan-BXII model

are investigated. Finally, the Tan-BXII model is applied to

a practical data set, illustrating the interest of the Tan-G

class for the practitioner.

RESUMEN

En este art́ıculo, introducimos una nueva clase general de dis-

tribuciones trigonométricas basada en la función tangente,

llamada la clase Tan-G. Se lleva a cabo un procedimiento

matemático para la clase Tan-G, incluyendo expansiones

para la función de densidad de probabilidad, momentos, mo-

mentos centrales y entroṕıa de Rényi. Las estimaciones se

obtienen en forma no-cerrada para el método de estimación

de máxima verosimilitud. Luego, se pone énfasis en un

miembro particular de esta clase definido con la distribución

Burr XII como ĺınea de base, llamada la distribución Tan-

BXII. Se investigan las propiedades inferenciales del modelo

Tan-BXII. Finalmente, el modelo Tan-BXII es aplicado para

un conjunto de datos prácticos, ilustrando el interés de la

clase Tan-G para el practicante.

Keywords and Phrases: Trigonometric class of distributions, Tangent function, Burr XII distribution, Maximum

likelihood estimation, Entropy.
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1 Introduction

The recent years of research on probabilistic distributions have been marked by the rise of general

classes of trigonometric distributions, more or less sophisticated. Modern statistical developments

can be found in, e.g., [10], [16], [18], [19], [11], [4] and [8]. In particular, among the most funda-

mental of them, [18] introduced the Sin-G class defined by the cumulative distribution function

(cdf) given by

H
(1)
G (x) = sin

(π
2
G(x)

)
, x ∈ R,

where G(x) denotes a baseline cdf of a continuous distribution and [19] proposed the Cos-G class

defined by the cdf given by

H
(2)
G (x) = 1− cos

(π
2
G(x)

)
, x ∈ R.

One can notice that the eventual parameter(s) of these classes is (are) (the one) (those) ofG(x) only,

and that the following elementary equation hold: [H
(1)
G (x)]2+[1−H(2)

G (x)]2 = 1, i.e., H
(2)
G (x) = 1−√

1− [H
(1)
G (x)]2 (showing that H

(2)
G (x) belongs to the so-called Kum-G class with the parameters

1/2 and 2 and the baseline cdf H
(1)
G (x), see [5]). In addition to their simplicity, both of these two

trigonometric classes benefit from the smooth periodic oscillations of the involved trigonometric

functions to attain new levels of flexibility in statistical modeling. In [18] and [19], this fact is

illustrated by means of several practical data sets, with winning results in comparison to useful

model competitors. In this study, following the spirit of [18] and [19], we introduce a new and

simple general class of trigonometric distributions having the feature to be centered around the

tangent function. For the purpose of this paper, we call it the Tan-G class. It is defined by the

following cdf:

HG(x) = tan
(π

4
G(x)

)
, x ∈ R. (1.1)

Several existing constructions give this cdf, beginning by the integral techniques developed by [2];

we have HG(x) =
∫ (π/4)G(x)

0
sec2(t)dt, where sec(t) = 1/ cos(t). After some algebra, one can also

notice that HG(x) can be expressed in terms of the cdfs H
(1)
G (x) and H

(2)
G (x) as

HG(x) =

√
1− [1−H(2)

G (x)]2

2−H(2)
G (x)

, HG(x) =
H

(1)
G (x)

1 +

√
1− [H

(1)
G (x)]2

.

From these expressions, we immediately get the following stochastic ordering: HG(x) ≤ H
(1)
G (x),

attesting that HG(x) can provide different statistical models to those of H
(1)
G (x). In full generality,

the main qualities of the Tan-G class are to be simple: there is no additional parameter and the

related functions are very tractable, and its ability to create flexible statistical models, well-adapted

to fit with precision several kinds of data sets, beyond those related to the Sin-G or Cos-G class.
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All these aspects are developed in this paper according to the following plan. In Section 2,

the main theoretical features of the Tan-G class are presented. Section 3 is devoted to a special

member of the class defined with the Burr XII distribution as baseline. Concluding remarks are

given in Section 4.

2 Main theoretical features of the Tan-G class

A theoretical treatment of the Tan-G class is performed in this section, investigating the related

distributional functions, asymptotic and critical points, useful expansion, moments and central

moments, expansion for the general coefficient, entropy and the mathematics of the maximum

likelihood estimation.

2.1 Distributional functions

We recall that the Tan-G class of distributions is defined by the cdf given by (1.1). Upon differen-

tiation, the corresponding pdf is given by

hG(x) =
π

4
g(x) sec2

(π
4
G(x)

)
, x ∈ R, (2.1)

where g(x) denotes the pdf corresponding to G(x). The hazard function (hf) of the Tan-G class is

given by

RG(x) =

π

4
g(x) sec2

(π
4
G(x)

)
1− tan

(π
4
G(x)

) , x ∈ R. (2.2)

The curvatures properties of hG(x) and RG(x) are crucial to define an appropriate statistical

model for a given data set. Further elements on these curvature properties will be presented in

the subsection below. Another important function is the quantile function (qf) given by

Q(u) = H−1G (u) = G−1
[

4

π
arctan(u)

]
, u ∈ (0, 1).

That is, the median of the Tan-G class is given by

M = Q(0.5) ≈ G−1 (0.5903345) .

Other properties of the Tan-G class can be studied through this qf. For instance, the main steps

to generate random numbers from the Tan-G class via the qf are described in Table 1.
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Table 1: Generated numbers from the Tan-G class by the use of the qf

Algorithm

1. Generate n values from u ∼ U(0, 1)

2. Specify G−1(x)

3. Obtain an outcome of X with cdf (1.1) by X = Q(u)

2.2 Asymptotic and critical points

Let us now investigate the asymptotic and critical points for hG(x) and RG(x). Owing to (2.1)

and (2.2), when G(x)→ 0, we have

HG(x) ∼ π

4
G(x), hG(x) ∼ π

4
g(x), RG(x) ∼ π

4
g(x).

Also, when G(x)→ 1, we have

HG(x) ∼ 1− π

2
(1−G(x)), hG(x) ∼ π

2
g(x), RG(x) ∼ g(x)

1−G(x)
.

If x∗ denotes a critical point for hG(x), then it satisfies the following equation: {ln[hG(x)]}′ |x=x∗=

0, i.e.,

g(x)′ |x=x∗ +
π

2
g(x∗)

2 tan
(π

4
G(x∗)

)
= 0.

With similar arguments, if x∗∗ denotes a critical point for RG(x), then it satisfies the following

equation: {ln[RG(x)]}′ |x=x∗∗= 0, i.e.,[
g(x)′ |x=x∗∗ +

π

2
g(x∗∗)

2 tan
(π

4
G(x∗∗)

)] [
1− tan

(π
4
G(x∗∗)

)]
+
π

4
g(x∗∗)

2 sec2
(π

4
G(x∗∗)

)
= 0.

None of these non-linear equations has solution(s) with closed form. That is, for a specific G(x),

we can determine x∗ and x∗∗ numerically by the use of any scientific software as R, Matlab,

Mathematica. . .

2.3 Useful expansion

The following result presents an useful expansion of the pdf of the Tan-G class involving functions

of the exponentiated-G class (see [7]).

Theorem 2.1. The pdf of the Tan-G class given by (2.1) can be expressed as a linear combination

of pdfs of the exponentiated-G class as

hG(x) =

+∞∑
k=1

ωkg(2k−1)(x),
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where

ωk =
(π

4

)2k−1 B2k(−4)k(1− 4k)

(2k)!
, (2.3)

B2k is the so-called 2kth Bernoulli number and g(2k−1)(x) = (2k − 1)g(x)G2k−2(x) is the pdf of

the exponentiated-G class with parameter 2k − 1.

Proof. Using the Taylor series for the tangent function, since (π/4)G(x) ∈ (0, π/2), we have

tan
(π

4
G(x)

)
=

+∞∑
k=1

B2k(−4)k(1− 4k)

(2k)!

(π
4
G(x)

)2k−1
.

Thus, we obtain the following expansion for HG(x):

HG(x) =

+∞∑
k=1

(π
4

)2k−1 B2k(−4)k(1− 4k)

(2k)!
G2k−1(x)·

The desired expansion for hG(x) is deduced by differentiation. This ends the proof of Theorem

2.1.

2.4 Moments and central moments

An expansion for the moment of order m of the Tan-G class is studied in the following result.

Theorem 2.2. Let µm be the moment of order m of the Tan-G class and µ
(2k−1)
m be the moment

of order m of the exponentiated-G class with parameter 2k − 1. Then, we have

µm =

+∞∑
k=1

ωkµ
(2k−1)
m ,

where ωk is given by (2.3).

Proof. The moment of order m of the Tan-G class is defined by

µm =

∫ +∞

−∞
xmdHG(x).

It follows from Theorem 2.1 that

µm =

∫ +∞

−∞
xm

+∞∑
k=1

ωkg(2k−1)(x)dx =

+∞∑
k=1

ωk

∫ +∞

−∞
xmg(2k−1)(x)dx =

+∞∑
k=1

ωkµ
(2k−1)
m .

This ends the proof of Theorem 2.2.

The mean is given by µ = µ1.

Remark 2.3. By applying the change of variable u = G(x), we can express µ
(2k−1)
m as

µ(2k−1)
m = (2k − 1)

∫ +∞

−∞
xmg(x)G2k−2(x)dx = (2k − 1)

∫ 1

0

[
G−1(u)

]m
u2k−2du.
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Similarly, we can obtain an expansion of the central moments of order m by using Theorem

2.2.

Corollary 2.4. Let µ′m be the central moment of order m of the Tan-G class and µ
(2k−1)
m be the

moment of order m of the exponentiated-G class with parameter 2k − 1. Then, we have

µ′m =

+∞∑
k=1

m∑
r=0

γk,m,rµ
(2k−1)
m−r ,

where

γk,m,r = ωk

(
m

r

)
(−1)rµr

and ωk is defined by (2.3).

Proof. The central moment of order m of the Tan-G class is defined by

µ′m =

∫ +∞

−∞
(x− µ)mdHG(x).

By using the binomial theorem and Theorem 2.2, we have

µ′m =

m∑
r=0

(
m

r

)
(−1)rµr

∫ +∞

−∞
xm−rdHG(x) =

m∑
r=0

(
m

r

)
(−1)rµrµm−r

=

m∑
r=0

(
m

r

)
(−1)rµr

+∞∑
k=1

ωkµ
(2k−1)
m−r =

+∞∑
k=1

m∑
r=0

γk,m,rµ
(2k−1)
m−r .

The proof of Corollary 2.4 is ended.

By considering m = 2, the variance is given by

σ2 = µ′2 =

+∞∑
k=1

2∑
r=0

γk,2,rµ
(2k−1)
2−r .

By using similar summation techniques, one can set expansions of the incomplete moments, the

moment generating function and the characteristic function, among others.

2.5 Expansion to the general coefficient

The general coefficient of the Tan-G class is defined by

Cm =
µ′m
σm

.

By applying Corollary 2.4, it can be written as

Cm =

∑+∞
k=1

∑m
r=0 γk,m,rµ

(2k−1)
m−r[∑+∞

k=1

∑2
r=0 γk,2,rµ

(2k−1)
2−r

]m
2
.
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So, the asymmetry and kurtosis of the Tan-G class can be respectively expressed by

C3 =

∑+∞
k=1

∑3
r=0 γk,3,rµ

(2k−1)
3−r[∑+∞

k=1

∑2
r=0 γk,2,rµ

(2k−1)
2−r

] 3
2

, C4 =

∑+∞
k=1

∑4
r=0 γk,4,rµ

(2k−1)
4−r[∑+∞

k=1

∑2
r=0 γk,2,rµ

(2k−1)
2−r

]2 .

2.6 Entropy

Entropy measures the uncertainty; the greater the entropy, the higher the disorder and the less

likely it will be to observe a phenomenon; the lower the entropy, the lower its disorder and the

higher the probability of observing a particular event. Among the most useful entropy, there is

the Rényi entropy introduced by [13]. In the context of the Tan-G class, it is defined by

LG(γ) =
1

1− γ
ln

[∫ +∞

−∞
hγG(x)

]
dx,

where γ > 0 with γ 6= 1 and

hγG(x) =
(π

4

)γ
gγ(x) sec2γ

(π
4
G(x)

)
.

Let us now consider the function W (s) = sec2γ [(π/4)s], s ∈ (0, 1). By applying the Taylor

series formula to W (s) at a fixed point s0 ∈ (0, 1) (say s0 = 0.5), we get

sec2γ
[π

4
s
]

=

+∞∑
k=0

ak(s− s0)k =

+∞∑
k=0

k∑
r=0

(
k

r

)
aks

r(−1)k−rsk−r0 ,

where ak = W (k)(s) |s=s0 /k!. We are now able to derive an expansion of the Rényi entropy of the

Tan-G class. After some algebra, we obtain

LG(γ) =
1

1− γ

{
γ ln

(π
4

)
+ ln

[
+∞∑
k=0

k∑
r=0

aks
r(−1)k−rsk−r0 Ir

]}
, (2.4)

where

Ir =

∫ +∞

−∞
Gr(x)gγ(x)dx.

Even if it has no closed form, the integral Ir can be computed numerically. The Shannon entropy,

pioneered by [15], is given by

SG = −
∫ +∞

−∞
ln[hG(x)]hG(x)dx.

It can deduced from LG(γ) via the relation limγ→1 LG(γ) = SG.
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2.7 Maximum likelihood estimation and scores

Here, we consider the estimation of the parameters of the Tan-G class by the method of maximum

likelihood. Let x̃ = (x1, . . . , xn)> be a random sample observations from the Tan-G class with

vector parameter θ̃ = (θ1, . . . , θp) (thus, p is the number of parameters of the distribution). Then,

the log-likelihood (LL) function for the Tan-G class is given by

`(θ̃) = n ln
(π

4

)
+

n∑
i=1

ln
(
g(xi|θ̃)

)
+ 2

n∑
i=1

ln
[
sec
(π

4
G(xi|θ̃)

)]
·

The maximum likelihood estimators (MLEs) are obtained by maximizing this function according

to θ̃. In this regards, if G(x|θ̃) is differentiable according to θ̃, one can consider the jth score given

by

U(θj) =
∂`(θ̃)

∂θj
=

n∑
i=1

1

g(xi|θ̃)
∂g(xi|θ̃)
∂θj

+
π

2

n∑
i=1

tan
(π

4
G(xi|θ̃)

) ∂G(xi|θ̃)
∂θj

and consider the following equations: U(θ1) = 0, . . . , U(θp) = 0. Thus, the MLEs are defined as

the simultaneous solutions of these equations.

3 The Tan-BXII distribution

We now focus on a special distribution of the Tan-G class, called the Tan-BXII distribution.

3.1 Definition

Tan-BXII distribution is defined by the cdf given by (1.1) with the cdf G(x) of the Burr XII distri-

bution, i.e., G(x) = 1−
[
1 +

(x
s

)c]−κ
, x, s, c, κ > 0. Hence, the cdf of the Tan-BXII distribution

is given by

HG(x) = tan

{
π

4

(
1−

[
1 +

(x
s

)c]−κ)}
, x > 0.

The corresponding pdf is given by

hG(x) =
π

4

{
xc−1cκs−c

[
1 +

(x
s

)c]−κ−1}
sec2

{
π

4

(
1−

[
1 +

(x
s

)c]−κ)}
, x > 0.

Finally, the corresponding hf is given by

RG(x) =

π

4

{
xc−1cκs−c

[
1 +

(x
s

)c]−κ−1}
sec2

{
π

4

(
1−

[
1 +

(x
s

)c]−κ)}
1− tan

{
π

4

(
1−

[
1 +

(x
s

)c]−κ)} , x > 0.

It is expected that the hf is unimodal or decreasing, as it can be seen in Figures 3 and 4, respectively,

but an analytic verification of this fact using all three parameters is an unnecessarily complicated

computation. One can check for given parameters that it is indeed the case using computing

software.
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3.2 Shape characteristics of probability density and hazard functions

The asymptotic and critical points for hG(x) and RG(x) can be obtained in non-closed form by

applying Subsection 2.2. Also, some possible shapes of hG(x) for some parameter values are

displayed in Figure 1. Some plots of HG(x) are given in Figure 2.
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Figures 3 and 4 present plots of RG(x) for some parameter values. We observe that the hf

can be unimodal or only be decreasing.
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3.3 Expansion of the probability density function

Here, we use the general results proved for the Tan-G class of distributions to reveal properties for

the Tan-BXII distribution. An useful expansion of the pdf is presented below.

Theorem 3.1. The pdf of the Tan-G class can be expanded as a mixture of pdfs of the Burr XII

distribution, i.e.,

hG(x) =

+∞∑
k=1

2k−2∑
j=0

ωj,kgBurrXII(x; s, c, κ(j + 1)),

where

ωj,k = ωk(2k − 1)

(
2k − 2

j

)
(−1)j

1

j + 1
, (3.1)

ωk is given by (2.3) and gBurrXII(x; s, c, κ(j + 1)) is the pdf of the Burr XII distribution with pa-

rameters s, c and κ(j+1), i.e., gBurrXII(x; s, c, κ(j+1)) = xc−1cκ(j+1)s−c [1 + (x/s)
c
]
−κ(j+1)−1

,

x > 0.

Proof. Owing to Theorem 2.1, we can write

hG(x) =

+∞∑
k=1

ωkg(2k−1)(x),

where ωk is given by (2.3) and

g(2k−1)(x) = (2k − 1)g(x)G2k−2(x)

= (2k − 1)xc−1cκs−c
[
1 +

(x
s

)c]−κ−1{
1−

[
1 +

(x
s

)c]−κ}2k−2

.

The standard binomial theorem gives

g(2k−1)(x) = (2k − 1)xc−1cκs−c
2k−2∑
j=0

(
2k − 2

j

)
(−1)j

[
1 +

(x
s

)c]−κ(j+1)−1

= (2k − 1)

2k−2∑
j=0

(
2k − 2

j

)
(−1)j

1

j + 1
gBurrXII(x; s, c, κ(j + 1)).

The proof ends by putting the above equalities together.

3.4 Moments and central moments

By using identical manipulations to those used in Theorem 2.2, we introduce the moment expansion

of the Tan-BXII distribution in the following result.



CUBO
23, 1 (2021)

Tan-G class of trigonometric distributions and its applications 11

Theorem 3.2. First of all, the moment of order m of the Tan-BXII distribution exists if and only

if cκ > m. In this case, the moment of order m of the Tan-BXII distribution is given by

µm =

+∞∑
k=1

2k−2∑
j=0

ωj,ks
mκ(j + 1)B

(
κ(j + 1)−mc−1, 1 +mc−1

)
,

where ωj,k is given by (3.1) and B(a, b) =
∫ 1

0
ta−1(1−t)b−1dt, a, b > 0 (the standard beta function).

Proof. It follows from Theorem 3.1 that

µm =

+∞∑
k=1

2k−2∑
j=0

ωj,kJj,k,m,

where

Jj,k,m =

∫ +∞

0

xmgBurrXII(x; s, c, κ(j + 1))dx =

∫ +∞

0

xmxc−1cκ(j + 1)s−c
[
1 +

(x
s

)c]−κ(j+1)−1
dx.

By applying the changes of variables u =
(x
s

)c
and ν = (1 + u)−1, in turn, we get

Jj,k,m = smκ(j + 1)

∫ +∞

0

u
m
c (1 + u)−κ(j+1)−1du

= smκ(j + 1)

∫ 1

0

νκ(j+1)−m
c −1(1− ν)

m
c dν

= smκ(j + 1)B
(
κ(j + 1)−mc−1, 1 +mc−1

)
.

By combining the above equalities together, we end the proof of Theorem 3.2.

The mean is given by µ = µ1.

Remark 3.3. By adopting the notations introduced in Section 2, following the lines of the proof

of Theorem 3.2, one can show that

µ(2k−1)
m = (2k − 1)smκ

2k−2∑
j=0

(
2k − 2

j

)
(−1)jB

(
κ(j + 1)−mc−1, 1 +mc−1

)
.

Similarly to Corollary 2.4, the central moment of order m of the Tan-BXII distribution is

given

µ′m =

m∑
r=0

(
m

r

)
(−1)rµrµm−r =

+∞∑
k=1

2k−2∑
j=0

m∑
r=0

ρj,k,m,rB
(
κ(j + 1)− (m− r)c−1, 1 + (m− r)c−1

)
,

where

ρj,k,m,r = ωj,ks
m−rκ(j + 1)

(
m

r

)
(−1)rµr.

By considering m = 2, we get the following expansion for variance of the distribution:

σ2 = µ′2 =

+∞∑
k=1

2k−2∑
j=0

2∑
r=0

ρj,k,2,rB
(
κ(j + 1)− (2− r)c−1, 1 + (2− r)c−1

)
.
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3.5 Expansion to the general coefficient

The general coefficient of the Tan-BXII distribution can be expressed as

Cm =
µ′m
σm

=

∑+∞
k=1

∑2k−2
j=0

∑m
r=0 ρj,k,m,rB

(
κ(j + 1)− (m− r)c−1, 1 + (m− r)c−1

){∑+∞
k=1

∑2k−2
j=0

∑2
r=0 ρj,k,2,rB (κ(j + 1)− (2− r)c−1, 1 + (2− r)c−1)

}m/2 .

Thus, the asymmetry and kurtosis can be expressed by taking m = 3 and m = 4, respectively,

which is the object of the next part.

3.6 Figures of asymmetry and kurtosis

In Figures 5, 6 and 7, we present the asymmetry and kurtosis graphs for the Tan-BXII distribution.

It is possible to observe that this new distribution has a great flexibility on these aspects, showing

varying values, small and large.
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Figure 5: Plots of the skewness and kurtosis coefficients of the Tan-BXII distribution as a function

of c for selected values of κ and s
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Figure 6: Plots of the skewness and kurtosis coefficients of the Tan-BXII distribution as a function

of κ for selected values of c and s
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Figure 7: Plots of the skewness and kurtosis coefficients of the Tan-BXII distribution as a function

of s for selected values of c and κ
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3.7 Entropy

By applying (2.4), the Rényi entropy is given by

LG(γ) =
1

1− γ

{
γ ln

(π
4

)
+ ln

[
+∞∑
k=0

k∑
r=0

aks
r(−1)k−rsk−r0 Ir

]}
,

where γ > 0 with γ 6= 1 and, after some algebra,

Ir =

∫ +∞

−∞
Gr(x)gγ(x)dx

=

r∑
j=0

(
r

j

)
(−1)jκγs−(γ−1)cγ−1B(κ(j + γ) + (γ − 1)c−1, (γ − 1)(c− 1)c−1 + 1),

assuming that κγ + (γ − 1)c−1 > 0 and (γ − 1)(c− 1)c−1 + 1 > 0.

Figure 8 displays this Rényi entropy for some values of the parameters.
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Figure 8: Plots of the Rényi entropy of the Tan-BXII distribution as a function of c for selected

values of κ and s

3.8 Maximum likelihood estimation

Here, we provide the mathematical background related to the MLEs of the Tan-BXII model pa-

rameters, i.e., c, κ and s. Let x = {x1, . . . , xn}> be n independent random variables from the

Tan-BXII distribution. Then, the log-likelihood function is given by

L = n ln
(π

4

)
+ n ln(c) + n ln(κ)− nc ln(s) + (c− 1)

n∑
i=1

ln(xi)

− (κ+ 1)

n∑
i=1

ln
[
1 +

(xi
s

)c]
+ 2

n∑
i=1

ln

[
sec

{
π

4

(
1−

[
1 +

(xi
s

)c]−κ)}]
.
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The scores are presented below:

Uc =
n

c
− n ln(s) +

n∑
i=1

ln(xi)− (κ+ 1)

n∑
i=1

xci ln
(xi
s

)
sc + xci

+
π

2
κ

n∑
i=1

(xi
s

)c
ln
(xi
s

) [
1 +

(xi
s

)c]−κ−1
tan

{
π

4

(
1−

[
1 +

(xi
s

)c]−κ)}
,

Uκ =
n

κ
−

n∑
i=1

ln
[
1 +

(xi
s

)c]
+
π

2

n∑
i=1

[
1 +

(xi
s

)c]−κ
ln
[
1 +

(xi
s

)c]
tan

{
π

4

(
1−

[
1 +

(xi
s

)c]−κ)}

and

Us = −nc
s

+ c(κ+ 1)s−1
n∑
i=1

xci
sc + xci

− π

2
cκs−(c+1)

n∑
i=1

xci

[
1 +

(xi
s

)c]−κ−1
tan

{
π

4

(
1−

[
1 +

(xi
s

)c]−κ)}
.

The MLEs of c, κ and s are defined by the simultaneous solutions of the following non-linear

equations: Uc = 0, Uκ = 0 and Us = 0 according to c, κ and s. Under some standard regularity

conditions, the well-known theory on MLE can be applied, ensuring nice asymptotic properties

(see [3]).

3.9 Simulation

Using the TanB R package [17], we perform a simulation study using several random samples of the

Tan-BXII distribution. For each sample, we calculate the MLEs using native R language’s optim

implementation. Biases, and Mean Square Errors (MSEs) are also calculated using the MLEs

obtained.

For this simulation, we use samples with sizes 10, 20, 30, . . . , 100 and 1000 replicas for the

parameter’s configuration: c = 1, κ = 1.4 and s = 0.15. Figures 9a, 9b and 9c show the bias for c,

κ and s, respectively, in this simulation and we can see it decreasing over the sample sizes. Figures

10a, 10b and 10c show the MSE for the same parameters and also decreases over the sample sizes.

Table 2 summarizes the simulation, given the means of MLEs, biases and MSEs of the samples

with sizes of 10, 20, 30, 50 and 100. We can see in the table that all the parameters are overesti-

mated by the maximum likelihood method. The biases and MSEs decrease over the sample sizes

as we see in Figures 9a, 9b, 9c, 10a, 10b and 10c.
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Table 2: MLEs, Biases and MSEs for c = 1, κ = 1.4, s = 0.15 using 1000 replicas

Sample size(n) Parameters MLEs Biases MSEs

c 1.5102 0.5102 1.1065

10 κ 7.6587 6.2587 86.6797

s 2.5062 2.3562 15.5951

c 1.2998 0.2998 0.4181

20 κ 6.7327 5.3327 68.2502

s 2.3631 2.2131 12.9993

c 1.2444 0.2444 0.2478

30 κ 5.5806 4.1806 47.7063

s 1.8732 1.7232 8.7874

c 1.1787 0.1787 0.111

50 κ 4.7807 3.3807 32.0412

s 1.6109 1.4609 6.7689

c 1.1636 0.1636 0.066

100 κ 3.4506 2.0506 11.3414

s 0.9844 0.8344 2.0205
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Figure 9: Plots of the biases for the simulated experiment related to the Tan-BurXII model pa-
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3.10 Application

Now, we apply the Tan-BXII model to fit a practical data set and compare it with three other mod-

els, namely Kum-BXII, BurrXII and Kum-W models. These data are on the Aircraft windshield

failures (thousands of hours) reported in Murthy [12] (see Table 3). A brief statistical description

of these data can be found in Table 4. Table 5 shows the MLEs of the parameters of the Tan-BXII,

Kum-BXII, BurrXII and Kum-W models with error in parentheses, as well as the related Akaike

Information Criterion (AIC), Corrected Akaike Information Criterion (CAIC), Bayesian Informa-

tion Criterion (BIC), Cramér-von Mises (W ∗) and Anderson-Darling (A∗) statistics. We refer to

[1], [6] and the book of [9] for precise definitions and use of these fundamental statistical tools.

Table 3: Data on aircraft windshield failures (thousands of hours)

0.040 1.866 2.385 3.443 0.301 1.876 2.481 3.467 0.309 1.899 2.610

3.478 0.557 1.911 2.625 3.578 0.943 1.912 2.632 3.595 1.070 1.914

2.646 3.699 1.124 1.981 2.661 3.779 1.248 2.010 2.688 3.924 1.281

2.038 2.823 4.035 1.281 2.085 2.890 4.121 1.303 2.089 2.902 4.167

1.432 2.097 2.934 4.240 1.480 2.135 2.962 4.255 1.505 2.154 2.964

4.278 1.506 2.190 3.000 4.305 1.568 2.194 3.103 4.376 1.615 2.223

3.114 4.449 1.619 2.224 3.117 4.485 1.652 2.229 3.166 4.570 1.652

2.300 3.344 4.602 1.757 2.324 3.376 4.663

Table 4: Descriptive statistics of the considered data

Min. Q1 Median Mean Q3 Max. Var.

0.040 1.839 2.354 2.557 3.393 4.663 1.252

Table 5: MLEs of the parameters of the Tan-BXII, Kum-BXII, Kum-W and BurrXII models, with

errors in parentheses, and AIC, BIC, CAIC, W ∗ and A∗ statistics

Models Estimates AIC BIC CAIC W ∗ A∗

Tan-BXII(c, κ, s) 2.27 186.02 26.00 — — 267.76 275.09 268.06 0.06 0.58

(0.20) (659.52) (41.42) — —

Kum-BXII(a, b, c, d, k) 0.28 1.96 7.17 4.54 5.82 267.95 280.17 268.71 0.08 0.64

(0.11) (1.36) (2.38) (5.07) (1.46)

Kum-W(a, b, c, β) 0.38 8.53 5.78 0.13 — 268.82 278.59 269.32 0.06 0.56

(0.04) (6.89) (0.06) (0.04) —

BXII(a, c, k) 2.48 11.31 7.47 — — 270.24 277.57 270.54 0.06 0.63

(0.23) (8.05) (2.57) — —
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It follows from Table 5 that, when compared to other ones, the Tan-BXII model is the best.

We illustrate this claim by showing the fits of the estimated pdfs and cdfs in Figures 11 and 12,

respectively. Thus, we conclude that the Tan-BXII distribution is quite flexible in the modeling of

the proposed data.
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Figure 11: Some fitted pdfs of the data
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Figure 12: Some fitted cdfs of the data

4 Concluding remarks

In this paper, we introduced and discussed a new class of trigonometric distributions, called the

Tan-G class, with a focus on a new lifetime trigonometric distribution of the class, called the

Tan-BXII distribution. We obtain probability density function, cumulative distribution function,

hazard function and various moments. The entropy is also calculated. A complete part is devoted

to the estimation of the model parameters via the maximum likelihood method. We put the light

on the applicability of the new related models by considering a practical data set. Even though

our class of distributions does not optimally fit the data presented, it still proves to be a powerful

tool for statistical analysis. We will apply this distribution to other data sets to show its full power

and it will be reported elsewhere.
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1 Introduction and assumptions

Let Ω be a bounded domain in RN (N ≥ 3) such that ∂Ω is Lipschitz and ∂Ω = ΓD ∪ ΓNe with

ΓD ∩ ΓNe = ∅. Our aim is to study the following problem.

P (ρ, µ, d)



−
N∑
i=1

∂

∂xi
ai

(
x,

∂

∂xi
u

)
+ |u|pM (x)−2u = µ in Ω

u = 0 on ΓD

ρ(u) +

N∑
i=1

∫
ΓNe

ai

(
x,

∂

∂xi
u

)
ηi = d

u ≡ constant

 on ΓNe,

(1.1)

where the right-hand side µ is a bounded Radon diffuse measure (that is µ does not charge the

sets of zero pm(.)-capacity), ρ : R→ R a surjective, continuous and non-decreasing function, with

ρ(0) = 0, d ∈ R and ηi, i ∈ {1, ..., N} are the components of the outer normal unit vector.

For any Ω ⊂ RN , we set

C+(Ω̄) = {h ∈ C(Ω̄) : inf
x∈Ω

h(x) > 1} (1.2)

and we denote

h+ = sup
x∈Ω

h(x), h− = inf
x∈Ω

h(x). (1.3)

For the exponents, ~p(.) : Ω̄→ RN , ~p(.) = (p1(.), ..., pN (.)) with pi ∈ C+(Ω̄) for every i ∈ {1, ..., N}
and for all x ∈ Ω̄. We put pM (x) = max{p1(x), ..., pN (x)} and pm(x) = min{p1(x), ..., pN (x)} .

We assume that for i = 1, ..., N, the function ai : Ω × R → R is Carathéodory and satisfies the

following conditions.

• (H1): ai(x, ξ) is the continuous derivative with respect to ξ of the mapping Ai = Ai(x, ξ),

that is, ai(x, ξ) =
∂

∂ξ
Ai(x, ξ) such that the following equality holds.

Ai(x, 0) = 0, (1.4)

for almost every x ∈ Ω.

• (H2) : There exists a positive constant C1 such that

|ai(x, ξ)| ≤ C1(ji(x) + |ξ|pi(x)−1), (1.5)

for almost every x ∈ Ω and for every ξ ∈ R, where ji is a non-negative function in Lp
′
i(.)(Ω),

with
1

pi(x)
+

1

p′i(x)
= 1.
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• (H3) : there exists a positive constant C2 such that

(ai(x, ξ)− ai(x, η)).(ξ − η) ≥

C2|ξ − η|pi(x) if |ξ − η| ≥ 1,

C2|ξ − η|p
−
i if |ξ − η| < 1,

(1.6)

for almost every x ∈ Ω and for every ξ, η ∈ R, with ξ 6= η.

• (H4) : For almost every x ∈ Ω and for every ξ ∈ R,

|ξ|pi(x) ≤ ai(x, ξ).ξ ≤ pi(x)Ai(x, ξ). (1.7)

• (H5) : The variable exponents pi(.) : Ω̄→ [2, N) are continuous functions for all i = 1, ..., N

such that

p̄(N − 1)

N(p̄− 1)
< p−i <

p̄(N − 1)

N − p̄
,

N∑
i=1

1

p−i
> 1 and

p+
i − p

−
i − 1

p−i
<

p̄−N
p̄(N − 1)

, (1.8)

where
1

p̄
=

1

N

N∑
i=1

1

p−i
.

As examples under assumptions (H1) -(H5), we can give the following.

(1) Set Ai(x, ξ) = ( 1
pi(x) )|ξ|pi(x) and ai(x, ξ) = |ξ|pi(x)−2ξ , where 2 ≤ pi(x) < N .

(2) Ai(x, ξ) = ( 1
pi(x) )((1 + |ξ|2)

pi(x)

2 − 1) and ai(x, ξ) = (1 + |ξ|2)
pi(x)−2

2 ξ , where 2 ≤ pi(x) < N .

We put for all x ∈ ∂Ω,

p∂(x) =


(N − 1)p(x)

N − p(x)
if p(x) < N,

∞ if p(x) ≥ N.

We introduce the numbers

q =
N(p̄− 1)

N − 1
, q∗ =

Nq

N − q
=
N(p̄− 1)

N − p̄
. (1.9)

We denote byMb(Ω) the space of bounded Radon measure in Ω, equipped with its standard norm

‖.‖Mb(Ω). Note that, if u belongs to Mb(Ω), then |µ|(Ω) (the total variation of µ) is a bounded

positive measure on Ω.

Given µ ∈ Mb(Ω), we say that µ is diffuse with respect to the capacity W
1,p(.)
0 (Ω) (p(.)-capacity

for short) if µ(A) = 0, for every set A such that Capp(.)(A,Ω) = 0.

For every A ⊂ Ω, we denote

Sp(.)(A) = {u ∈W 1,p(.)
0 (Ω) ∩ C0(Ω) : u = 1 on A, u ≥ 0 on Ω}.
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The p(.)-capacity of every subset A with respect to Ω is defined by

Capp(.)(A,Ω) = inf
u∈Sp(.)(A)

{
∫

Ω

|∇u|p(x)dx}.

In the case Sp(.)(A) = ∅, we set Capp(.)(A,Ω) =∞.

The set of bounded Radon diffuse measure in the variable exponent setting is denoted byMp(.)
b (Ω).

We use the following result of decomposition of bounded Radon diffuse measure proved by Nyan-

quini et al. (see [31]).

Theorem 1.1. Let p(.) : Ω̄→ (1,∞) be a continuous function and µ ∈Mb(Ω). Then µ ∈Mp(.)
b (Ω)

if and only if µ ∈ L1(Ω) +W−1,p′(.)(Ω).

Remark 1.2. Since µ ∈ Mpm(.)
b (Ω), the Theorem 1.1 implies that there exist f ∈ L1(Ω) and

F ∈ (Lp
′
m(.)(Ω))N such that

µ = f − divF, (1.10)

where
1

pm(x)
+

1

p′m(x)
= 1, ∀x ∈ Ω.

The study of nonlinear elliptic equations involving the p-Laplace operator is based on the the-

ory of standard Sobolev spaces Wm,p(Ω) in order to find weak solutions. For the nonhomogeneous

p(.)-Laplace operators, the natural setting for this approach is the use of the variable exponent

Lebesgue and Sobolev spaces Lp(.)(Ω) and Wm,p(.)(Ω).

Variable exponent Lebesgue spaces appeared in the literature for the first time in a article by Orlicz

in 1931. In the 1950’s, this study was carred on by Nakano who made the first systematic study of

spaces with variable exponent (called modular spaces). Nakano explicitly mentioned variable expo-

nent Lebesgue spaces as an example of more general spaces he considered (see [30], p. 284). Later,

the polish mathematicians investigated the modular function spaces (see [29]). Note also that H.

Hudzik [18] investigated the variable exponent Sobolev spaces. Variable exponent Lebesgue spaces

on the real line have been independently developed by Russian researchers, notably Sharapudinov

[40] and Tsenov [42]. The next major step in the investigation of variable exponent Lebesgue and

Sobolev spaces was the comprehensive paper by O. Kovacik and J. Rakosnik in the early 90’s [23].

This paper established many of basic properties of Lebesgue and Sobolev spaces with variables

exponent. Variable Sobolev spaces have been used in the last decades to model various phenomena.

In [9], Chen, Levine and Rao proposed a framework for image restoration based on a Laplacian

variable exponent. Another application which uses nonhomogeneous Laplace operators is related

to the modelling of electrorheological fluids see [38]. The first major discovery in electrorheological

fluids was due to Winslow in 1949 (cf. [43]). These fluids have the interesting property that their

viscosity depends on the electric field in the fluid. They can raise the viscosity by as much as

five orders of magnitude. This phenomenon is known as the Winslow effect. For some technical

applications, we refer the readers to the work by Pfeiffer et al [33]. Electrorheological fluids have

been used in robotics and space technology. The experimental research has been done mainly in
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the USA, for instance in NASA laboratories. For more information on properties, modelling and

the application of variable exponent spaces to these fluids, we refer to Diening [11], Rajagopal and

Ruzicka [35], and Ruzicka [36]. In this paper, the operator involved in (1.1) is more general than

the p(.)-Laplace operator. Thus, the variable exponent Sobolev space W 1,p(.)(Ω) is not adequate

to study nonlinear problems of this type. This leads us to seek entropy solutions for problems

(1.1) in a more general variable exponent Sobolev space which was introduced for the first time by

Mihäılescu et al. [28], see also [34, 26, 27].

The need for such theory comes naturally every time we want to consider materials with inho-

mogeneities that have different behavior on different space directions. Non-local boundary value

problems of various kinds for partial differential equations are of great interest by now in several

fields of application. In a typical non-local problem, the partial differential equation (resp. bound-

ary conditions) for an unknown function u at any point in a domain Ω involves not only the local

behavior of u in a neighborhood of that point but also the non-local behavior of u elsewhere in Ω.

For example, at any point in Ω the partial differential equation and/or the boundary conditions

may contains integrals of the unknown u over parts of Ω, values of u elsewhere in D or, generally

speaking, some non-local operator on u. Beside the mathematical interest of nonlocal conditions,

it seems that this type of boundary condition appears in petroleum engineering model for well

modeling in a 3D stratified petroleum reservoir with arbitrary geometry (see [12] and [15]). A lot

of papers ( see [34], [24], [25], [2], [19], [1]) on problems like (1.1) considered cases of generally

boundary value condition. In [6], Bonzi et al. studied the following problems.


−

N∑
i=1

∂

∂xi
ai

(
x,

∂

∂xi
u

)
+ |u|pM (x)−2u = f in Ω

N∑
i=1

ai

(
x,

∂

∂xi
u

)
ηi = −|u|r(x)−2u on ∂Ω,

(1.11)

which correspond to the Robin type boundary condition. The authors used minimization tech-

niques used in [8] to prove the existence and uniqueness of entropy solution. By the same tech-

niques, Koné and al. proved the existence and uniqueness of entropy solution for the following

problem. 
−

N∑
i=1

∂

∂xi
ai

(
x,

∂

∂xi
u

)
+ |u|pM (x)−2u = f in Ω

N∑
i=1

ai

(
x,

∂

∂xi
u

)
ηi + λu = g on ∂Ω,

(1.12)

which correspond to the Fourier type boundary condition.

In a recent paper we studied a nonlinear elliptic anisotropic problem involving non- local conditions.

We also considered variable exponent and general maximal monotone graph datum at the boundary
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and proved existence and uniqueness of weak solution to the following problem.

S(ρ, µ, d)



−
N∑
i=1

∂

∂xi
ai

(
x,

∂

∂xi
u

)
+ |u|pM (x)−2u = f in Ω

u = 0 on ΓD

ρ(u) +

N∑
i=1

∫
ΓNe

ai

(
x,

∂

∂xi
u

)
ηi 3 d

u ≡ constant

 on ΓNe,

where the right-hand side f ∈ L∞(Ω) and ρ a maximal monotone graph on R such that D(ρ) =

Im(ρ) = R and 0 ∈ ρ(0), d ∈ R, by using the technique of monotone operators in Banach spaces

(see [21]) and approximation methods. There are two difficulties associated with the study of

problem P (ρ, µ, d). The first is to give a sense to the partial derivative of u which appear in the

term ai

(
x,

∂

∂xi
u

)
. As µ is a measure (even if µ is a integrable function), then we cannot take the

partial derivative of u in the usual distribution sense. The idea consists in considering troncatures

of the solution u (see [5]). The second difficulty appears with the question of uniqueness of solutons.

We obtain existence and uniqueness of a special class of solutions of problem P (ρ, µ, d) that satisfy

an extra condition that we call the entropy condition (see formula (2.9)). An alternative notion of

solution which can leads to existence and uniqueness of solution to problem P (ρ, µ, d) is the notion

of renormalized solution. But in this work, we consider the notion of entropy solution.

The paper is organized as follows. Section 2 is devoted to mathematical preliminaries including,

among other things, a brief discussion on variable exponent Lebesgue, Sobolev, anisotropic and

Marcinkiewicz spaces. In Section 3, we study an approximated problem and in Section 4, we prove

by using the results of the Section 3, the existence and uniqueness of entropy solution of problem

P (ρ, µ, d).

2 Preliminary

This part is related to anisotropic Lebesgue and Sobolev spaces with variable exponent and some

of their properties.

Given a measurable function p(.) : Ω → [1,∞). We define the Lebesgue space with variable

exponent Lp(.)(Ω) as the set of all measurable functions u : Ω→ R for which the convex modular

ρp(.)(u) :=

∫
Ω

|u|p(x)dx

is finite.

If the exponent is bounded, i.e, if p+ <∞, then the expression

|u|p(.) := inf
{
λ > 0 : ρp(.)(

u

λ
) ≤ 1

}
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defines a norm in Lp(.)(Ω), called the Luxembourg norm. The space (Lp(.)(Ω), |.|p(.)) is a separable

Banach space. Then, Lp(.)(Ω) is uniformly convex, hence reflexive and its dual space is isomorphic

to Lp
′(.)(Ω), where

1

p(x)
+

1

p′(x)
= 1, for all x ∈ Ω. We have the following properties (see [13]) on

the modular ρp(.).

If u, un ∈ Lp(.)(Ω) and p+ <∞, then

|u|p(.) < 1⇒ |u|p
+

p(.) ≤ ρp(.)(u) ≤ |u|p
−

p(.), (2.1)

|u|p(.) > 1⇒ |u|p
−

p(.) ≤ ρp(.)(u) ≤ |u|p
+

p(.), (2.2)

|u|p(.) < 1(= 1;> 1)⇒ ρp(.)(u) < 1(= 1;> 1), (2.3)

and

|un|p(.) → 0 (|un|p(.) →∞)⇔ ρp(.)(un)→ 0 (ρp(.)(un)→∞). (2.4)

If in addition, (un)n∈N ⊂ Lp(.)(Ω), then limn→∞ |un − u|p(.) = 0 ⇔ limn→∞ ρp(.)(un − u) = 0 ⇔
(un)n∈N converges to u in measure and limn→∞ ρp(.)(un) = ρp(.)(u).

We introduce the definition of the isotropic Sobolev space with variable exponent,

W 1,p(.)(Ω) :=
{
u ∈ Lp(.)(Ω) : |∇u| ∈ Lp(.)(Ω)

}
,

which is a Banach space equipped with the norm

‖u‖1,p(.) := |u|p(.) + |∇u|p(.).

Now, we present the anisotropic Sobolev space with variable exponent which is used for the study

of P (ρ, µ, d).

The anisotropic variable exponent Sobolev space W 1,~p(.)(Ω) is defined as follow.

W 1,~p(.)(Ω) :=

{
u ∈ LpM (.)(Ω) :

∂u

∂xi
∈ Lpi(.)(Ω), for all i ∈ {1, ..., N}

}
.

Endowed with the norm

‖u‖~p(.) := |u|pM (.) +

N∑
i=1

∣∣∣∣ ∂u∂xi
∣∣∣∣
pi(.)

,

the space
(
W 1,~p(.)(Ω), ‖.‖~p(.)

)
is a reflexive Banach space (see [14], Theorem 2.1 and Theorem 2.2).

As consequence, we have the following.

Theorem 2.1. (see [14]) Let Ω ⊂ RN (N ≥ 3) be a bounded open set and for all i ∈ {1, ..., N}, pi ∈
L∞(Ω), pi(x) ≥ 1 a.e. in Ω. Then, for any r ∈ L∞(Ω) with r(x) ≥ 1 a.e. in Ω such that

ess inf
x∈Ω

(pM (x)− r(x)) > 0,

we have the compact embedding

W 1,~p(.)(Ω) ↪→ Lr(.)(Ω).
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We also need the following trace theorem due to [7].

Theorem 2.2. Let Ω ⊂ RN (N ≥ 2) be a bounded open set with smooth boundary and let ~p(.) ∈
C(Ω̄) satisfy the condition

1 ≤ r(x) < min
x∈∂Ω

{p∂1 (x), ..., p∂N (x)}, ∀x ∈ ∂Ω. (2.5)

Then, there is a compact boundary trace embedding

W 1,~p(.)(Ω) ↪→ Lr(.)(∂Ω).

Let us introduce the following notation:

~p− = (p−1 , ..., p
−
N ).

We will use in this paper, the Marcinkiewicz spaces Mq(Ω) (1 < q <∞) with constant exponent.

Note that the Marcinkiewicz spaces Mq(.)(Ω) in the variable exponent setting was introduced for

the first time by Sanchon and Urbano (see [37]).

Marcinkiewicz spaces Mq(Ω) (1 < q < ∞) contain all measurable function h : Ω → R for which

the distribution function

λh(γ) := meas({x ∈ Ω : |h(x)| > γ}), γ ≥ 0,

satisfies an estimate of the form λh(γ) ≤ Cγ−q, for some finite constant C > 0.

The space Mq(Ω) is a Banach space under the norm

‖h‖∗Mq(Ω) = sup
t>0

t
1
q

(
1

t

∫ t

0

h∗(s)ds

)
,

where h∗ denotes the nonincreasing rearrangement of h.

h∗(t) := inf
{
C : λh(γ) ≤ Cγ−q, ∀γ > 0

}
,

which is equivalent to the norm ‖h‖∗Mq(Ω) (see [3]).

We need the following Lemma (see [4], Lemma A-2).

Lemma 2.3. Let 1 ≤ q < p <∞. Then, for every measurable function u on Ω,

(i)
(p− 1)p

pp+1
‖u‖pMp(Ω) ≤ sup

λ>0
{λpmeas[x ∈ Ω : |u| > λ]} ≤ ‖u‖pMp(Ω).

Moreover,

(ii)

∫
K

|u|qdx ≤ p

p− q
(
p

q
)
q
p ‖u‖qMp(Ω)(meas(K))

p−q
p , for every measurable subset K ⊂ Ω.

In particular, Mp(Ω) ⊂ Lqloc(Ω), with continuous embedding and u ∈ Mp(Ω) implies |u|q ∈
M

p
q (Ω).
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The following result is due to Troisi (see [39]).

Theorem 2.4. Let p1, ..., pN ∈ [1,∞), ~p = (p1, ..., pN ); g ∈W 1,~p(Ω), and letq = p̄∗ if p̄∗ < N,

q ∈ [1,∞) if p̄∗ ≥ N ;
(2.6)

where p∗ =
N∑N

i=1
1
pi
− 1

,
∑N
i=1

1
pi
> 1 and p̄∗ =

Np̄

N − p̄
.

Then, there exists a constant C > 0 depending on N , p1, ..., pN if p̄ < N and also on q and

meas(Ω) if p̄ ≥ N such that

‖g‖Lq(Ω) ≤ c
N∏
i=1

[
‖g‖LpM (Ω) + ‖ ∂g

∂xi
‖Lpi (Ω)

] 1
N

, (2.7)

where pM = max {p1, ..., pN} and 1
p̄ = 1

N

∑N
i=1

1
pi

. In particular, if u ∈W 1,~p
0 (Ω), we have

‖g‖Lq(Ω) ≤ c
N∏
i=1

[∥∥∥∥ ∂g∂xi
∥∥∥∥
Lpi (Ω)

] 1
N

. (2.8)

In the sequel, we consider the following spaces.

W
1,~p(.)
D (Ω) = {ξ ∈W 1,~p(.)(Ω) : ξ = 0 on ΓD}

and

W
1,~p(.)
Ne (Ω) = {ξ ∈W 1,~p(.)

D (Ω) : ξ ≡ constant on ΓNe}.

T 1,~p(.)
D (Ω) = {ξ measurable on Ω such that ∀k > 0, Tk(ξ) ∈ W

1,~p(.)
D (Ω)}

and

T 1,~p(.)
Ne (Ω) = {ξ measurable on Ω such that ∀k > 0, Tk(ξ) ∈ W

1,~p(.)
Ne (Ω)},

where Tk is a truncation function defined by

Tk(s) =


k if s > k,

s if |s| ≤ k,

−k if s < −k.

For any v ∈W 1,~p(.)
Ne (Ω), we set vN = vNe := v|ΓNe .

Definition 2.5. A measurable function u : Ω → R is an entropy solution of P (ρ, µ, d) if u ∈
T 1,~p(.)
Ne (Ω) and for every k > 0,

∫
Ω

(
N∑
i=1

ai

(
x,

∂

∂xi
u

)
∂

∂xi
Tk(u− ξ)

)
dx+

∫
Ω

|u|pM (x)−2uTk(u− ξ)dx ≤∫
Ω

Tk(u− ξ)dµ+ (d− ρ(uNe))Tk(uNe − ξ),
(2.9)

for all ξ ∈W 1,~p(.)
Ne (Ω) ∩ L∞(Ω).
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Our main result in this paper is the following theorem.

Theorem 2.6. Assume (H1)-(H5). Then for any (µ, d) ∈ Mpm(.)
b (Ω)× R, the problem P (ρ, µ, d)

admits a unique entropy solution u.

3 The approximated problem corresponding to P (ρ, µ, d)

We define a new bounded domain Ω̃ in RN as follow.

We fix θ > 0 and we set Ω̃ = Ω ∪ {x ∈ RN/dist(x,ΓNe) < θ}. Then, ∂Ω̃ = ΓD ∪ Γ̃Ne is Lipschitz

with ΓD ∩ Γ̃Ne = ∅.

Figure 1: Domains representation

Let us consider ãi(x, ξ) (to be defined later) Carathéodory and satisfying (1.4), (1.5), (1.6)

and (1.7), for all x ∈ Ω̃.

We also consider a function d̃ in L1(Γ̃Ne) such that∫
Γ̃Ne

d̃dσ = d. (3.1)

For any ε > 0, we set µε = fε − divF , where fε = T 1
ε
(f) ∈ L∞(Ω) . Note that fε → f as ε→ 0 in

L1(Ω) and ‖fε‖1 ≤ ‖f‖1.

We set µ̃ε = fεχΩ − divFχΩ, d̃ε = T 1
ε
(d̃) and we consider the problem

P (ρ̃, µ̃ε, d̃ε)



−
N∑
i=1

∂

∂xi
ãi(x,

∂

∂xi
uε) + |uε|pM (x)−2uεχΩ(x) = µ̃ε in Ω̃

uε = 0 on ΓD

ρ̃(uε) +

N∑
i=1

ãi(x,
∂

∂xi
uε)ηi = d̃ε on Γ̃Ne,

(3.2)

where the function ρ̃ is defined as follow.
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• ρ̃(s) =
1

|Γ̃Ne|
ρ(s), where |Γ̃Ne| denotes the Hausdorff measure of Γ̃Ne.

We obviously have ∀ε > 0, d̃ε ∈ L∞(Γ̃Ne).

The following definition gives the notion of solution for the problem Pε(ρ̃, µ̃ε, d̃ε).

Definition 3.1. A measurable function uε : Ω̃ → R is a solution to problem Pε(ρ̃, µ̃ε, d̃ε) if uε ∈
W

1,~p(.)
D (Ω̃) and

∫
Ω̃

N∑
i=1

ãi(x,
∂

∂xi
uε)

∂

∂xi
ξ̃dx+

∫
Ω

|uε|pM (x)−2uεξ̃dx =

∫
Ω

fεξ̃dx+

∫
Ω

F.∇ξ̃ +

∫
Γ̃Ne

(d̃ε − ρ̃(uε))ξ̃dσ,

(3.3)

for any ξ̃ ∈W 1,~p(.)
D (Ω̃) ∩ L∞(Ω).

Theorem 3.2. The problem Pε(ρ̃, µ̃ε, d̃ε) admits at least one solution in the sense of Definition

3.1.

Step 1: Approximated problem we study an existence result to the following problem. For

any k > 0 we consider

Pε,k(ρ̃, µ̃ε, d̃ε)



−
N∑
i=1

∂

∂xi
ãi(x,

∂

∂xi
uε,k) + Tk(b(uε,k))χΩ(x) = µ̃ε in Ω̃

uε,k = 0 on ΓD

Tk(ρ̃(uε,k)) +

N∑
i=1

ãi(x,
∂

∂xi
uε,k)ηi = d̃ε on Γ̃Ne,

(3.4)

where b(u) = |u|pM (x)−2u.

We have to prove that Pε,k(ρ̃, µ̃ε, d̃ε) admits at least one solution in the following sense.
uε,k ∈W 1,~p(.)

D (Ω̃) and for all ξ̃ ∈W 1,~p(.)
D (Ω̃),∫

Ω̃

N∑
i=1

ãi(x,
∂

∂xi
uε,k)

∂

∂xi
ξ̃dx+

∫
Ω

Tk(b(uε,k))ξ̃dx =

∫
Ω

ξ̃dµε +

∫
Γ̃Ne

(d̃ε − Tk(ρ̃(uε,k)))ξ̃dσ.

(3.5)

For any k > 0, let us introduce the operator Λk : W
1,~p(.)
D (Ω̃) → (W

1,~p(.)
D (Ω̃))′ such that for any

(u, v) ∈W 1,~p(.)
D (Ω̃)×W 1,~p(.)

D (Ω̃),

〈Λk(u), v〉 =

∫
Ω̃

(
N∑
i=1

ãi(x,
∂

∂xi
u)

∂

∂xi
v

)
dx+

∫
Ω

Tk(b(u))vdx+

∫
Γ̃Ne

Tk(ρ̃(u))vdσ. (3.6)

We need to prove that for any k > 0, the operator Λk is bounded, coercive, of type M and therefore,

surjective.

(i) Boundedness of Λk. Let (u, v) ∈ F ×W 1,~p(.)
D (Ω̃) with F a bounded subset of W

1,~p(.)
D (Ω̃) .
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We have
|〈Λk(u), v〉| ≤

N∑
i=1

(∫
Ω̃

∣∣∣∣ãi(x, ∂

∂xi
u)

∣∣∣∣ ∣∣∣∣ ∂∂xi v
∣∣∣∣ dx)+

∫
Ω̃

|Tk(b(u))||v|dx+

∫
Γ̃Ne

|Tk(ρ̃(u))||v|dσ

= I1 + I2 + I3,

where we denote by I1, I2 and I3 the three terms on the right hand side of the first inequality.

By (H2) and the Hölder type inequality, we have
I1 ≤ C1

N∑
i=1

(∫
Ω̃

|ji(x)|
∣∣∣∣ ∂∂xi v

∣∣∣∣ dx+

∫
Ω̃

∣∣∣∣ ∂∂xiu
∣∣∣∣pi(x)−1 ∣∣∣∣ ∂∂xi v

∣∣∣∣ dx
)

≤ C1

N∑
i=1

(
1

p′−i
+

1

p−i

)
|ji|p′i(.)

∣∣∣∣ ∂∂xi v
∣∣∣∣
pi(.)

+

N∑
i=1

(
1

p′−i
+

1

p−i

) ∣∣∣∣∣
∣∣∣∣ ∂∂xiu

∣∣∣∣pi(x)−1
∣∣∣∣∣
p′i(.)

∣∣∣∣ ∂∂xi v
∣∣∣∣
pi(.)

.

As u ∈ F , ∀ i ∈ {1, ..., N}, there exists a constant M > 0 such that

N∑
i=1

∣∣∣∣∣
∣∣∣∣ ∂∂xiu

∣∣∣∣pi(x)−1
∣∣∣∣∣
p′i(.)

< M ;

so ∣∣∣∣∣
∣∣∣∣ ∂∂xiu

∣∣∣∣pi(x)−1
∣∣∣∣∣
p′i(.)

< M, ∀ i ∈ {1, ..., N}.

Let C4 = max
i=1,...,N


∣∣∣∣∣
∣∣∣∣ ∂∂xiu

∣∣∣∣pi(x)−1
∣∣∣∣∣
p′i(.)

 .

As ji ∈ Lp
′
i(.)(Ω̃), we have

I1 ≤ C5(C1, p
−
i , (p

′
i)
−, C3(ji))

N∑
i=1

∣∣∣∣ ∂∂xi v
∣∣∣∣
pi(.)

+ C6(C1, p
−
i , (p

′
i)
−, C4)

N∑
i=1

∣∣∣∣ ∂∂xi v
∣∣∣∣
pi(.)

.

It is easy to see that

I2 ≤ k
∫

Ω̃

|v|dx.

Using Theorem 2.1, we have

‖v‖L1(Ω̃) ≤ C7‖v‖W 1,~p(.)
D (Ω̃)

.

So,

I2 ≤ kC7‖v‖W 1,~p(.)
D (Ω̃)

.

Similarly, by using Theorem 2.2, we have

I3 ≤ kC8‖v‖W 1,~p(.)
D (Ω̃)

�

Therefore, Λk maps bounded subsets of W
1,~p(.)
D (Ω̃) into bounded subsets of (W

1,~p(.)
D (Ω̃))′.

Thus, Λk is bounded on W
1,~p(.)
D (Ω̃).
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(ii) Coerciveness of Λk. We have to show that for any k > 0,
〈Λk(u), u〉
‖u‖

W
1,~p(.)
D (Ω̃)

→ ∞ as

‖u‖
W

1,~p(.)
D (Ω̃)

→∞.

For any u ∈W 1,~p(.)
D (Ω̃), we have

〈Λk(u), u〉 = 〈Λ(u), u〉+

∫
Ω

Tk(b(u))udx+

∫
Γ̃Ne

Tk(ρ̃(u))udσ, (3.7)

where 〈Λ(u), u〉 =

N∑
i=1

(∫
Ω̃

ãi(x,
∂

∂xi
u)

∂

∂xi
udx

)
.

The last two terms on the right-hand side of (3.7) are non-negative by the monotonicity of

Tk, b and ρ̃. We can assert that
〈Λk(u), u〉 ≥ 〈Λ(u), u〉

≥ 1

Np−m−1
‖u‖p

−
m

W
1,~p(.)
D (Ω̃)

−N.

Indeed, since

∫
Ω̃

|Tk(b(u))||u|dx+

∫
Γ̃Ne

|Tk(ρ̃(u))||u|dσ ≥ 0, for all u ∈W 1,~p(.)
D (Ω̃), we have

〈Λk(u), u〉 ≥ 〈Λ(u), u〉.

So,

〈Λk(u), u〉 ≥
N∑
i=1

(∫
Ω̃

ãi(x,
∂

∂xi
u)

∂

∂xi
udx

)
≥

N∑
i=1

(∫
Ω̃

∣∣∣∣ ∂∂xiu
∣∣∣∣pi(x)

dx

)
.

We make the following notations:

I =

{
i ∈ {1, ..., N} :

∣∣∣∣ ∂∂xiu
∣∣∣∣
pi(.)

≤ 1

}
and J =

{
i ∈ {1, ..., N} :

∣∣∣∣ ∂∂xiu
∣∣∣∣
pi(.)

> 1

}
.

We have

〈Λk(u), u〉 ≥
∑
i∈I

(∫
Ω̃

∣∣∣∣ ∂∂xiu
∣∣∣∣pi(x)

dx

)
+
∑
i∈J

(∫
Ω̃

∣∣∣∣ ∂∂xiu
∣∣∣∣pi(x)

dx

)

≥
∑
i∈I

(∣∣∣∣ ∂∂xiu
∣∣∣∣p

+
i

pi(.)

)
+
∑
i∈J

(∣∣∣∣ ∂∂xiu
∣∣∣∣p
−
i

pi(.)

)

≥
∑
i∈J

(∣∣∣∣ ∂∂xiu
∣∣∣∣p
−
i

pi(.)

)

≥
∑
i∈J

(∣∣∣∣ ∂∂xiu
∣∣∣∣p−m
pi(.)

)

≥
N∑
i=1

(∣∣∣∣ ∂∂xiu
∣∣∣∣p−m
pi(.)

)
−
∑
i∈I

(∣∣∣∣ ∂∂xiu
∣∣∣∣p−m
pi(.)

)

≥
N∑
i=1

(∣∣∣∣ ∂∂xiu
∣∣∣∣p−m
pi(.)

)
−N.
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We now use Jensen’s inequality on the convex function Z : R+ → R+, Z(t) = tp
−
m , p−m > 1

to get 
〈Λk(u), u〉 ≥ 〈Λ(u), u〉

≥ 1

Np−m−1
‖u‖p

−
m

W
1,~p(.)
D (Ω̃)

−N.

Hence, Λk is coercive (as p−m > 1).

(iii) The operator Λk is of type M .

Lemma 3.3. (cf [41]) Let A and B be two operators. If A is of type M and B is monotone and

weakly continuous, then A+ B is of type M .

Now , we set 〈Au, v〉 := 〈Λ(u), v〉 and 〈Bku, v〉 :=

∫
Ω

Tk(b(u))vdx+

∫
Γ̃Ne

Tk(ρ̃(u))vdσ.

Then, for every k > 0, we have Λk = A + Bk. We now have to show that for every k > 0,

Bk is monotone and weakly continuous, because it is well-known that A is of type M . For the

monotonicity of Bk, we have to show that

〈Bku− Bkv, u− v〉 ≥ 0 for all (u, v) ∈W 1,~p(.)
D (Ω̃)×W 1,~p(.)

D (Ω̃).

We have

〈Bku− Bkv, u− v〉 =

∫
Ω

(Tk(b(u))− Tk(b(v)))(u− v)dx

+

∫
Γ̃Ne

(Tk(ρ̃(u))− Tk(ρ̃(v)))(u− v)dσ.

From the monotonicity of b, ρ̃ and the map Tk, we conclude that

〈Bku− Bkv, u− v〉 ≥ 0. (3.8)

We need now to prove that for each k > 0 the operator Bk is weakly continuous, that is, for all

sequences (un)n∈N ⊂W 1,~p(.)
D (Ω̃) such that un ⇀ u in W

1,~p(.)
D (Ω̃), we have Bkun ⇀ Bku as n→∞.

For all φ ∈W 1,~p(.)
D (Ω̃), we have

〈Bkun, φ〉 :=

∫
Ω

Tk(b(un))φdx+

∫
Γ̃Ne

Tk(ρ̃(un))φdσ. (3.9)

Passing to the limit in (3.9) as n goes to∞ and using the Lebesgue dominated convergence theorem,

since un ⇀ u in W
1,~p(.)
D (Ω̃); up to a subsequence, we have un → u in L1(Ω̃) and a.e. in Ω̃. As

|Tk(b(un))φ| ≤ k|φ| and φ ∈W 1,~p(.)
D (Ω̃) ↪→ L1(Ω̃), for the first term on the right-hand side of (3.9),

we obtain

lim
n→∞

∫
Ω

Tk(b(un))φdx =

∫
Ω

Tk(b(u))φdx. (3.10)

Furthermore, since un ⇀ u in W
1,~p(.)
D (Ω̃); up to a subsequence, we have un → u in L1(∂Ω̃) and

a.e. on ∂Ω̃ . As |Tk(ρ̃(un))φ| ≤ k|φ| and φ ∈ W 1,~p(.)
D (Ω̃) ↪→ L1(∂Ω̃), we deduce by the Lebesgue

dominated convergence theorem that

lim
n→∞

∫
Γ̃Ne

Tk(ρ̃(un))φdx =

∫
Γ̃Ne

Tk(ρ̃(u))φdx. (3.11)
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From (3.10) and (3.11) we conclude that for every k > 0, Bk(un)→ Bk(u) as n→∞.

The operator A is type M and as Bk is monotone and weakly continuous, thanks to Lemma 3.3,

we conclude that the operator Λk is of type M . Then for any L ∈ (W
1,~p(.)
D (Ω̃))′, there exists

uε,k ∈W 1,~p(.)
D (Ω̃), such that Λk(uε,k) = L.

We now consider L ∈ (W
1,~p(.)
D (Ω̃))′ defined by L(v) =

∫
Ω

vdµε +

∫
Γ̃Ne

d̃εvdσ, for v ∈ W 1,~p(.)
D (Ω̃)

and we obtain (3.5)�

Step 2: A priori estimates

Lemma 3.4. Let uε,k a solution of Pε,k(ρ̃, µ̃ε, d̃ε). Then|ρ̃(uε,k)| ≤ k1 := max{‖d̃ε‖∞, (ρ̃ε ◦ b−1)(‖µε‖∞)} a.e. on Γ̃Ne,

|b(uε,k)| ≤ k2 := max{|µε‖∞; (b ◦ ρ−1
0 )(|Γ̃Ne|‖d̃ε‖∞)} a.e. in Ω.

(3.12)

Proof. For any τ > 0, let us introduce the function Hτ : R→ R by

Hτ (s) =


0 if s < 0,

s

τ
if 0 ≤ s ≤ τ,

1 if s > τ.

In (3.5) we set ξ̃ = Hτ (uε,k −M), where M > 0 is to be fixed later. We get
∫

Ω̃

N∑
i=1

ãi(x,
∂

∂xi
uε,k)

∂

∂xi
Hτ (uε,k −M)dx+

∫
Ω

Tk(b(uε,k))Hτ (uε,k −M)dx =∫
Ω

Hτ (uε,k −M)dµε +

∫
Γ̃Ne

(d̃ε − Tk(ρ̃(uε, k)))Hτ (uε,k −M)dσ.

(3.13)

The first term in (3.13) is non-negative. Indeed,∫
Ω̃

N∑
i=1

ãi(x,
∂

∂xi
uε,k)

∂

∂xi
Hτ (uε,k −M)dx =

1

τ

∫
{0≤uε,k−M≤τ}

N∑
i=1

ãi(x,
∂

∂xi
uε,k)

∂

∂xi
uε,kdx ≥ 0.

From (3.13) we obtain∫
Ω

Tk(b(uε,k))Hτ (uε,k −M)dx ≤
∫

Ω

Hτ (uε,k −M)dµε +

∫
Γ̃Ne

(d̃ε − Tk(ρ̃(uε, k)))Hτ (uε,k −M)dσ.

Then, one has
∫

Ω

(Tkb(uε,k)− Tk(b(M)))Hτ (uε,k −M)dx+

∫
Γ̃Ne

(Tk(ρ̃(uε, k))− Tk(ρ̃(M)))Hτ (uε,k −M)dx ≤∫
Ω

(µε − Tk(b(M)))Hτ (uε,k −M)dx+

∫
Γ̃Ne

(d̃ε − Tk(ρ̃(M)))Hτ (uε,k −M)dσ.

Letting τ go to 0 in the inequality above, we get
∫

Ω

(Tk(b(uε,k))− Tk(b(M)))+dx+

∫
Γ̃Ne

(Tk(ρ̃(uε,k))− Tk(ρ̃(M)))+dσ ≤∫
Ω

(µε − Tk(b(M)))sign+
0 (uk −M)dx+

∫
Γ̃Ne

(d̃ε − Tk(ρ̃(M)))sign+
0 (uε,k −M)dσ.
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As Im(b) = Im(ρ) = R, we can fix M = M0 = max{b−1(‖µε‖∞), ρ−1
0 (|Γ̃Ne|‖d̃ε‖∞)}. From the

above inequality we obtain
∫

Ω

(Tk(b(uε,k))− Tk(b(M0)))+dx+

∫
Γ̃Ne

(Tk(ρ̃(uε,k)− Tk(ρ̃(M0)))+dσ ≤∫
Ω

(µε − Tk(‖µε‖∞))sign+
0 (uε,k −M0)dx+

∫
Γ̃Ne

(d̃− Tk(‖d̃ε‖∞))sign+
0 (uε,k −M0)dσ.

For k > k0 := max{‖µε‖, ‖d̃ε‖∞}, it follows that∫
Ω

(Tk(b(uε,k))− Tk(b(M0)))+dx+

∫
Γ̃Ne

(Tk(ρ̃(uε,k))− Tk(ρ̃(M0)))+dσ ≤ 0. (3.14)

From (3.14), we deduce thatTk(ρ̃(uε,k)) ≤ Tk(ρ̃(M0)) a.e. on Γ̃Ne,

Tk(b(uε,k)) ≤ Tk(b(M0)) a.e. in Ω.
(3.15)

From (3.15), we deduce that for every k > k1 := max{‖d̃ε‖∞, ‖µε‖∞, b(M0), ρ̃(M0)},

ρ̃(uε,k) ≤ ρ̃(M0) a.e. on Γ̃Ne

and

b(uε,k) ≤ b(M0) a.e. in Ω.

Note that with the choice of M0 and the fact that D(ρ) = D(b) = R, for every k > k1 :=

max{‖d̃ε‖∞, ‖µε‖∞, b(M0), ρ̃(M0)}, we haveb(uε,k) ≤ max{‖µε‖∞, b ◦ ρ−1
0 (|Γ̃Ne|‖d̃ε‖∞) } a.e. in Ω,

ρ̃(uε,k) ≤ max{‖d̃ε‖∞, (ρ̃ ◦ b−1)(‖µε‖∞)} a.e. on Γ̃Ne.
(3.16)

We need to show that for any k large enough,b(uε,k) ≥ −max{‖µε‖∞, b ◦ ρ−1
0 (|Γ̃Ne|‖d̃ε‖∞)} a.e. in Ω,

ρ̃(uε,k) ≥ −max{‖d̃ε‖∞, (ρ̃ ◦ b−1)(‖µε‖∞)} a.e. on Γ̃Ne.
(3.17)

It is easy to see that if (uε,k) is a solution of Pε,k(ρ̃, µ̃ε, d̃ε), then (−uε,k) is a solution of

Pε,k(ρ̂, µ̂ε, d̂ε)



−
N∑
i=1

∂

∂xi
âi(x,

∂

∂xi
uε,k) + Tk(b̂(uε,k))χΩ(x) = µ̂ε in Ω̃

uε,k = 0 on ΓD

Tk(ρ̂(uε,k)) +

N∑
i=1

âi(x,
∂

∂xi
uε,k)ηi = d̂ε on Γ̃Ne,

where âi(x, ξ) = −ãi(x,−ξ), ρ̂(s) = −ρ̃(−s), b̂(s) = −b(−s), µ̂ε = −µ̃ε and d̂ = −d̃ε.
Then for every k > k2 := max{‖d̃ε‖∞, ‖µε‖∞, −b(−M0), −ρ̃(−M0)}, we have−b(uε,k) ≤ max{‖µε‖∞, b ◦ ρ−1

0 (|Γ̃Ne|‖d̃ε‖∞)} a.e. in Ω,

−ρ̃(uε,k) ≤ max{‖d̃ε‖∞, (ρ̃ ◦ b−1)(‖µε‖∞)} a.e. on Γ̃Ne,
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which implies (3.17).

From (3.16) and (3.17), we deduce (3.12).

Step 3. Convergence Since uε,k is a solution of Pε,k(ρ̃, µ̃ε, d̃ε), thanks to Lemma 3.4 and the

fact that Ω is bounded, we have ρ̃(uε,k) ∈ L1(Γ̃Ne) and b(uε,k) ∈ L1(Ω). For k = 1 + max(k1, k2)

fixed, by Lemma 3.4, one sees that problem Pε(ρ̃, µ̃ε, d̃ε) admits at least one solution uε �

Remark 3.5. Using the relation (3.12) and the fact that the functions b and ρ are non-decreasing,

it follows that for k large enough, the solution of the problem P (ρ̃, µ̃ε, d̃ε) belongs to L∞(Ω) ∩
L∞(Γ̃Ne) and |uε| ≤ c(b, k1) a.e. in Ω and |uε| ≤ c(ρ, k2) a.e. on Γ̃Ne.

Now, we set ãi(x, ξ) = ai(x, ξ)χΩ(x) +
1

εpi(x)
|ξ|pi(x)−2ξχΩ̃\Ω(x) for all (x, ξ) ∈ Ω̃ × RN and we

consider the following problem. Pε(ρ̃, µ̃ε, d̃ε)

−
N∑
i=1

∂

∂xi

(
ai

(
x,

∂

∂xi
uε

)
χΩ(x) +

1

εpi(x)

∣∣∣∣ ∂∂xiuε
∣∣∣∣pi(x)−2

∂

∂xi
uεχΩ̃\Ω(x)

)
+

|uε|pM (x)−2uεχΩ = µ̃ε in Ω̃

uε = 0 on ΓD

ρ̃(uε) +

N∑
i=1

ãi(x,
∂

∂xi
uε)ηi = d̃ε on Γ̃Ne.

(3.18)

Thanks to Theorem 3.2, Pε(ρ̃, µ̃ε, d̃ε) has at least one solution. So, there exists at least one

measurable function uε : Ω̃→ R such that
N∑
i=1

∫
Ω

ai

(
x,

∂

∂xi
uε

)
∂

∂xi
ξ̃dx+

N∑
i=1

∫
Ω̃\Ω

(
1

εpi(x)
| ∂
∂xi

uε|pi(x)−2 ∂

∂xi
uε.

∂

∂xi
ξ̃

)
dx

+

∫
Ω

|uε|pM (x)−2uεξ̃dx =

∫
Ω

ξ̃dµε +

∫
Γ̃Ne

(d̃ε − ρ̃(uε)ξ̃dσ,

(3.19)

where uε ∈W 1,~p(.)
D (Ω̃) and ξ̃ ∈W 1,~p(.)

D (Ω̃) ∩ L∞(Ω).

Moreover uε ∈ L∞(Ω) ∩ L∞(Γ̃Ne).

Our aim is to prove that these approximated solutions uε tend, as ε goes to 0, to a measurable

function u which is an entropy solution of the problem P (ρ̃, µ̃, d̃). To start with, we establish some

a priori estimates.

Proposition 3.6. Let uε be a solution of the problem Pε(ρ̃, µ̃ε, d̃ε). Then, the following statements

hold.

(i) ∀k > 0,

N∑
i=1

∫
Ω

∣∣∣∣ ∂∂xiTk(uε)

∣∣∣∣pi(x)

dx+

N∑
i=1

∫
Ω̃\Ω

(
1

ε

∣∣∣∣ ∂∂xiTk(uε)

∣∣∣∣)pi(x)

dx ≤ k(‖d̃‖L1(Γ̃Ne)
+ |µ|(Ω));
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(ii) ∫
Ω

|uε|pM (x)−1dx+

∫
Γ̃Ne

|ρ̃(uε)|dx ≤ (‖d̃‖L1(Γ̃Ne)
+ |µ|(Ω));

(iii) ∀k > 0,
N∑
i=1

∫
Ω̃

∣∣∣∣ ∂∂xiTk(uε)

∣∣∣∣pi(x)

dx ≤ k(‖d̃‖L1(Γ̃Ne)
+ |µ|(Ω)).

Proof. For any k > 0, we set ξ̃ = Tk(uε) in (3.19), to get
N∑
i=1

∫
Ω

(
ai

(
x,

∂

∂xi
uε

)
∂

∂xi
Tk(uε)

)
dx+

N∑
i=1

∫
Ω̃\Ω

(
1

εpi(x)

∣∣∣∣ ∂∂xiuε
∣∣∣∣pi(x)−2

∂

∂xi
uε

∂

∂xi
Tk(uε)

)
dx∫

Ω

|uε|pM (x)−2uεTk(uε)dx =

∫
Ω

Tk(uε)dµε +

∫
Γ̃Ne

(d̃ε − ρ̃(uε))Tk(uε)dσ.

(3.20)

(i) Obviously, we have

N∑
i=1

∫
Ω̃\Ω

(
1

εpi(x)

∣∣∣∣ ∂∂xiuε
∣∣∣∣pi(x)−2

∂

∂xi
uε

∂

∂xi
Tk(uε)

)
dx =

N∑
i=1

∫
Ω̃\Ω

(
1

εpi(x)

∣∣∣∣ ∂∂xiTk(uε)

∣∣∣∣pi(x)
)
dx ≥ 0,∫

Γ̃Ne

ρ̃(uε)Tk(uε)dσ ≥ 0 and

∫
Ω

|uε|pM (x)−2uεTk(uε)dx ≥ 0.

Moreover, 
∫

Ω

Tk(uε)dµε +

∫
Γ̃Ne

d̃εTk(uε)dσ ≤ k
∫

Ω

dµε + k

∫
Γ̃Ne

|d̃ε|dσ

≤ k
(
|µ|(Ω) +

∫
Γ̃Ne

|d̃|dσ
)
.

(3.21)

Using the inequalities above and (1.7), it follows that

N∑
i=1

∫
Ω

∣∣∣∣∂Tk(uε)

∂xi

∣∣∣∣pi(x)

dx ≤ k
(
|µ|(Ω) +

∫
Γ̃Ne

|d̃|dσ
)
. (3.22)

As

N∑
i=1

∫
Ω

(
ai

(
x,

∂

∂xi
uε

)
∂

∂xi
Tk(uε)

)
dx ≥ 0,

∫
Γ̃Ne

ρ̃(uε)Tk(uε)dσ ≥ 0 and∫
Ω

|uε|pM (x)−2uεTk(uε)dx ≥ 0, therefore, we get from (3.20),

N∑
i=1

∫
Ω̃\Ω

(
1

εpi(x)
| ∂
∂xi

Tk(uε)|pi(x)

)
dx ≤ k

(
|µ|(Ω) +

∫
Γ̃Ne

|d̃|dσ
)

(3.23)

Adding (3.22) and (3.23), we obtain (i).

(ii) The first two terms in (3.20) are non-negative and using (3.21), we have from (3.20) the

following ∫
Γ̃Ne

ρ̃(uε)Tk(uε)dσ +

∫
Ω

|uε|pM (x)−2uεTk(uε)dx ≤ k
(
|µ|(Ω) +

∫
Γ̃Ne

|d̃|dσ
)
.

We divide the above inequality by k > 0 and let k go to zero, to get∫
Γ̃Ne

ρ̃(uε)sign(uε)dσ +

∫
Ω

|uε|pM (x)−2uεsign(uε)dx =

∫
Γ̃Ne

|ρ̃(uε)|dσ +

∫
Ω

|uε|pM (x)−1dx

≤
(
|µ|(Ω) +

∫
Γ̃Ne

|d̃|dσ
)
.
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(iii) For all k > 0, we have

N∑
i=1

∫
Ω̃

∣∣∣∣ ∂∂xiTk(uε)

∣∣∣∣pi(x)

dx ≤
N∑
i=1

∫
Ω

∣∣∣∣ ∂∂xiTk(uε)

∣∣∣∣pi(x)

dx+

N∑
i=1

∫
Ω̃\Ω

∣∣∣∣1ε ∂

∂xi
Tk(uε)

∣∣∣∣pi(x)

dx,

for any 0 < ε < 1. According to (i), we deduce that

N∑
i=1

∫
Ω̃

∣∣∣∣ ∂∂xiTk(uε)

∣∣∣∣pi(x)

dx ≤ k
(
|µ|(Ω) +

∫
Γ̃Ne

|d̃|dσ
)
.

Lemma 3.7. There is a positive constant D such that

meas{|uε| > k} ≤ Dp−m
(1 + k)

kp
−
m−1

, ∀k > 0.

Proof. Let k > 0; by using Proposition 3.6-(iii), we have

N∑
i=1

∫
Ω̃

∣∣∣∣∂Tk(uε)

∂xi

∣∣∣∣p−m(x)

dx ≤
N∑
i=1

∫
∣∣∣∣∣∣
∂Tk(uε)

∂xi

∣∣∣∣∣∣>1


∣∣∣∣∂Tk(uε)

∂xi

∣∣∣∣p−m(x)

dx+Nmeas(Ω̃)

≤
N∑
i=1

∫
Ω̃

∣∣∣∣∂Tk(uε)

∂xi

∣∣∣∣pi(x)

dx+Nmeas(Ω̃)

≤ k

(
|µ|(Ω) +

∫
Γ̃Ne

|d̃|dσ
)

+Nmeas(Ω̃)

≤ C ′(k + 1),

with C ′ = max

((
|µ|(Ω) +

∫
Γ̃Ne

|d̃|dσ
)

;Nmeas(Ω̃)

)
.

We can write the above inequality as

N∑
i=1

∥∥∥∥∂Tk(uε)

∂xi

∥∥∥∥p−m
p−m

≤ C ′(1 + k) or ‖Tk(uε)‖
W

1,p
−
m

D (Ω̃)
≤ [C ′(1 + k)]

1

p
−
m .

By the Poincaré inequality in constant exponent, we obtain

‖Tk(uε)‖Lp−m (Ω̃)
≤ D(1 + k)

1

p
−
m .

The above inequality implies that∫
Ω̃

|Tk(uε)|p
−
mdx ≤ Dp−m(1 + k),

from which we obtain

meas {|uε| > k} ≤ Dp−m
(1 + k)

kp
−
m

,

since ∫
Ω̃

|Tk(uε)|p
−
mdx =

∫
{|uε|>k}

|Tk(uε)|p
−
mdx+

∫
{|uε|≤k}

|Tk(uε)|p
−
mdx,
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we get ∫
{|uε|>k}

|Tk(uε)|p
−
mdx ≤

∫
Ω̃

|Tk(uε)|p
−
mdx

and

kp
−
mmeas {|uε| > k} ≤

∫
Ω̃

|Tk(uε)|p
−
mdx ≤ Dp−m(1 + k)

Lemma 3.8. There is a positive constant C such that

N∑
i=1

∫
Ω̃

(∣∣∣∣ ∂∂xiTk(uε)

∣∣∣∣p
−
i

)
dx ≤ C(k + 1), ∀k > 0. (3.24)

Proof. Let k > 0, we set Ω1 =

{
|u| ≤ k;

∣∣∣∣ ∂∂xiuε
∣∣∣∣ ≤ 1

}
and Ω2 =

{
|u| ≤ k;

∣∣∣∣ ∂∂xiuε
∣∣∣∣ > 1

}
; using

Proposition 3.6-(iii), we have

N∑
i=1

∫
Ω̃

(∣∣∣∣ ∂∂xiTk(uε)

∣∣∣∣p
−
i

)
dx =

N∑
i=1

∫
Ω1

(∣∣∣∣ ∂∂xiTk(uε)

∣∣∣∣p
−
i

)
dx+

N∑
i=1

∫
Ω2

(∣∣∣∣ ∂∂xiTk(uε)

∣∣∣∣p
−
i

)
dx

≤ Nmeas(Ω̃) +

N∑
i=1

∫
Ω̃

(∣∣∣∣ ∂∂xiTk(uε)

∣∣∣∣pi(x)
)
dx

≤ Nmeas(Ω̃) + k
(
|µ|(Ω) + ‖d̃‖L1(Γ̃Ne)

)
≤ C(k + 1),

with C = max
{
Nmeas(Ω̃);

(
|µ|(Ω) + ‖d̃‖L1(Γ̃Ne)

)}
.

Lemma 3.9. For all k > 0, there is two constants C1 and C2 such that

(i) ‖uε‖Mq∗ (Ω̃) ≤ C1;

(ii)

∣∣∣∣∣∣∣∣ ∂∂xiuε
∣∣∣∣∣∣∣∣
Mp
−
i
q/p(Ω̃)

≤ C2.

Proof. (i) By Lemma 3.8, we have

N∑
i=1

∫
Ω̃

∣∣∣∣ ∂∂xiTk(uε)

∣∣∣∣p
−
i

dx ≤ C(1 + k), ∀k > 0 and i = 1, ..., N.

• If k > 1, we have
N∑
i=1

∫
Ω̃

∣∣∣∣ ∂∂xiTk(uε)

∣∣∣∣p
−
i

dx ≤ C ′k,

which means Tk(uε) ∈W 1,(p−1 ,...,p
−
N )(Ω̃). Using relation (2.8), we deduce that

‖Tk(uε)‖L(p̄)∗ (Ω̃ ≤ C1

N∏
i=1

∥∥∥∥ ∂

∂xi
Tk(uε)

∥∥∥∥
1

N

Lp
−
i (Ω̃)

.
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So,

∫
Ω̃

|Tk(uε)|(p̄)
∗
dx ≤ C


N∏
i=1

(∫
Ω̃

∣∣∣∣ ∂∂xiTk(uε)

∣∣∣∣p
−
i

dx

) 1

Np−i


(p̄)∗

≤ C ′′

 N∏
i=1

(k)

1

Np−i


(p̄)∗

≤ C ′′

k
N∑
i=1

1

Np−i


(p̄)∗

≤ C ′′k

(p̄)∗

p̄ .

Thus, ∫
{|uε|>k}

|Tk(uε)|(p̄)
∗
dx ≤

∫
Ω̃

|Tk(uε)|(p̄)
∗
dx

≤ C ′k

(p̄)∗

p̄

and so,

(k)(p̄)∗meas{x ∈ Ω̃ : |uε| > k} ≤ C ′k

(p̄)∗

p̄ ;

which means that

λuε(k) ≤ C ′k
(p̄)∗(

1

p̄
−1)

= C ′k−q
∗
, ∀k ≥ 1.

• If 0 < k < 1, we have

λuε(k) = meas
{
x ∈ Ω̃ : |uε| > k

}
≤ meas(Ω̃)

≤ meas(Ω̃)k−q
∗
.

So,

λuε(k) ≤ (C ′ +meas(Ω̃))k−q
∗

= C1k
−q∗ .

Therefore,

‖uε‖Mq∗ (Ω̃) ≤ C1.
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(ii) • Let α ≥ 1. For all k ≥ 1, we have

λ∂uε
∂xi

(α) = meas

({∣∣∣∣∂uε∂xi

∣∣∣∣ > α

})

= meas

({∣∣∣∣∂uε∂xi

∣∣∣∣ > α; |uε| ≤ k
})

+meas

({∣∣∣∣∂uε∂xi

∣∣∣∣ > α; ; |uε| > k

})
≤

∫
∣∣∣∣∣∣
∂uε
∂xi

∣∣∣∣∣∣>α;|uε|≤k


dx+ λuε(k)

≤
∫
{|uε|≤k}

(
1

α

∣∣∣∣∂uε∂xi

∣∣∣∣)p
−
i

dx+ λuε(k)

≤ α−p
−
i C ′k + Ck−q

∗

≤ B
(
α−p

−
i k + k−q

∗
)
,

with B = max(C ′;C).

Let g : [1;∞)→ R, x 7→ g(x) =
x

αp
−
i

+ x−q
∗
.

We have g′(x) = 0 with x =
(
q∗αp

−
) 1

q∗ + 1 .

We set k =
(
q∗αp

−
i

) 1

q∗ + 1 ≥ 1 in the above inequality to get,

λ∂uε
∂xi

(α) ≤ B

α−p−i × (q∗αp−i ) 1

q∗ + 1 +
(
q∗αp

−
i

) −q∗
q∗ + 1



≤ B

(q∗)

1

q∗ + 1 × α
−p−i

(
1−

1

q∗ + 1

)
+ (q∗)

−q∗

q∗ + 1 × α
−p−i q∗

q∗ + 1



≤ B

(q∗)

1

q∗ + 1 × α
−p−i

 q∗

q∗ + 1


+ (q∗)

−q∗

q∗ + 1 × α
−p−i q∗

q∗ + 1


≤ Mα

−p−i
q∗

q∗ + 1

≤ Mα
−p−i

q

p̄ ,

where M = B ×max

(q∗)

1

q∗ + 1 ; (q∗)

−q∗

q∗ + 1

 and as q∗ =
N(p̄− 1)

N − p̄
, q =

N(p̄− 1)

N − 1
.
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So,

q∗

q∗ + 1
=

q∗(N − p̄)
N(p̄− 1) +N − p̄

=
q∗(N − p̄)
Np̄− p̄

=
N(p̄− 1)

(N − 1)p̄

=
q

p̄
.

• If 0 ≤ α < 1, we have.

λ∂uε
∂xi

(α) = meas

({
x ∈ Ω̃ :

∣∣∣∣∂uε∂xi

∣∣∣∣ > α

})

≤ meas(Ω̃)α
−p−i

q

p̄ .

Therefore,

λ∂uε
∂xi

(α) ≤
(
M +meas(Ω̃)

)
α
−p−i

q

p̄ , ∀ α ≥ 0.

So, ∥∥∥∥∂uε∂xi

∥∥∥∥
H

≤ C2,

where H =M(Ω̃)

p−i q

p̄

Proposition 3.10. Let uε be a solution of the problem P (ρ̃, µ̃ε, d̃ε). Then,

(i) uε → u in measure, a.e. in Ω and a.e. on Γ̃N ;

(ii) For all i = 1, ...N ,
∂Tk(uε)

∂xi
⇀

∂Tk(u)

∂xi
= 0 in Lp

−
i (Ω̃ \ Ω).

Proof. (i) By Proposition 3.6 (i), we deduce that (Tk(uε))ε>0 is bounded in W
1,~p(.)
D (Ω̃) ↪→

Lpm(.)(Ω̃) ↪→ Lp
−
m(Ω̃) (with compact embedding). Therefore, up to a subsequence, we can

assume that as ε→ 0, (Tk(uε))ε>0 converges strongly to some function σk in Lp
−
m(Ω̃), a.e. in

Ω̃ and a.e. on Γ̃Ne.

Let us see that the sequence (uε)ε>0 is Cauchy in measure.

Indeed, let s > 0 and define:

E1 = [|uε1 | > k], E2 = [|uε2 | > k] and E3 = [|Tk(uε1)− Tk(uε2)| > s],

where k > 0 is fixed. We note that

[|uε1 − uε2 | > s] ⊂ E1 ∪ E2 ∪ E3;
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hence,

meas([|uε1 − uε2 | > s]) ≤
3∑
i=1

meas(Ei). (3.25)

Let θ > 0, using Lemma 3.7, we choose k = k(θ) such that

meas(E1) ≤ θ

3
and meas(E2) ≤ θ

3
. (3.26)

Since (Tk(uε))ε>0 converges strongly in Lp
−
m(Ω̃), then, it is a Cauchy sequence in Lp

−
m(Ω̃).

Thus,

meas(E3) ≤ 1

sp
−
m

∫
Ω

|Tk(uε1)− Tk(uε2)|p
−
mdx ≤ θ

3
, (3.27)

for all ε1, ε2 ≥ n0(s, θ). Finally, from (3.25), (3.26) and (3.27), we obtain

meas([|uε1 − uε2 | > s]) ≤ θ for all ε1, ε2 ≥ n0(s, θ); (3.28)

which means that the sequence (uε)ε>0 is Cauchy in measure, so uε → u in measure and up to

a subsequence, we have uε → u a.e. in Ω̃. Hence, σk = Tk(u) a.e. in Ω̃ and so, u ∈ T 1,~p(.)
D (Ω).

(ii) According to the proof of (i), we have Tk(uε) ⇀ Tk(u) in W
1,~p(.)
D (Ω̃) ↪→ W

1,~p−
D (Ω̃) which

implies on one hand that for all i = 1, ...N ,
∂Tk(uε)

∂xi
⇀

∂Tk(u)

∂xi
in Lpi(.)(Ω̃) and on the other

hand that for all i = 1, ...N ,
∂Tk(uε)

∂xi
⇀

∂Tk(u)

∂xi
in Lpi(.)(Ω̃) and then for all i = 1, ...N ,

∂Tk(uε)

∂xi
⇀

∂Tk(u)

∂xi
in Lp

−
i (Ω̃ \ Ω).

Let i = 1, ..., N , by Proposition 3.6-(i), we can assert that

(
1

ε

∂Tk(uε)

∂xi

)
ε>0

is bounded in

Lp
−
i (Ω̃ \ Ω). Indeed, let k > 0, we set Ω1 =

{
x ∈ Ω̃ \ Ω; |u(x)| ≤ k;

∣∣∣∣ ∂∂xiuε(x)

∣∣∣∣ ≤ ε} and

Ω2 =

{
x ∈ Ω̃ \ Ω; |u| ≤ k;

∣∣∣∣ ∂∂xiuε(x)

∣∣∣∣ > ε

}
; using Proposition 3.6-(i), we have

N∑
i=1

∫
Ω̃\Ω

(
1

ε

∣∣∣∣∂Tk(uε)

∂xi

∣∣∣∣p
−
i

)
dx

=

N∑
i=1

∫
Ω1

(
1

ε

∣∣∣∣∂Tk(uε)

∂xi

∣∣∣∣p
−
i

)
dx+

N∑
i=1

∫
Ω2

(
1

ε

∣∣∣∣ ∂∂xiTk(uε)

∣∣∣∣p
−
i

)
dx

≤ Nmeas(Ω̃ \ Ω) +

N∑
i=1

∫
Ω̃\Ω

(
1

ε

∣∣∣∣ ∂∂xiTk(uε)

∣∣∣∣pi(x)
)
dx

≤ Nmeas(Ω̃ \ Ω) + k
(
|µ|(Ω) + ‖d̃‖L1(Γ̃Ne)

)
≤ C ′(k + 1),

with C ′ = max
{
Nmeas(Ω̃ \ Ω);

(
|µ|(Ω) + ‖d̃‖L1(Γ̃Ne)

)}
. To end, we have

∫
Ω̃\Ω

(
1

ε

∣∣∣∣∂Tk(uε)

∂xi

∣∣∣∣p
−
i

)
dx ≤

N∑
i=1

∫
Ω̃\Ω

(
1

ε

∣∣∣∣∂Tk(uε)

∂xi

∣∣∣∣p
−
i

)
dx, for anyi = 1, . . . , N.
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Therefore, there exists Θk ∈ Lp
−
i (Ω̃ \ Ω) such that

1

ε

∂Tk(uε)

∂xi
⇀ Θk in Lp

−
i (Ω̃ \ Ω) as ε→ 0.

For any ψ ∈ L(p′i)
−

(Ω̃ \ Ω), we have∫
Ω̃\Ω

∂Tk(uε)

∂xi
ψdx =

∫
Ω̃\Ω

(
1

ε

∂Tk(uε)

∂xi
−Θk

)
(εψ)dx+ ε

∫
Ω̃\Ω

Θkψdx. (3.29)

As (εψ)ε>0 converges strongly to zero in L(p′i)
−

(Ω̃\Ω), we pass to the limit as ε→ 0 in (3.29),

to get
∂Tk(uε)

∂xi
⇀ 0 in Lp

−
i (Ω̃ \ Ω).

Hence, one has
∂Tk(uε)

∂xi
⇀

∂Tk(u)

∂xi
= 0 in Lp

−
i (Ω̃ \ Ω),

for any i = 1, ..., N.

Lemma 3.11. b(u) ∈ L1(Ω) and ρ̃(u) ∈ L1(Γ̃Ne).

Proof. Having in mind that by Proposition 3.6-(ii),∫
Ω

|b(uε)|dx+

∫
Γ̃Ne

|ρ̃(uε)|dσ ≤ (|µ|(Ω) + ‖d̃‖L1(Γ̃Ne)
),

we deduce that ∫
Ω

|b(uε)|dx ≤ (|µ|(Ω) + ‖d̃‖L1(Γ̃Ne)
) (3.30)

and ∫
Γ̃Ne

|ρ̃(uε)|dσ ≤ (|µ|(Ω) + ‖d̃‖L1(Γ̃Ne)
). (3.31)

By Fatou’s lemma, the continuity of b, ρ̃ and using Proposition 3.10, we have

lim inf
ε→0

∫
Ω

|b(uε)|dx ≥
∫

Ω

|b(u)|dx (3.32)

and

lim inf
ε→0

∫
Γ̃Ne

|ρ̃(uε)|dσ ≥
∫

Γ̃Ne

|ρ̃(u)|dσ. (3.33)

Using (3.30)-(3.33), we deduce that∫
Ω

|b(u)|dx ≤ (|µ|(Ω) + ‖d̃‖L1(Γ̃Ne)
)

and ∫
Γ̃Ne

|ρ̃(u)|dσ ≤ (|µ|(Ω) + ‖d̃‖L1(Γ̃Ne)
).

Therefore, b(u) ∈ L1(Ω) and ρ̃(u) ∈ L1(Γ̃Ne).
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Lemma 3.12. Assume (1.4)-(1.8) hold and uε be a weak solution of the problem P (ρ, µ̃ε, d̃ε).

Then,

(i)
∂

∂xi
uε converges in measure to

∂

∂xi
u .

(ii) ai

(
x,
∂Tk(uε)

∂xi
)→ ai(x,

∂Tk(u)

∂xi

)
strongly in L1(Ω) and weakly in Lp

′
i(.)(Ω), for all i=1,...,N.

In order to give the proof of Lemma 3.12, we need the following lemmas.

Lemma 3.13 (Cf [6]). Let u ∈ T 1,~p(.)(Ω). Then, there exists a unique measurable function

νi : Ω→ R such that

νiχ{|u|<k} =
∂

∂xi
Tk(u) for a.e. x ∈ Ω, ∀k > 0 and i = 1, ..., N ;

where χA denotes the characteristic function of a measurable set A.

The functions νi are denoted
∂

∂xi
u. Moreover, if u belongs to W 1,~p(.)(Ω), then νi ∈ Lpi(.)(Ω) and

coincides with the standard distributional gradient of u i.e. νi =
∂

∂xi
u.

Lemma 3.14 (Cf [37], lemma 5.4). Let (vn)n∈N be a sequence of measurable functions. If vn

converges in measure to v and is uniformly bounded in Lp(.)(Ω) for some 1 << p(.) ∈ L∞(Ω), then

vn → v strongly in L1(Ω).

The third technical lemma is a standard fact in measure theory (Cf [16]).

Lemma 3.15. Let (X,M, µ) be a measurable space such that µ(X) <∞.

Consider a measurable function γ : X → [0;∞] such that

µ({x ∈ X : γ(x) = 0}) = 0.

Then, for every ε > 0, there exists δ such that

µ(A) < ε, for all A ∈M with

∫
A

γdx < δ.

Proof of Lemma 3.12. (i) We claim that

(
∂

∂xi
uε

)
ε∈N

is Cauchy in measure. Indeed, let

s > 0, consider

An,m :=

{∣∣∣∣ ∂∂xiun
∣∣∣∣ > h

}
∪
{∣∣∣∣ ∂∂xium

∣∣∣∣ > h

}
, Bn,m := {|un − um| > k} and

Cn,m :=

{∣∣∣∣ ∂∂xiun
∣∣∣∣ ≤ h, ∣∣∣∣ ∂∂xium

∣∣∣∣ ≤ h, |un − um| ≤ k, ∣∣∣∣ ∂∂xiun − ∂

∂xi
um > s

∣∣∣∣} , where h and

k will be chosen later. One has{∣∣∣∣ ∂∂xiun − ∂

∂xi
um

∣∣∣∣ > s

}
⊂ An,m ∪Bn,m ∪ Cn,m. (3.34)

Let ϑ > 0. By Lemma 3.9, we can choose h = h(ϑ) large enough such that meas(An,m) ≤ ϑ

3

for all n,m ≥ 0. On the other hand, by Proposition 3.10, we have that meas(Bn,m) ≤ ϑ

3
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for all n,m ≥ n0(k, ϑ). Moreover, by assumption (H3), there exists a real valued function

γ : Ω→ [0,∞] such that meas{x ∈ Ω : γ(x) = 0} = 0 and

(ai(x, ξ)− ai(x, ξ′)).(ξ − ξ′) ≥ γ(x), (3.35)

for all i = 1, ..., N , |ξ|, |ξ′| ≤ h, |ξ − ξ′| ≥ s, for a.e. x ∈ Ω. Indeed, let’s set K = {(ξ, η) ∈
R× R : |ξ| ≤ h, |η| ≤ h, |ξ − η| ≥ s}. We have K ⊂ B(0, h)×B(0, h) and so K is a compact

set because it is closed in a compact set.

For all x ∈ Ω and for all i = 1, ..., N , let us define ψ : K → [0;∞] such that

ψ(ξ, η) = (ai(x, ξ)− ai(x, η)).(ξ − η).

As for a.e. x ∈ Ω, ai(x, .) is continuous on R, ψ is continuous on the compact K, by Weier-

strass theorem, there exists (ξ0, η0) ∈ K such that

∀(ξ, η) ∈ K, ψ(ξ, η) ≥ ψ(ξ0, η0).

Now let us define γ on Ω as follows.

γ(x) = ψi(ξ0, η0) = (ai(x, ξ0)− ai(x, η)).(ξ − η0).

Since s > 0, the function γ is such that meas ({x ∈ Ω : γ(x) = 0}) = 0. Let δ = δ(ε) be

given by Lemma 3.15, replacing ε and A by
ε

3
and Cn,m respectively. Taking respectively

ξ̃ = Tk(un − um) and ξ̃ = Tk(um − un) for the weak solutions un and um in (3.19) and after

adding the two relations, we have

N∑
i=1

∫
{|un−um|<k}

(
ai

(
x,

∂

∂xi
un

)
− ai

(
x,

∂

∂xi
um

))(
∂

∂xi
(un − um)

)
dx

+

∫
Q

((
1

εpi(x)

∣∣∣∣∂un∂xi

∣∣∣∣pi(x)−2
∂un
∂xi

)
−

(
1

εpi(x)

∣∣∣∣∂um∂xi
∣∣∣∣pi(x)−2

∂um
∂xi

))(
∂(un − um)

∂xi

)
dx

+

∫
Ω

(|un|pM (x)−2un − um|pM (x)−2um)(Tk(un − um)dx+

∫
Γ̃Ne

(ρ̃(un)− ρ̃(um))Tk(un − um)dσ

= 2

(∫
Ω

Tk(un − um)dµε +

∫
Γ̃Ne

d̃εTk(un − um)dσ

)
,

where Q = {Ω̃ \ Ω ∩ {|un − um| < k}}. As the three last terms on the left hand side are

non-negative and∫
Ω

Tk(un − um)dµε +

∫
Γ̃Ne

d̃εTk(un − um)dσ ≤ k(|µ|(Ω) + ‖d̃‖L1(Γ̃Ne)
),

we deduce that

N∑
i=1

∫
{|un−um|<k}

(
ai

(
x,
∂un
∂xi

)
− ai

(
x,
∂um
∂xi

))(
∂(un − um)

∂xi

)
dx ≤ 2k(|µ|(Ω)+‖d̃‖L1(Γ̃Ne)

).
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Therefore, using (H3) we have∫
Cn,m

γdx ≤
∫
Cn,m

(
ai

(
x,

∂

∂xi
un

)
− ai

(
x,

∂

∂xi
um

))
∂

∂xi
(un − um) dx

≤
N∑
i=1

∫
Cn,m

(
ai

(
x,

∂

∂xi
un

)
− ai

(
x,

∂

∂xi
um

))
∂

∂xi
(un − um)dx

≤ 2k(‖d̃‖L1(Γ̃Ne)
+ |µ|(Ω)) < δ,

by choosing k = δ/4
(
‖d̃‖L1(Γ̃Ne)

+ |µ|(Ω)
)

. From Lemma 3.15 again, it follows that

meas(Cn,m)<
ϑ

3
. Thus, using (3.35) and the estimates obtained for An,m, Bn,m and Cn,m,

it follows that

meas

({∣∣∣∣ ∂∂xiun − ∂

∂xi
um

∣∣∣∣ > s

})
≤ ϑ, (3.36)

for all n,m ≥ n0(s, ϑ), and then the claim is proved.

As consequence,

(
∂

∂xi
uε

)
ε∈N

converges in measure to some measurable function νi.

In order to end the proof of Lemma 3.12, we need the following lemma.

Lemma 3.16. (a) For a.e. k ∈ R,
∂

∂xi
Tk(uε) converges in measure to νiχ{|u|<k}.

(b) For a.e. k ∈ R,
∂

∂xi
Tk(u) = νiχ{|u|<k}.

(c)
∂

∂xi
Tk(u) = νiχ{|u|<k} holds for all k ∈ R.

Proof. (a) We know that
∂

∂xi
uε → νi in measure. Thus

∂

∂xi
uεχ{|u|<k} → νiχ{|u|<k} in

measure.

Now, let us show that
(
χ{|uε|<k} − χ{|u|<k}

) ∂

∂xi
uε → 0 in measure.

For that, it is sufficient to show that
(
χ{|uε|<k} − χ{|u|<k}

)
→ 0 in measure. Now, for

all δ > 0,

{
|χ{|uε|<k} − χ{|u|<k}|

∣∣∣∣ ∂∂xiuε
∣∣∣∣ > δ

}
⊂
{
|χ{|uε|<k} − χ{|u|<k}| 6= 0

}
⊂ {|u| =

k} ∪ {uε < k < u} ∪ {u < k < uε} ∪ {uε < −k < u} ∪ {u < −k < uε}. Thus,

meas

({
|χ{|uε|<k} − χ{|u|<k}|

∣∣∣∣ ∂∂xiuε
∣∣∣∣ > δ

})
≤ meas ({|u| = k}) +meas ({uε < k < u})

+meas ({u < k < uε})

+meas ({uε < −k < u})

+meas ({u < −k < uε}) .

(3.37)

Note that

meas ({|u| = k}) ≤ meas ({k − h < u < k + h}) +meas ({−k − h < u < −k + h})→ 0

as h→ 0 for a.e. k > 0, since u is fixed function.

Next, meas ({uε < k < u}) ≤ meas ({k < u < k + h}) + meas ({|uε − u| > h}) , for all
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h > 0.

Due to Proposition 3.10, we have for all fixed h > 0, meas ({|uε − u| > h}) → 0 as

ε→ 0. Since meas ({k < u < k + h})→ 0 as h→ 0, for all ϑ > 0, one can find N such

that for all n > N , meas ({|u| = k}) < ϑ

2
+
ϑ

2
= ϑ by choosing h and then N . Each

of the other terms on the right-hand side of (3.37) can be treated in the same way as

for meas ({uε < k < u}) . Thus, meas

({
|χ{|uε|<k} − χ{|u|<k}|

∣∣∣∣ ∂∂xiuε
∣∣∣∣ > δ}

})
→ 0 as

ε→ 0. Finally, since
∂

∂xi
Tk(uε) =

∂

∂xi
uεχ{|uε|<k}, the claim (a) follows.

(b) Using the Proof of Proposition 3.10-(ii) we have
∂

∂xi
Tk(uε) ⇀

∂

∂xi
Tk(u) weakly in

Lp
−
i (Ω̃). The previous convergence also ensures that

∂

∂xi
Tk(uε) converges to

∂

∂xi
Tk(u)

weakly in L1(Ω). On the other hand, by (a),
∂

∂xi
Tk(uε) converges to νiχ{|u|<k} in

measure. By Lemma 3.14, since
∂

∂xi
Tk(uε) is uniformly bounded in Lp

−
i (Ω̃) (see Lemma

3.8) hence in Lp
−
i (Ω), the convergence is actually strong in L1(Ω); thus it is also weak

in L1(Ω). By the uniqueness of the weak L1-limit, νiχ{|u|<k} coincides with
∂

∂xi
Tk(u).

(c) Let 0 < k < s, and s be such that νiχ{|u|<s} coincides with
∂

∂xi
Ts(u). Then,

∂

∂xi
Tk(u) =

∂

∂xi
Tk(Ts(u))

=
∂

∂xi
Ts(u)χ{|Ts(u)|<k}

= νiχ{|u|<s}χ{|u|<k}

= νiχ{|u|<k}.

Now, we can end the proof of Lemma 3.12. Indeed, combining lemmas 3.16 (c) and 3.13; (i)

follows.

Next, by lemmas 3.14 and 3.16, we have for all k > 0, i = 1, ..., N , ai

(
x,

∂

∂xi
Tk(uε)

)
con-

verges to ai

(
x,

∂

∂xi
Tk(u)

)
in L1(Ω) strongly. Indeed, let s, k > 0, consider

E4 =

{∣∣∣∣∂un∂xi
− ∂um

∂xi

∣∣∣∣ > s, |un| ≤ k, |um| ≤ k
}

, E5 =

{∣∣∣∣∂um∂xi
∣∣∣∣ > s, |un| > k, |um| ≤ k

}
, E6 ={∣∣∣∣∂un∂xi

∣∣∣∣ > s, |un| ≤ k, |um| > k

}
.

We have {∣∣∣∣∂Tk(un)

∂xi
− ∂Tk(um)

∂xi

∣∣∣∣ > s

}
⊂ E4 ∪ E5 ∪ E6. (3.38)
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∀ϑ > 0 , by Lemma 3.7, there exists k(ϑ) such that

meas(E5) ≤ ϑ

3
and meas(E6) ≤ ϑ

3
. (3.39)

Using (3.36)-(3.39), we get

meas

({∣∣∣∣ ∂∂xiTk(un)− ∂

∂xi
Tk(um)

∣∣∣∣ > s

})
≤ ϑ, (3.40)

for all n,m ≥ n1(s, ϑ). Therefore,
∂Tk(uε)

∂xi
converges in measure to

∂Tk(u)

∂xi
. Using lem-

mas 3.8 and 3.14, we deduce that
∂Tk(uε)

∂xi
converges to

∂Tk(u)

∂xi
in L1(Ω). So, after pass-

ing to a suitable subsequence of

(
∂Tk(uε)

∂xi

)
ε>0

, we can assume that
∂Tk(uε)

∂xi
converges to

∂Tk(u)

∂xi
a.e. in Ω. By the continuity of ai(x, .), we deduce that ai

(
x,
∂Tk(uε)

∂xi

)
converges

to ai

(
x,
∂Tk(u)

∂xi

)
a.e. in Ω. As Ω is bounded, this convergence is in measure. Using lem-

mas 3.14 and 3.16, we deduce that for all k > 0, i = 1, ..., N , ai

(
x,

∂

∂xi
Tk(uε)

)
converges

to ai

(
x,

∂

∂xi
Tk(u)

)
in L1(Ω) strongly and ai

(
x,

∂

∂xi
Tk(uε)

)
converges to χk ∈ Lp

′
i(.)(Ω)

weakly in Lp
′
i(.)(Ω). Since each of the convergences implies the weak L1-convergence, χk can

be identified with ai

(
x,

∂

∂xi
Tk(u)

)
; thus, ai

(
x,

∂

∂xi
Tk(u)

)
∈ Lp′i(.)(Ω)

By using Lebesgue generalized convergence theorem and above results, we deduce the following

result.

Proposition 3.17. For any k > 0 and any i = 1, ..., N , as ε tends to 0, we have

(i)
∂Tk(uε)

∂xi
→ ∂Tk(u)

∂xi
a.e. in Ω,

(ii) ai

(
x,
∂Tk(uε)

∂xi

)
∂Tk(uε)

∂xi
→ ai

(
x,
∂Tk(u)

∂xi

)
∂Tk(u)

∂xi
a.e. in Ω and strongly in L1(Ω),

(iii)
∂Tk(uε)

∂xi
→ ∂Tk(u)

∂xi
strongly in Lpi(x)(Ω).

4 Existence and uniqueness of solution to P (ρ, µ, d)

We are now able to prove Theorem 2.6.

Proof of Theorem 2.6

Thanks to the Proposition 3.10 and as ∀k > 0, ∀i = 1, ..., N ,
∂Tk(u)

∂xi
= 0 in Lp

−
i (Ω̃ \ Ω), then,

∀k > 0, Tk(u) = constant a.e. on Ω̃ \ Ω. Hence, we conclude that u ∈ T 1,~p(.)
Ne (Ω).
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We already state that b(u) ∈ L1(Ω).

To show that u is an entropy solution of P (ρ, µ, d), we only have to prove the inequality in (2.9).

Let ϕ ∈W 1,~p(.)
D (Ω) ∩ L∞(Ω). We consider the function ϕ1 ∈W 1,~p(.)

D (Ω̃) ∩ L∞(Ω) such that

ϕ1 = ϕχΩ + ϕNχΩ̃\Ω.

We set ξ̃ = Tk(uε − ϕ1) in (3.19) to get

N∑
i=1

∫
Ω

(
ai

(
x,

∂

∂xi
uε

)
.
∂

∂xi
Tk(uε − ϕ)

)
dx

+

N∑
i=1

∫
Ω̃\Ω

(
1

εpi(x)

∣∣∣∣ ∂∂xiuε
∣∣∣∣pi(x)−2

∂

∂xi
uε.

∂

∂xi
Tk(uε − ϕN )

)
dx∫

Ω

b(uε)Tk(uε − ϕ)dx =

∫
Ω

Tk(uε − ϕ)dµε +

∫
Γ̃Ne

(d̃ε − ρ̃(uε))Tk(uε − ϕN )dσ.

(4.1)

The following convergence result hold true.

Lemma 4.1. For any k > 0, for all i = 1, ..., N , as ε→ 0,

∂

∂xi
Tk(uε − ϕ)→ ∂

∂xi
Tk(u− ϕ) strongly in Lpi(.)(Ω).

Proof. Let k > 0, i = 1, ..., N . We have∫
Ω

∣∣∣∣ ∂∂xiTk(uε − ϕ)− ∂

∂xi
Tk(u− ϕ)

∣∣∣∣pi(x)

dx

=

∫
Ω∩[|uε−ϕ|≤k,|u−ϕ|≤k]

∣∣∣∣ ∂∂xiuε − ∂

∂xi
u

∣∣∣∣pi(x)

dx

≤
∫

Ω∩[|uε|≤l,|u|≤l]

∣∣∣∣∂uε∂xi
− ∂u

∂xi

∣∣∣∣pi(x)

dx, with l = k + ‖ϕ‖∞

=

∫
Ω

∣∣∣∣ ∂∂xiTl(uε)− ∂

∂xi
Tl(u)

∣∣∣∣pi(x)

dx

→ 0 as ε→ 0 by Proposition 3.17− (iii).

We need to pass to the limit in (4.1) as ε→ 0. We have

N∑
i=1

∫
Ω

(
ai

(
x,

∂

∂xi
uε

)
∂

∂xi
Tk(uε − ϕ)

)
dx =

N∑
i=1

∫
Ω

(
ai

(
x,
∂Tl(uε)

∂xi

)
∂

∂xi
Tk(uε − ϕ)

)
dx,

with l = k + ‖ϕ‖∞, then, by Lemma 3.12- (ii) and Lemma 4.1, we have

lim
ε→0

N∑
i=1

∫
Ω

(
ai

(
x,
∂Tl(uε)

∂xi

)
∂

∂xi
Tk(uε − ϕ)

)
dx =

N∑
i=1

∫
Ω

(
ai

(
x,
∂Tl(u)

∂xi

)
∂

∂xi
Tk(u− ϕ)

)
dx;

that is

lim
ε→0

N∑
i=1

∫
Ω

(
ai

(
x,

∂

∂xi
uε

)
∂

∂xi
Tk(uε − ϕ)

)
dx =

N∑
i=1

∫
Ω

(
ai

(
x,
∂Tl(u)

∂xi

)
∂

∂xi
Tk(u− ϕ)

)
dx.

(4.2)
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For the second term in the left hand side of (4.1), we have

lim sup
ε→0

N∑
i=1

∫
Ω̃\Ω

(
1

εpi(x)
| ∂
∂xi

uε|pi(x)−2 ∂

∂xi
uε

∂

∂xi
Tk(uε − ϕN )

)
dx ≥ 0. (4.3)

Indeed 

N∑
i=1

∫
Ω̃\Ω

(
1

εpi(x)

∣∣∣∣ ∂∂xiuε
∣∣∣∣pi(x)−2

∂

∂xi
uε

∂

∂xi
Tk(uε − ϕN )

)
dx

=

N∑
i=1

∫
Ω̃\Ω∩[|uε−ϕ|≤k]

(
1

εpi(x)
| ∂
∂xi

uε|pi(x)−2 ∂

∂xi
uε

∂

∂xi
(uε − ϕN )

)
dx

=

N∑
i=1

∫
Ω̃\Ω∩[|uε−ϕ|≤k]

(
1

εpi(x)
| ∂
∂xi

uε|pi(x)

)
dx ≥ 0.

Hence, we get (4.3).

Let us examine the last term in the left hand side of (4.1).

we have ∫
Ω

b(uε)Tk(uε − ϕ)dx =

∫
Ω

(b(uε)− b(ϕ))Tk(uε − ϕ)dx+

∫
Ω

b(ϕ)Tk(uε − ϕ)dx.

As b is non-decreasing,

(b(uε)− b(ϕ))Tk(uε − ϕ) ≥ 0 a.e. in Ω

and we get by Fatou’s lemma that

lim inf
ε→0

∫
Ω

(b(uε)− b(ϕ))Tk(uε − ϕ)dx ≥
∫

Ω

(b(u)− b(ϕ))Tk(u− ϕ)dx.

As ϕ ∈ L∞(Ω), we obtain b(ϕ) ∈ L∞(Ω) and so b(ϕ) ∈ L1(Ω) (as Ω is bounded) and by Lebesgue

dominated convergence theorem, we deduce that

lim
ε→0

∫
Ω

b(ϕ)Tk(uε − ϕ)dx =

∫
Ω

b(ϕ)Tk(u− ϕ)dx.

Consequently,

lim sup
ε→0

∫
Ω

b(uε)Tk(uε − ϕ)dx ≥
∫

Ω

b(u)Tk(u− ϕ)dx. (4.4)

As fε → f strongly in L1(Ω) and Tk(uε−v) ⇀∗ Tk(u−v) in L∞(Ω), using the Lebesgue generalized

convergence theorem we have
lim
ε→0

∫
Ω

fεTk(uε − ϕ)dx =

∫
Ω

Tk(u− ϕ)dx,

lim
ε→0

∫
Γ̃Ne

d̃εTk(uε − ϕN )dσ =

∫
Ω

d̃Tk(u− ϕN )dσ.
(4.5)

Since ∇Tk(uε − ϕ) ⇀ ∇Tk(u− ϕ) in (Lpm(.)(Ω))N and F ∈ (Lp
′
m(.)(Ω))N ,

lim
ε→0

∫
Ω

F.∇Tk(uε − ϕ)dx =

∫
Ω

F.∇Tk(u− ϕ)dx. (4.6)

We know that ∀k > 0, Tk(u) = constant on Ω̃ \Ω, then, it yields that u = constant on Ω̃ \Ω. So,

one has

lim
ε→0

∫
Γ̃Ne

d̃εTk(uε − ϕ)dx = dTk(uN − ϕN ). (4.7)
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At last, we have

∫
Γ̃Ne

ρ̃(uε)Tk(uε − ϕN )dσ =

∫
Γ̃Ne

(ρ̃(uε)− ρ̃(ϕN ))Tk(uε − ϕN )dσ +

∫
Γ̃Ne

ρ̃(ϕN )Tk(uε − ϕN )dσ.

As ρ̃ is non-decreasing,

(ρ̃(uε)− ρ̃(ϕN ))Tk(uε − ϕN ) ≥ 0 a.e. in Γ̃Ne

and we get by Fatou’s lemma that

lim inf
ε→0

∫
Γ̃Ne

(ρ̃(uε)− ρ̃(ϕN ))Tk(uε − ϕN )dσ ≥
∫

Γ̃Ne

(ρ̃(uN )− ρ̃(ϕN ))Tk(uN − ϕN )dσ

= (ρ(uN )− ρ(ϕN ))Tk(uN − ϕN ).

As ϕN ∈ L∞(Γ̃Ne), we obtain ρ̃(ϕN ) ∈ L∞(Γ̃Ne) and so ρ̃(ϕN ) ∈ L1(Γ̃Ne) (as Γ̃Ne is bounded)

and by the Lebesgue dominated convergence theorem, we deduce that

lim
ε→0

∫
Γ̃Ne

ρ̃(ϕN )Tk(uε − ϕN )dσ =

∫
Γ̃Ne

ρ̃(ϕN )Tk(uN − ϕN )dσ = ρ(ϕN )Tk(uN − ϕN ).

Hence,

lim sup
ε→0

∫
Γ̃Ne

ρ̃(uε)Tk(uε − ϕN )dσ ≥ ρ(ϕN )Tk(uN − ϕN ). (4.8)

Passing to the limit as ε→ 0 in (4.1) and using (4.2)-(4.8), we see that u is an entropy solution of

P (ρ, µ, d).

We now prove the uniqueness part of Theorem 2.6.

Let u and v be two entropy solutions of P (ρ, µ, d).

Let h > 0. For u, we take ξ = Th(v) as test function and for v, we take ξ = Th(u) as test function

in (2.9), to get for any k > 0 with k < h,


∫

Ω

(
N∑
i=1

ai

(
x,

∂

∂xi
u

)
∂

∂xi
Tk(u− Th(v))

)
dx+

∫
Ω

b(u)Tk(u− Th(v))dx ≤∫
Ω

fTk(u− Th(v))dx+

∫
Ω

F.∇Tk(u− Th(v))dx+ (d− ρ(uNe))Tk(uNe − Th(v))

(4.9)

and
∫

Ω

(
N∑
i=1

ai

(
x,

∂

∂xi
v

)
∂

∂xi
Tk(v − Th(u))

)
dx+

∫
Ω

b(v)Tk(v − Th(u))dx ≤∫
Ω

fTk(v − Th(u))dx+

∫
Ω

F.∇Tk(v − Th(u))dx+ (d− ρ(vNe))Tk(vNe − Th(u)).

(4.10)
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By adding (4.9) and (4.10), we obtain

∫
Ω

(
N∑
i=1

ai

(
x,

∂

∂xi
u

)
∂

∂xi
Tk(u− Th(v))

)
dx

+

∫
Ω

(
N∑
i=1

ai

(
x,

∂

∂xi
v

)
∂

∂xi
Tk(v − Th(u))

)
dx := A(h, k)

+

∫
Ω

b(u)Tk(u− Th(v))dx+

∫
Ω

b(v)Tk(v − Th(u))dx := B(h, k)

+ρ(uNe)Tk(uNe − Th(v)) + ρ(vNe)Tk(vNe − Th(u)) := C(h, k)

≤
∫

Ω

fTk(u− Th(v))dx+

∫
Ω

fTk(v − Th(u))dx := D(h, k)

+

∫
Ω

F.∇Tk(u− Th(v))dx+

∫
Ω

F.∇Tk(v − Th(u))dx := T (h, k)

+dTk(uNe − Th(v)) + dTk(vNe − Th(u)) := E(h, k).

(4.11)

Let us introduce the following subsets of Ω.

A0 := [|u− v| < k, |u| < h, |v| < h]

A1 := [|u− Th(v)| < k, |v| ≥ h]

A′1 := [|v − Th(u)| < k, |u| ≥ h]

A2 := [|u− Th(v)| < k, |u| ≥ h, |v| < h]

A′2 := [|v − Th(u)| < k, |v| ≥ h, |u| < h].

We have the following assertion (see [22] for the proof).

Assertion 4.2. If u is an entropy solution of P (ρ, µ, d), then A2 ⊂ Fh,k and A1 ⊂ Fh−k,2k, where

Fh,k = {h ≤ |u| < h+ k, h > 0, k > 0}.

Assertion 4.3. Let u be an entropy solution of P (ρ, µ, d). On A2 (and on A1) we have according

to Hölder inequality.

(1) ∫
A2

F.∇udx ≤
(∫

A2

|F |(p
′
m)−dx

) 1

(p′m)−
(∫

A2

|∇u|p
−
m

) 1

p
−
m
dx, (4.12)

with lim
h→∞

(∫
A2

|F |(p
′
m)−dx

) 1

(p′m)−
(∫

A2

|∇u|p
−
mdx

) 1

p
−
m

= 0.

(2) ∫
A1

F.∇udx ≤
(∫

A1

|F |(p
′
m)−dx

) 1

(p′m)−
(∫

A1

|∇u|p
−
mdx

) 1

p
−
m
, (4.13)

with lim
h→∞

(∫
A1

|F |(p
′
m)−dx

) 1

(p′m)−
(∫

A1

|∇u|p
−
mdx

) 1

p
−
m

= 0.
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Proof. (1) lim
h→∞

(∫
A2

|F |(p
′
m)−dx

) 1

(p′m)−

= 0 (see [22]).

Now, it remains to prove that

(∫
A2

|∇u|p
−
mdx

) 1

p
−
m

is bounded with respect to h.

We make the following notations:

I =

{
i ∈ {1, ..., N} :

{∣∣∣∣ ∂∂xiu
∣∣∣∣} ≤ 1

}
and J =

{
i ∈ {1, ..., N} :

{∣∣∣∣ ∂∂xiu
∣∣∣∣} > 1

}
.

We have

N∑
i=1

∫
Fh,k

∣∣∣∣ ∂∂xiu
∣∣∣∣pi(x)

dx =
∑
i∈I

(∫
Fh,k

∣∣∣∣ ∂∂xiu
∣∣∣∣pi(x)

dx

)
+
∑
i∈J

(∫
Fh,k

∣∣∣∣ ∂∂xiu
∣∣∣∣pi(x)

dx

)

≥
∑
i∈J

(∫
Fh,k

∣∣∣∣ ∂∂xiu
∣∣∣∣pi(x)

dx

)

≥
∑
i∈J

(∫
Fh,k

∣∣∣∣ ∂∂xiu
∣∣∣∣p−m dx

)

≥
N∑
i=1

(∫
Fh,k

∣∣∣∣ ∂∂xiu
∣∣∣∣p−m dx

)
−
∑
i∈I

(∫
Fh,k

∣∣∣∣ ∂∂xiu
∣∣∣∣p−m dx

)

≥
N∑
i=1

(∫
Fh,k

∣∣∣∣ ∂∂xiu
∣∣∣∣p−m
)
−Nmeas(Ω)

≥
N∑
i=1

∣∣∣∣∣∣∣∣ ∂∂xiu
∣∣∣∣∣∣∣∣p−m

(Lp
−
m (Fh,k))N

−Nmeas(Ω)

≥ C‖∇u‖p
−
m

(Lp
−
m (Fh,k))N

−Nmeas(Ω).

We deduce that

N∑
i=1

∫
Fh,k

∣∣∣∣ ∂∂xiu
∣∣∣∣pi(x)

dx ≥ C
∫
Fh,k

|∇u|p
−
mdx−Nmeas(Ω). (4.14)

Choosing Th(u) as test function in (2.9), we get
∫

Ω

(
N∑
i=1

ai

(
x,

∂

∂xi
u

)
)
∂

∂xi
Tk(u− Th(u))

)
dx+

∫
Ω

|u|pM (x)−2uTk(u− Th(u))dx ≤∫
Ω

fTk(u− Th(u))dx+

∫
Ω

F.∇Tk(u− Th(u))dx+ (d− ρ(uNe))Tk(uNe − Th(uNe)).

(4.15)

According to the fact that ∇Tk(u − Th(u)) = ∇u on {h ≤ |u| < h + k} and zero elsewhere,∫
Ω

|u|pM (x)−2uTk(u−Th(u))dx ≥ 0 and ρ(uNe)Tk(uNe−Th(uNe)) ≥ 0, we deduce from (4.15)

that 

∫
Fh,k

(
N∑
i=1

ai

(
x,

∂

∂xi
u

)
∂

∂xi
Tk(u− Th(u))

)
dx ≤

k

∫
|u|≥h

|f |dx+

∫
Fh,k

∣∣∣∣∣∣∣
(

2

Cp−m

) 1

p−m F

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
(
Cp−m

2

) 1

p−m ∇u

∣∣∣∣∣∣∣ dx+ k|d|.
(4.16)
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Using (1.7) (in the left hand side of (4.16)), Young inequality (in the right hand side of(4.16))

and setting

c =

(
2

Cp−m

) (p′m)−

p−m p−m − 1

p−m
,

we obtain 
N∑
i=1

∫
Fh,k

∣∣∣∣ ∂∂xiu
∣∣∣∣pi(x)

dx ≤

k

∫
|u|≥h

|f |dx+ c

∫
Fh,k

|F |(p
′)−mdx+

C

2

∫
Fh,k

|∇u|p
−
mdx+ k|d|.

(4.17)

From (4.14) and (4.17), we deduce
C

∫
Fh,k

|∇u|p
−
mdx ≤

k

∫
|u|≥h

|f |dx+ c

∫
Fh,k

|F |(p
′)−mdx+

C

2

∫
Fh,k

|∇u|p
−
mdx+ k|d|+Nmeas(Ω).

Therefore, 
C

2

∫
Fh,k

|∇u|p
−
mdx ≤

k

∫
{|u|≥h}

|f |dx+ c

∫
Fh,k

|F |(p
′)−mdx+ k|d|+Nmeas(Ω).

(4.18)

Since A2 ⊂ Fh,k , we deduce from (4.18) that

∫
A2

|∇u|p
−
mdx is bounded.

(2) lim
h→∞

(∫
A1

|F |(p
′
m)−dx

) 1

(p′m)−

= 0 (see [22]).

Now, it remains to prove that

(∫
A1

|∇u|p
−
mdx

) 1

p
−
m

is bounded with respect to h.

Since A1 ⊂ Fh−k,2k , we deduce from (4.18) that

∫
A2

|∇u|p
−
mdx is bounded.

Remark 4.4. Similarly, we prove that if v is an entropy solution of P (ρ, f, d), then

lim
h→∞

∫
A′2

F.∇vdx ≤ 0

and

lim
h→∞

∫
A′1

F.∇vdx ≤ 0.

Now, we have

A(h, k) =

∫
A0

(
N∑
i=1

(
ai

(
x,

∂

∂xi
u

)
− ai

(
x,

∂

∂xi
v

))
∂

∂xi
(u− v)

)
dx := I0(h, k)

+

∫
A1

(
N∑
i=1

ai

(
x,

∂

∂xi
u

)
∂

∂xi
u

)
dx+

∫
A′1

(
N∑
i=1

ai

(
x,

∂

∂xi
v

)
∂

∂xi
v

)
dx := I1(h, k)

+

∫
A2

(
N∑
i=1

ai

(
x,

∂

∂xi
u

)
∂

∂xi
(u− v)

)
dx+

∫
A′2

(
N∑
i=1

ai

(
x,

∂

∂xi
v

)
∂

∂xi
(v − u)

)
dx := I2(h, k).
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The term I1(h, k) is non-negative since each term in I1(h, k) is non-negative.

For the term I2(h, k), as

I2(h, k) +

∫
A2

(
N∑
i=1

ai

(
x,

∂

∂xi
u

)
∂

∂xi
v

)
dx+

∫
A′2

(
N∑
i=1

ai

(
x,

∂

∂xi
v

)
∂

∂xi
u

)
dx = I1(h, k),

so,

I2(h, k) ≥ −

(∫
A2

(
N∑
i=1

ai

(
x,

∂

∂xi
u

)
∂

∂xi
v

)
dx+

∫
A′2

(
N∑
i=1

ai

(
x,

∂

∂xi
v

)
∂

∂xi
u

)
dx

)
.

Let us show that −

(∫
A2

(
N∑
i=1

ai

(
x,

∂

∂xi
u

)
∂

∂xi
v

)
dx

)
goes to 0 as h→∞.

We have 

∣∣∣∣∣
∫
A2

(
N∑
i=1

ai

(
x,

∂

∂xi
u

)
∂

∂xi
(v)

)
dx

∣∣∣∣∣ ≤
C

N∑
i=1

(
|ji|p′i(.) +

∣∣∣∣ ∂u∂xi
∣∣∣∣pi(x)−1

Lpi(.)({h<|u|≤h+k})

)∣∣∣∣ ∂v∂xi
∣∣∣∣
Lpi(.)({h−k<|v|≤h})

.

For all i = 1, ...N, the quantity

(
|ji|p′i(.) +

∣∣∣∣ ∂u∂xi
∣∣∣∣pi(x)−1

Lpi(.)({h<|u|≤h+k})

)
is finite since

u = Th+k(u) ∈ T 1,~p(.)
Ne (Ω) and ji ∈ Lp

′
i(.)(Ω); then by Lemma 3.8, the last expression converges to

zero as h tends to infinity.

Similarly we can show that −

(∫
A2

(
N∑
i=1

ai

(
x,

∂

∂xi
v

)
∂

∂xi
(u)

)
dx

)
goes to 0 as h → ∞, hence,

we obtain

lim sup
h→∞

A(h, k) ≥
∫

[|u−v|<k]

[
N∑
i=1

(
ai

(
x,

∂

∂xi
u

)
− ai

(
x,

∂

∂xi
v

))
∂

∂xi
(u− v)

]
dx. (4.19)

By using the Lebesgue dominated convergence theorem, it yields that

lim
h→∞

B(h, k) =

∫
Ω

(b(u)− b(v))Tk(u− v)dx and lim
h→∞

D(h, k) = 0. (4.20)

For h large enough, we get

lim
h→∞

C(h, k) = (ρ(uN )− ρ(vN ))Tk(uN − vN ) and lim
h→∞

E(h, k) = 0. (4.21)


T (h, k) =

∫
A1

F.∇udx+

∫
A′1

F.∇vdx

+

∫
A2

F.∇(u− v)dx+

∫
A′2

F.∇(v − u)dx.


T (h, k) =

∫
A1

F.∇udx+

∫
A′1

F.∇vdx

+

∫
A2

F.∇udx−
∫
A2

F.∇vdx+

∫
A′2

F.∇vdx−
∫
A′2

F.∇udx.
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Using Assertion 4.3 and Remark 4.4, it is easy to see that lim
h→∞

|T (h, k)| = 0.

Letting h go to ∞ in (4.11) and combining (4.20)-(4.21), we obtain
∫

[|u−v|<k]

[
N∑
i=1

(
ai

(
x,

∂

∂xi
u

)
− ai

(
x,

∂

∂xi
v

))
∂

∂xi
(u− v)

]
dx

+

∫
Ω

(b(u)− b(v))Tk(u− v)dx+ (ρ(uN )− ρ(vN ))Tk(uN − vN ) ≤ 0.

(4.22)

All the terms in the left hand side of (4.22) are non-negative so that we get ∀k > 0,∫
[|u−v|<k]

[
N∑
i=1

(
ai

(
x,

∂

∂xi
u

)
− ai

(
x,

∂

∂xi
v

))
∂

∂xi
(u− v)

]
dx = 0 (4.23)

and 
∫

Ω

(b(u)− b(v))Tk(u− v)dx = 0

(ρ(uN )− ρ(vN ))Tk(uN − vN ) = 0.

(4.24)

Relation (4.23) gives
∂

∂xi
(u− v) = 0 a.e. in Ω; we deduce that there exists a constant c such that

u− v = c a.e. in Ω. According to (4.24), b(u) = b(v). Since b is invertible, we deduce that u = v

in Ω and so u = v a.e. in Ω

ρ(uN ) = ρ(vN );

which prove the uniqueness part.
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ABSTRACT

In this paper we give sufficient conditions on k ∈ L1(R)

and the positive measures µ, ν such that the doubly-measure

pseudo-almost periodic (respectively, doubly-measure pseudo-

almost automorphic) function spaces are invariant by the con-

volution product ζf = k ∗ f . We provide an appropriate

example to illustrate our convolution results. As a conse-

quence, we study under Acquistapace-Terreni conditions and

exponential dichotomy, the existence and uniqueness of (µ, ν)-

pseudo-almost periodic (respectively, (µ, ν)- pseudo-almost

automorphic) solutions to some nonautonomous partial evo-

lution equations in Banach spaces like neutral systems.

RESUMEN

En este art́ıculo damos condiciones suficientes sobre k ∈ L1(R)

y las medidas positivas µ, ν tales que los espacios de fun-

ciones pseudo-casi periódicas que duplican la medida (respec-

tivamente, pseudo-casi automorfas que duplican la medida)

son invariantes por el producto de convolución ζf = k ∗ f .

Entregamos un ejemplo apropiado para ilustrar nuestros re-

sultados de convolución. Como consecuencia, estudiamos bajo

condiciones de Acquistapace-Terreni y dicotomı́a exponen-

cial, la existencia y unicidad de soluciones (µ, ν)- pseudo-casi

periódicas (respectivamente, (µ, ν)- pseudo-casi automorfas)

de algunas ecuaciones de evolución parciales no autónomas en

espacios de Banach como sistemas neutrales.

Keywords and Phrases: Measure theory, (µ, ν)-ergodic, (µ, ν)-pseudo almost periodic and automorphic functions,

evolution families, nonautonomous equations, neutral systems.
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1 Introduction

The existence and uniqueness of pseudo almost periodic and pseudo almost automorphic solu-

tions is one of the most powerful tools in the qualitative theory of differential equations due to

applications in mathematical biology, control theory and physical sciences. Recently, Diagana,

Ezzinbi and Miraoui [11] applied the abstract measure theory to define the notion of double-weight

pseudo almost periodicity (respectively double-weight pseudo almost automorphy) functions, and

thus the classical theory of µ-pseudo almost periodic (respectively µ-pseudo almost automorphic)

introduced by [4, 5], and double-weight pseudo almost periodicity [8] become particular cases of

this approach. See the section 2.1 for technical details about this concept of double-weight pseudo

almost periodicity (respectively double-weight pseudo almost automorphy) functions. We note

that for f ∈ PAP (R ×X,X, µ, ν) or f ∈ PAA(R ×X,X, µ, ν), k ∈ L1(R), k ∗ f = k ∗ g + k ∗ φ.

We have that k ∗ g is almost periodic or almost automorphic function, but k ∗ φ is not necessar-

ily in E(R, X, µ, ν). Then, the convolution invariance of the spaces PAP (R × X,X, µ, ν) (resp.

PAA(R×X,X, µ, ν)) is equivalent to the convolution invariance of E(R, X, µ, ν).

During the last decade, many research results about pseudo almost periodic and pseudo almost

atomorphic was produce see [4, 5, 7, 9, 10]. Inspired by the work of Ezzinbi et al. [11] who studied

the translation invariance of PAA(R×X,X, µ, ν) (resp. PAP (R×X,X, µ, ν)) functions and the

recent work of Mbounja et al. [15] who gave some several hypotheses for convolution invariance of

PAP (R×X,X, µ) and PAA(R×X,X, µ), in this work we established new sufficient conditions on

µ, ν ∈M and k ∈ L1(R) ensuring that, the space PAP (R, X, µ, ν) of (µ, ν)-pseudo almost periodic

functions and the space PAA(R, X, µ, ν) of (µ, ν)-pseudo almost automorphic functions are invari-

ant by the convolution product ζf = k∗f . Our obtained conditions are more general than [15] and

helped to show that the integral solution of some differential equations is a (µ, ν)-pseudo almost

periodic (respectively (µ, ν)-pseudo almost automorphic) solutions. To illustrate our investigation,

we show the existence and uniqueness of (µ, ν)-pseudo almost periodic (respectively (µ, ν)-pseudo

almost automorphic) solutions of the following nonautomous differential equations,

d

dt
u(t) = A(t)u(t) + F (t, u(t)), t ∈ R, (1.1)

and
d

dt
(u(t)−G(t, u(t)) = A(t) (u(t)−G(t, u(t)) + F (t, u(t)), t ∈ R, (1.2)

where A(t) : D(A(t)) ⊂ X 7−→ X for t ∈ R is a family of closed linear operators on a Ba-

nach space X, satisfying the well-known Acquitaspace-Terreni conditions developed in [1, 2], and

F,G : R × X 7−→ X are jointly continuous functions satisfying some additional conditions. The

study of equation (1.1) in an non-autonomous case is new even in the case of one measure, µ = ν.

Also, equation (1.2) is treated here.

The rest of this work is organized as follows. In section 2, we recall some basic results which will

be used throughout this work. In section 3, we state and prove main results about the convolution
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invariance. In section 4 we study the existence and uniqueness of (µ, ν)-pseudo almost periodic (re-

spectively (µ, ν)-pseudo almost automorphic) solutions to both equation (1.1) and equation (1.2)

which illustrate our new results.

2 Preliminaries

2.1 Notation and terminology

Let (X, ‖ · ‖) a Banach space and let BC(R, X) be the space of bounded continuous functions

f : R −→ X. The space BC(R, X), equipped with the supremum norm ‖f‖∞ = sup
t∈R
‖f(t)‖, is a

Banach space.

We denote by B the Lebesgue σ-field of R and by M the space of all positive measures ϑ on B
satisfying ϑ(R) = +∞ and ϑ([a, b]) <∞, for all a, b ∈ R (a ≤ b).

Definition 2.1 ([6]). A continuous function f : R → X is said to be almost periodic if for every

ε > 0 there exists a positive number lε such that every interval of length lε contains a number τ

such that:

‖f(t+ τ)− f(t)‖ < ε, ∀t ∈ R.

Let AP (R, X) denote the collection of almost periodic functions from R to X. We recall that

(AP (R, X) , ‖·‖∞) is a Banach space.

Definition 2.2 ([11]). Let µ, ν ∈ M. A bounded continuous function f : R → X is said to be

(µ, ν)-ergodic if

lim
r→+∞

1

ν([−r, r])

∫ r

−r
‖f(t)‖dµ(t) = 0.

We denote the space of all such functions by E(R, X, µ, ν).

The space (E(R, X, µ, ν), ‖.‖∞) is a Banach space for the supremum norm.

Definition 2.3 ([11]). Let µ, ν ∈M. A continuous function f : R→ X is said to be (µ, ν)-pseudo

almost periodic if f admits the following decomposition:

f = g + φ,

where g ∈ AP (R, X) and φ ∈ E(R, X, µ, ν).

We denote the space of all such functions by PAP (R, X, µ, ν).
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We have AP (R, X) ⊂ PAP (R, X, µ, ν) ⊂ BC(R, X).

Let (Y, ‖·‖) a Banach space and let BC(R × Y,X) be the space of jointly bounded continu-

ous functions f : R × Y −→ X. The space BC(R × Y,X) equipped with the supremum norm

‖f‖∞ = sup
t∈R,x∈Y

‖f(t, x)‖ is a Banach space.

Definition 2.4 ([12]). A jointly continuous function f : R× Y → X is said to be almost periodic

in t uniformly with respect to x ∈ Y , if for every ε > 0, and any compact subset K of Y , there

exists a positive number lK(ε) such that every interval of length lK(ε) contains a number τ such

that:

‖f(t+ τ, x)− f(t, x)‖ < ε, ∀(t, x) ∈ R×K.

We denote the space of such functions by APU(R× Y,X).

Definition 2.5 ([11]). Let µ, ν ∈ M. A continuous function f : R × Y → X is said to be

(µ, ν)-ergodic in t uniformly with respect to x ∈ Y , if the following two conditions are true:

(i) f is uniformly continuous on each compact set K in Y with respect to the second variable x.

(ii) ∀x ∈ Y , f(., x) ∈ E(R, X, µ, ν).

The space of such functions is denoted by EU(R× Y,X, µ, ν).

Definition 2.6 ([11]). Let µ, ν ∈ M. A continuous function f : R × Y → X is said to be

(µ, ν)-pseudo almost periodic in t uniformly for x ∈ Y , if f admits the following decomposition:

f = g + φ, (2.1)

where g ∈ APU(R× Y,X) and φ ∈ EU(R× Y,X, µ, ν).

The collection of such functions is denoted by PAPU(R× Y,X, µ, ν).

We have APU(R× Y,X) ⊂ PAPU(R× Y,X, µ, ν) ⊂ BC(R× Y,X, µ, ν).

Definition 2.7 ([16]). A continuous function f : R → X is said to be almost automorphic if for

every sequence of real numbers (s′n)n∈N, there exists a subsequence (sn)n∈N ⊂ (s′n)n∈N such that:

lim
n,m→∞

f(t+ sn − sm) = f(t), for each t ∈ R.

Equivalently,

g(t) = lim
n→∞

f(t+ sn) exists ∀t ∈ R and f(t) = lim
n→∞

g(t− sn) ∀t ∈ R.

We denote the space of such functions by AA(R, X).
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We recall that (AA (R, X) , ‖·‖∞) is a Banach space.

Definition 2.8 ([11]). Let µ, ν ∈M. A continuous function f : R→ X is said to be (µ, ν)-pseudo

almost automorphic if f admits the following decomposition:

f = g + φ,

where g ∈ AA(R, X) and φ ∈ E(R, X, µ, ν).

We denote the space of all such functions by PAA(R, X, µ, ν).

We have AA(R, X) ⊂ PAA(R, X, µ, ν) ⊂ BC(R, X).

Definition 2.9 ([16]). A continuous function f : R× Y → X is said to be almost automorphic in

t uniformly for x ∈ Y , if the following conditions hold:

(i) f is uniformly continuous on each compact set K in Y with respect to the second variable x,

namely, for each compact set K in Y , for all ε > 0, there exists δ > 0 such that for all

x1, x2 ∈ K, one has:

‖x1 − x2‖ ≤ δ ⇒ sup
t∈R
‖f(t, x1)− f(t, x2)‖ ≤ ε.

(ii) for all x ∈ Y , f(., x) ∈ AA(R, X).

Denote by AAU(R× Y,X) the set of all such functions.

Definition 2.10 ([11]). Let µ, ν ∈ M. A continuous function f : R × Y → X is said to be

(µ, ν)-pseudo almost periodic in t uniformly for x ∈ Y , if f admits the following decomposition:

f = g + φ, (2.2)

where g ∈ AAU(R× Y,X) and φ ∈ EU(R× Y,X, µ, ν).

The collection of such functions is denoted by PAAU(R× Y,X, µ, ν)

We have AAU(R× Y,X) ⊂ PAAU(R× Y,X, µ, ν) ⊂ BC(R× Y,X, µ, ν)

2.2 Some useful results on the space functions

For µ ∈M and τ ∈ R, we denote by µτ the positive measure on (R,B) defined by:

µτ (A) = µ ({a+ τ : a ∈ A}) , ∀A ∈ B.
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Now we introduce the following hypotheses on µ, ν ∈M.

(H0): For all τ ∈ R, there exists δ > 0 and a bounded interval I such that

µτ (A) ≤ δµ(A), ντ (A) ≤ δν(A), ∀A ∈ B satisfied A ∩ I = ∅.

(H1):

lim sup
r→∞

µ([−r, r])
ν([−r, r])

<∞.

Remark 2.11.

i) Without assumptions on µ and ν, like (H0), the decomposition (2.1) (resp. (2.2)) of the (µ, ν)-

pseudo almost periodic and automorphic functions is not unique, (see [11]).

ii) The spaces E(R, X, µ, ν), E(R×Y,X, µ, ν), PAP (R, X, µ, ν), PAP (R×Y,X, µ, ν), PAA(R, X, µ, ν),

and PAA(R × Y,X, µ, ν) coincides when µ = ν, with the spaces E(R, X, µ), E(R × Y,X, µ),

PAP (R, X, µ), PAP (R× Y,X, µ), PAA(R, X, µ), and PAA(R× Y,X, µ).

We recall the following six theorems proved in [11].

Theorem 2.12 ([11]). Consider that µ, ν ∈M and k ∈ L1(R) and f ∈ PAP (R, X, µ, ν) (respec-

tively f ∈ PAA(R, X, µ, ν). If (H0) is valid then PAP (R, X, µ, ν) (respectively PAA(R, X, µ, ν))

is translation invariant. Moreover,

{g(t) : t ∈ R} ⊂ {f(t) : t ∈ R}, (the closure of the range of f).

Theorem 2.13 ([11]). If (H0) is valid, then the decomposition (2.1)(resp. (2.2)) of PAP (R, X, µ, ν)

and PAA(R, X, µ) is unique.

Theorem 2.14 ([11]). If (H1) holds, then (E(R, X, µ, ν), ‖ · ‖∞) is a Banach space with respect

to the sup norm.

Theorem 2.15 ([11]). Let µ, ν ∈ M satisfy (H1). If (H0) holds, then PAP (R, X, µ, ν) and

PAA(R, X, µ, ν) are Banach spaces with respect to the sup norm.

Theorem 2.16 ([11]). Let µ, ν ∈ M, F ∈ PAPU(R × Y,X, µ, ν) and h ∈ PAP (R, X, µ, ν).

Assume that (H1) and the following hypothesis holds:

For all bounded subsets B of X, F is bounded on R×B.

Then t 7−→ F (t, h(t)) ∈ PAP (R, X, µ, ν).

Theorem 2.17 ([11]). Let µ, ν ∈ M, F ∈ PAAU(R × Y,X, µ, ν) and h ∈ PAA(R, X, µ, ν).

Assume that for all bounded subsets B of X, F is bounded on R × B. Then t 7−→ F (t, h(t)) ∈
PAA(R, X, µ, ν).
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2.3 Measure theory results

Let µ, ν ∈ M; if f : R −→ X is a bounded continuous function, we define the following doubly-

weight mean, if the limit exists, by:

M(f, µ, ν) := lim
r→+∞

1

ν([−r, r])

∫ r

−r
‖f(t)‖Xdµ(t).

Definition 2.18 ([17]). Let (E,B) be a Borel space. If µ and ν are two measures defined on

(E,B), we say that:

(i) µ and ν are mutually singular, if there are disjoint sets A and B in B such that E = A ∪ B
and

ν(A) = µ(B) = 0.

(ii) ν is absolutely continuous with respect to µ, if for each A ∈ B,

(µ(A) = 0) =⇒ (ν(A) = 0).

We recall the following theorems of measure theory.

Theorem 2.19 (Radon-Nikodym [17]). Let (E,B, µ) be a σ-finite measure space, and let ν be

a measure defined on B which is absolutely continuous with respect to µ. Then there is a unique

nonnegative measurable function f such that for each set B in B we have:

ν(B) =

∫
B

fdµ.

The function f is called the Radon-Nikodym derivative of ν with respect of µ.

Example 2.20.

Let ρ be a nonnegative B-measurable function. Denote by µ the positive measure defined by:

µ(A) =

∫
A

ρ(t)dt, for A ∈ B

where dt is the Lebesgue measure on R. The function ρ is the Radon-Nikodym derivative of µ

with respect to the Lebesgue measure dt on R, i.e. dµ(t) = ρ(t)dt. In this case, µ ∈M if and only

if its Radon-Nikodym derivative ρ is locally Lebesgue integrable on R and it satisfies∫ +∞

−∞
ρ(t)dt = +∞.

Theorem 2.21 (Lebesgue-Radon-Nikodym [17]). Let (X,B, ϑ) be a σ-finite measure space, and

µ a σ-finite measure defined on B. Then, we can find a measure µ0, singular with respect to ϑ,

and a measure µ1, absolutely continuous with respect to ϑ, such that µ = µ0 + µ1. The measures

µ0 and µ1 are unique.
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In this section, by using the previous theorem, we consider that for a given µ ∈M, µ = µ0+µ1

where µ0 is the µ-measure component which is absolutely continuous with respect to the Lebesgue

measure and its Radon-Nikodym derivative is ρ, that is dµ0(t) = ρ(t)dt and µ1 is the µ-measure

component such that µ1 is singular to Lebesgue measure.

We give new general hypotheses on µ, ν ∈M and k ∈ L1(R) such that:

(ζf)(t) =

∫ +∞

−∞
k(t− s)f(s)ds, ∀k ∈ L1(R) (2.3)

maps E(R, X, µ, ν) into itself.

In particular, our hypotheses on µ, ν ∈M and k ∈ L1(R) will imply that for every f ∈ E(R, X, µ, ν),

the (µ, ν)-mean,

M(ζf, µ, ν) := lim
r→+∞

1

ν([−r, r])

∫ r

−r

∣∣∣∣∣∣∣∣∫ +∞

−∞
k(t− s)f(s)ds

∣∣∣∣∣∣∣∣
X

dµ(t)

exists.

3 Main results of convolution and translation invariance

3.1 Convolution invariance on E(R, X, µ, ν)

Theorem 3.1. Let k ∈ L1(R) and ν ∈M. Consider that µ ∈M, with Radon-Nikodym derivative

ρ with respect to dt and ζ is defined in (2.3). Assume that ρ, µ, ν and k satisfy the following

requirements: 
sup

|s|≤r,r∈R+

1

ρ(s)

∫ r
s
|k(t− s)|dµ(t) <∞, (3.1.1)

sup
|s|≤r,r∈R+

1

ρ(s)

∫ s
−r|k(t− s)|dµ(t) <∞, (3.1.2)

(3.1)


lim

r→+∞

1

ν([−r, r])
∫ −r
−∞

(∫ r
−r|k(t− s)|dµ(t)

)
ds = 0, (3.2.1)

lim
r→+∞

1

ν([−r, r])
∫ +∞
r

(∫ r
−r|k(t− s)|dµ(t)

)
ds = 0. (3.2.2)

(3.2)

If f ∈ E(R, X, µ, ν), then ζf ∈ E(R, X, µ, ν).

Proof. We adapt the proof in [15], Theorem 3.5. By the properties of convolution we have

that f ∈ BC(R, X) implies that k ∗ f ∈ BC(R, X), ∀k ∈ L1(R). Then, in order to get that

k ∗ f ∈ E(R, X, µ, ν) we must prove that M(ζf, µ, ν) = 0.

We consider µ ∈ M and ρ its Radon-Nikodym derivative, ν ∈ M. In the first stage, we assume

that k(t) = 0 on R∗−. From ν(R) = +∞, we deduce the existence of r0 ≥ 0 such that ν([−r, r]) >
0, ∀r ≥ r0. Then by applying the Fubini’s Theorem, we deduce that for f ∈ BC(R, X), ∀r ≥ r0.
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We notice that

M(ζf, µ, ν) = lim
r→+∞

1

ν([−r, r])

∫ r

−r
‖k ∗ f‖Xdµ(t)

≤ lim
r→+∞

1

ν([−r, r])

∫ r

−r

∫ t

−∞
‖ f(s) ‖X | k(t− s) | dsdµ(t)

= lim
r→+∞

1

ν([−r, r])

∫ r

−r

(∫ −r
−∞
‖ f(s) ‖X | k(t− s) | ds

)
dµ(t)

+ lim
r→+∞

1

ν([−r, r])

∫ r

−r

(∫ t

−r
‖ f(s) ‖X | k(t− s) | ds

)
dµ(t)

≤ ‖ f ‖∞ lim
r→+∞

1

ν([−r, r])

∫ r

−r

(∫ −r
−∞
| k(t− s) | ds

)
dµ(t)

+ lim
r→+∞

1

ν([−r, r])

∫ r

−r
‖ f(s) ‖X

(∫ r

s

| k(t− s) | dµ(t)

)
ds

≤ ‖ f ‖∞ lim
r→+∞

1

ν([−r, r])

∫ −r
−∞

(∫ r

−r
| k(t− s) | dµ(t)

)
ds

+ lim
r→+∞

1

ν([−r, r])

∫ r

−r
‖ f(s) ‖X

[
1

ρ(s)

∫ r

s

| k(t− s) | dµ(t)

]
ρ(s)ds

≤ sup
|s|≤r,r∈R+

1

ρ(s)

∫ r

s

|k(t− s)|dµ(t) lim
r→+∞

1

ν([−r, r])

∫ r

−r
‖f(s)‖Xρ(s)ds

+ ‖ f ‖∞ lim
r→+∞

1

ν([−r, r])

∫ −r
−∞

(∫ r

−r
| k(t− s) | dµ(t)

)
ds

≤ sup
|s|≤r,r∈R+

1

ρ(s)

∫ r

s

|k(t− s)|dµ(t) lim
r→+∞

1

ν([−r, r])

∫ r

−r
‖f(s)‖Xdµ(s)

+ ‖ f ‖∞ lim
r→+∞

1

ν([−r, r])

∫ −r
−∞

(∫ r

−r
| k(t− s) | dµ(t)

)
ds.

Using assumptions (3.1.1), (3.2.1) and the fact that f ∈ E(R, X, µ, ν), we have proved that

M(ζf, µ, ν) = 0 + 0 = 0. This settles the first stage for every k ∈ L1(R) such that k(t) = 0 on R∗−.

Now, in the second stage, proceeding similarly like in the first stage, we assume that k(t) = 0 on

R∗+ we obtain:

M(ζf, µ, ν) = lim
r→+∞

1

ν([−r, r])

∫ r

−r
‖k ∗ f‖Xdµ(t)

≤ ‖ f ‖∞ lim
r→+∞

1

ν([−r, r])

∫ +∞

r

(∫ r

−r
| k(t− s) | dµ(t)

)
ds

+ sup
|s|≤r,r∈R+

1

ρ(s)

∫ s

−r
|k(t− s)|dµ(t) lim

r→+∞

1

ν([−r, r])

∫ r

−r
‖f(s)‖Xdµ(s).

Then, using the fact that f ∈ E(R, X, µ, ν) and hypotheses (3.1.2), (3.2.2), we have that

M(ζf, µ, ν) = 0.

In the general case of k, we deduce the result using the fact that k(t) = kχt≥0(t) + kχt<0(t).

Theorem 3.2. Assume that µ, ν ∈M and (H1) holds. Then the condition (3.2.1) (resp. (3.2.2))
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is valid for every k ∈ L1(R) if and only if the following condition (3.3.1) (resp. (3.3.2)) is true:
lim

r→+∞

µ([−r, σ − r])
ν([−r, r])

= 0, ∀σ > 0 (3.3.1)

lim
r→+∞

µ([σ + r, r])

ν([−r, r])
= 0, ∀σ < 0 (3.3.2).

(3.3)

Proof. We first prove that (3.3.1) =⇒ (3.2.1), for every k ∈ L1(R).

In the first stage, we assume that k(t) = 0 on R∗−. Let σ = t− s > 0 fixed. From ν(R) = +∞, we

deduce the existence of r0 ≥ 0 such that ν([−r, r]) > 0, ∀r ≥ r0. In the sequel, for all r ≥ r0, we

shall assume that

B :=
1

ν([−r, r])

∫ r

−r

(∫ −r
−∞
| k(t− s) | ds

)
dµ(t).

Then, by applying the Fubini’s Theorem we deduce that:

B =
1

ν([−r, r])

∫ r

−r

(∫ +∞

t+r

| k(σ) | dσ
)
dµ(t)

=

∫ +∞

0

(∫min(σ−r,r)
−r dµ(t)

ν([−r, r])

)
| k(σ) | dσ

=

∫ +∞

0

(
µ([−r,min(σ − r, r)])

ν([−r, r])

)
| k(σ) | dσ.

By using assumption (3.3.1), we have:

lim
r→+∞

µ([−r,min(σ − r, r)])
ν([−r, r])

= 0, ∀σ > 0.

Since µ([−r,min(σ− r, r)]) ≤ µ([−r, r]) and the fact that (H1) holds, there exists β > 0 such that:

0 ≤
(
µ([−r,min(σ − r, r)])

ν([−r, r])

)
| k(σ) |≤ β | k(σ) |,

where k ∈ L1(R), ∀σ > 0. Then, by the Lebesgue dominated convergence Theorem, we obtain:

lim
r→+∞

∫ +∞

0

(
µ([−r,min(σ − r, r)])

ν([−r, r])

)
| k(σ) | dσ = 0

This concludes this stage of (3.2.1).

Now, in the second stage, proceeding similarly like the first stage, we assume that k(t) = 0

on R∗+. Let σ = t − s < 0 fixed. From ν(R) = +∞, we deduce the existence of r0 ≥ 0 such that

ν([−r, r]) > 0, ν([−r, r]) > 0, ∀r ≥ r0. We set:

A :=
1

ν([−r, r])

∫ r

−r

(∫ +∞

r

| k(t− s) | ds
)
dµ(t)
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Then, by applying the Fubini’s Theorem, we deduce that:

A =
1

ν([−r, r])

∫ r

−r

(∫ t−r

−∞
| k(σ) | dσ

)
dµ(t)

=

∫ 0

−∞

(∫ r
max(σ+r,r)

dµ(t)

ν([−r, r])

)
| k(σ) | dσ

=

∫ 0

−∞

(
µ([max(σ + r, r), r])

ν([−r, r])

)
| k(σ) | dσ.

Like in the first part, we use assumptions (3.3.2), and the Lebesgue dominated convergence The-

orem. This concludes this second stage of (3.2.2).

Let us prove (3.2.1) =⇒ (3.3.1).

Let σ = t− s, by (3.2.1) and Fubini’s Theorem we have that:

0 = lim
r→+∞

1

ν([−r, r])

∫ r

−r

(∫ −r
−∞
| k(t− s) | ds

)
dµ(t)

= lim
r→+∞

∫ +∞

0

(
µ([−r,min(σ − r, r)])

ν([−r, r])

)
| k(σ) | dσ.

Let τ > 0 such that σ ∈ [τ, τ + 1] and r >
τ

2
. We have also [−r, τ − r] ⊆ [−r, σ − r] and

[−r, τ − r] ⊆ [−r, r], that implies µ([−r, τ − r]) ≤ min{µ([−r, σ − r]), µ([−r, r])}, i.e.

µ([−r, τ − r])
ν([−r, r])

≤ µ([−r,min(σ − r, r)])
ν([−r, r])

.

Let k(σ) = χ[τ,τ+1](σ). We have that:

0 ≤ µ([−r, τ − r])
ν([−r, r])

∫ τ+1

τ

dσ

≤
∫ τ+1

τ

µ([−r,min(σ − r, r)])
ν([−r, r])

dσ

= lim
r→+∞

1

ν([−r, r])

∫ r

−r

(∫ −r
−∞
| k(t− s) | ds

)
dµ(t).

Then by (3.2.1):

lim sup
r→+∞

µ([−r, τ − r])
ν([−r, r])

∫ τ+1

τ

dσ ≤ lim
r→+∞

∫ τ+1

τ

µ([−r,min(σ − r, r)])
ν([−r, r])

dσ = 0

then:

lim
r→+∞

µ([−r, τ − r])
ν([−r, r])

= 0.

So (3.3.1) is verified. In the second stage (3.3.2), we do the same proof as above.
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Remark 3.3. Hypothesis (H1) was used only in the proof of the implication

(3.3.1) =⇒ (3.2.1).

Corollary 3.4. Let µ, ν ∈M be such that the nonnegative B-measurable function ρ be the Radon-

Nikodym derivative of µ. Assume that for all k ∈ L1(R) the requirements (3.1) and (3.2) are

satisfied. Then E(R, X, µ, ν) is convolution invariant.

Corollary 3.5. Consider that µ, ν ∈ M, such that the nonnegative B-measurable function ρ be

the Radon-Nikodym derivative of µ. Assume that (H1) holds and the requirements (3.1) and (3.3)

are satisfied. Then E(R, X, µ, ν) is convolution invariant.

Example 3.6.

We check that Theorem 3.1 and Corollary 3.5 hold.

Let

k(t) =


1

10
e−2t, for t ∈ [0,+∞[

0, for t ∈]−∞, 0[.

We take dµk,η(t) = eσtdt+ η

∞∑
n=−∞

eσnδn, where 0 ≤ σ < 2, η > 0 and δn denotes the Dirac

measure at the integer n (
∑∞
n=−∞ eσnδn is a ’generalized Dirac comb’, it is called a Dirac comb

when σ = 0). Then µσ,η ∈M and its Radon-Nikodym derivative is ρσ,η(t) = eσt. Let νσ,η = γµσ,η,

where γ > 0. Then νσ,η ∈M.

First, if for |s| ≤ r, r > 0, we write:

Jσ,η(r, s) :=
1

ρσ,η(s)

∫ r

s

|k(t− s)| dµσ(t),

we must prove that:

sup
|s|≤r, r>0

Jσ,η(r, s) <∞.

In fact,

Jσ,η(r, s) =
1

10eσs

∫ r

s

e−2(t−s)eσtdt+ η
∑

s≤n≤r

e−2(n−s)eσn


=

1

10

∫ r

s

e−(2−σ)(t−s)dt+ η
∑

s≤n≤r

e−(2−σ)(n−s)


≤ 1

10

∫ r−s

0

e−(2−σ)udu+ η
∑

[s]≤n≤[r]

e−(2−σ)(n−[s]−1)

 ,

where we applied the change of integral u = t − s in the integral and we denoted [x] the integral

part of the real number x. We next apply the change of index m = n− [s] in the latter sum; this

implies:
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Jσ,η(r, s) ≤ 1

10

∫ r−s

0

e−(2−σ)(u)du+ ηe2−σ
[r]−[s]∑
m=0

e−(2−σ)m

 .

Then:

sup
|s|≤r, r>0

Jσ,η(r, s) ≤ 1

10

(∫ ∞
0

e−(2−σ)(u)du+ ηe2−σ
∞∑
m=0

e−(2−σ)m

)

=
1

10(2− σ)
+ ηe2−σ

1

10(1− e−(2−σ))
<∞.

This proves the estimate (3.1.1).

Secondly, we shall show that for all α > 0, we have:

lim
r→∞

µσ,η([−r, α− r])
νσ,η([−r, r])

= 0.

It actually suffices to prove this estimate when α is a positive integer. In fact,

µσ,η([−r, α− r])
νσ,η([−r, r])

=

∫ α−r

−r
eσtdt+ η

∑
−r≤n≤α−r

eσn

γ

∫ r

−r
eσtdt+ η

∑
−r≤n≤r

eσn



≤

1

σ

(
eσ(α−r) − e−σr

)
+ η

∑
−[r]−1≤n≤α−[r]

eσn

γ

 1

σ
(eσr − e−σr) + η

∑
−[r]≤n≤[r]

eσn



=

1

σ
e−σr (eσα − 1) + ηe−σ([r]+1)

α+1∑
m=0

eσm

γ

 1

σ
(eσr − e−σr) + ηe−σ[r]

2[r]∑
m=0

eσm

 ,

where we applied the change of index m = n + [r] + 1 on the numerator and the change of index

m = n+ [r] on the denominator. So

µσ,η([−r, α− r])
µσ,η([−r, r])

≤

1

σ
e−σr (eσα − 1) + η

eσ(α+2) − 1

eσ − 1
e−σ([r]+1)

γ

σ
eσr (1− e−2σr) + γηe−σ[r]

eσ(2[r]+1) − 1

eσ − 1

.

The estimation (3.3.1) easily follows.

Thirdly, we show that (H1) holds.

lim sup
r→∞

µσ,η([−r, r])
νσ,η([−r, r])

=
1

γ
<∞.

Then, Theorem 3.1 and Corollary 3.5 hold.
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3.2 Translation invariance and convolution invariance of PAP (R, X, µ, ν)
and PAA(R, X, µ, ν)

Theorem 3.7. Assume that µ, ν ∈M and (H1) holds. If the space E(R, X, µ, ν) is translation

invariant, then E(R, X, µ, ν) is convolution invariant.

Proof. Let f ∈ E(R, X, µ, ν). Let us prove that if f(t − τ) ∈ E(R, X, µ, ν), for τ ∈ R,

then ζf ∈ E(R, X, µ, ν), i.e. M(ζf, µ, ν) = 0. By the properties of convolution we have that

f ∈ BC(R, X) implies that k ∗ f ∈ BC(R, X), ∀k ∈ L1(R). By the Fubini’s Theorem we have,

M(ζf, µ, ν) = lim
r→+∞

1

ν([−r, r])

∫ r

−r
‖k ∗ f‖Xdµ(t)

≤ lim
r→+∞

∫ ∞
−∞

|k(s)|
ν([−r, r])

(∫ r

−r
‖f(t− s)‖Xdµ(t)

)
ds

Since f is invariant by translation we have for all s ∈ R:

lim
r→+∞

1

ν([−r, r])

∫ r

−r
‖f(t− s)‖Xdµ(t) = 0.

Since (H1) holds for all s ∈ R, we have that:

0 ≤ |k(s)|
ν([−r, r])

∫ r

−r
‖f(t− s)‖Xdµ(t)ds ≤ β|k(s)|‖f‖∞,

where k ∈ L1(R). Then by the Lebesgue dominated convergence Theorem, we obtain that

M(ζf, µ, ν) = 0.

Theorem 3.8. Let (H1) holds. If the space PAP (R, X, µ, ν) (resp. PAA(R, X, µ, ν)) is transla-

tion invariant, then E(R, X, µ, ν) is convolution invariant.

Proof. For f ∈ AP (R, X) or f ∈ AA(R, X), then f is invariant by ζ i.e. ζf ∈ AP (R, X) or

ζf ∈ AA(R, X). We use the previous theorem to conclude.

Corollary 3.9. Let (H0) and (H1) hold. Then E(R, X, µ, ν), PAP (R, X, µ, ν) and PAA(R, X, µ, ν)

are convolution invariant.

Proof. Combine Theorem 2.12 and Theorem 3.8.
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4 Existence, Uniqueness results and Applications

This section is similar to section 3 in [11], but here we applied our new results obtained in the

above section.

4.1 Evolution Families and Exponential Dichotomy

(H2): A family of closed linear operators A(t) for t ∈ R on X with domain D(A(t)) (possibly

not densely defined), is said to satisfy the so-called Acquistapace-Terreni conditions, if there exist

constants ω ∈ R, θ ∈ (π2 , π), K,L ≥ 0 and µ0, ν0 ∈ (0, 1], with 1 < µ0 + ν0 such that

Σθ ∪ {0} ⊂ ρ(A(t)− ω) 3 λ, ‖R(λ,A(t)− ω)‖ ≤ K

1 + |λ|
, (4.1)

and

‖(A(t)− ω)R(λ,A(t)− ω)[R(ω,A(t))−R(ω,A(s))]‖ ≤ L |t− s|
µ0

|λ|ν0
, (4.2)

for t, s ∈ R, λ ∈ Σθ := {λ ∈ C/{0} : |argλ| ≤ θ}.
For a given family of linear operators A(t), the existence of an evolution family associated with it

is not always guaranteed. However, if A(t) satisfied Acquistapace-Terreni conditions, then there

exists a unique evolution family

U = {U(t, s) : t, s ∈ R, t ≥ s}

on X associated with A(t) such that U(t, s)X ⊆ D(A(t)) for all t, s ∈ R with t ≥ s, and,

i) U(t, r)U(r, s) = U(t, s) and U(s, s) = I ∀t ≥ r ≥ s and t, r, s ∈ R;

ii) the map (t, s) −→ U(t, s)x is continuous for all x ∈ X, t ≥ s and t, s ∈ R;

iii) U(., s) ∈ C1((s,∞), B(X)),
∂U
∂t

(t, s) = A(t)U(t, s) and

‖A(t)kU(t, s)‖ ≤ K(t− s)−k

for 0 < t− s ≤ 1, k = 0, 1.

Definition 4.1 ([3]). An evolution family (U(t, s))t≥s on a Banach space X is called hyperbolic (or

has exponential dichotomy) if there exist projections P (t), t ∈ R, uniformly bounded and strongly

continuous in t, and constants N ≥ 1, δ > 0 such that

i) U(t, s)P (s) = P (t)U(t, s) for t ≥ s;

ii) the restriction UQ(t, s) : Q(s)X −→ Q(t)X for U(t, s) is inversible for t, s ∈ R and we set

UQ(t, s) = U(s, t)−1;
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iii)

‖U(t, s)P (s)‖ ≤ Ne−δ(t−s) (4.3)

and

‖UQ(s, t)Q(t)‖ ≤ Ne−δ(t−s) (4.4)

for t ≥ s and t, s ∈ R, where Q(t) := I − P (t)

4.2 Existence Results

To study the existence and uniqueness of (µ, ν)- pseudo-almost periodic (respectively, (µ, ν)-

pseudo-almost automorphic) solutions to equation (1.1), we also assume that the next hypoth-

esis holds:

(H3) The evolution family U generated by A(.) has an exponential dichotomy with constants

N ≥ 1, δ > 0 and dichotomy projections P (t).

We recall the following sufficient conditions to fulfill the assumption (H3).

(H3.1) Let (A(t), D(A(t)))t∈R be generators of analytic semigroups on X of the same type. Sup-

pose that D(A(t)) = D(A(0)), A(t) is inversible, supt,s∈R ‖A(t)A(s)−1‖ is finite, and

‖A(t)A(s)−1 − I‖ ≤ L0|t− s|µ1

for t, s ∈ R and constants L0 ≥ 0 and 0 ≤ µ1 ≤ 1.

(H3.2) The semigroup (eτA(t))τ≥0, t ∈ R, are hyperbolic with projection Pt and constants N, δ >

0. Moreover, let

‖A(t)(eτA(t)Pt)‖ ≤ Ψ(τ), ‖A(t)(eτA(t)Qt)‖ ≤ Ψ(−τ)

for τ > 0 and a function Ψ such that R 3 s −→ ϕ(s) := |s|µΨ(s) is integrable with

L0‖ϕ‖L1(R) < 1.

We introduce here the defnition of the mild solution of equation (1.1).

Definition 4.2 ([3]). A continuous function u : R 7−→ X is called a bounded mild solution of

equation (1.1) if:

u(t) = U(t, s)u(s) +

∫ t

s

U(t, τ)F (τ, u(τ))dτ, ∀t, s ∈ R, with t ≥ s. (4.5)

Theorem 4.3 ([11]). Assume that (H2) and (H3) hold. If there exists 0 < KF <
δ

2N such that

‖F (t, u)− F (t, v)‖ ≤ KF ‖u− v‖,

for all u, v ∈ X and t ∈ R, then the equation (1.1) has a unique bounded mild solution u : R 7−→ X

given by

u(t) =

∫
R

Γ(t, s)F (s, u(s))ds, t ∈ R,
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where the operator family Γ(t, s), called Green’s function corresponding to U and P (·), is given by

Γ(t, s) = U(t, s)P (s), ∀t, s ∈ R,with t ≥ s,

Γ(t, s) = −UQ(t, s)Q(s), ∀t, s ∈ R,with t < s.

Denote by Γ1 and Γ2 the nonlinear integral operators defined by,

(Γ1u)(t) :=

∫ t

−∞
U(t, s)P (s)F (s, u(s))ds,

and

(Γ2u)(t) :=

∫ +∞

t

UQ(t, s)Q(s)F (s, u(s))ds.

In the rest of this work, we fix µ, ν ∈M to satisfy (H1).

4.3 Existence of (µ, ν)-pseudo-almost periodic solutions

In addition to the previous assumptions, we require the following additional ones:

(H4): R(ω,A(.)) ∈ AP (R,L(X)).

(H5): We propose F : R×X 7−→ X belongs to PAP (R×X,X, µ, ν) and there exists KF > 0 such

that

‖F (t, u)− F (t, v)‖ ≤ KF ‖u− v‖,

for all u, v ∈ X and t ∈ R.

The following Lemma plays an important role to prove the main results of this study.

Lemma 4.4 ([13]). Assume that (H2)-(H4) hold. Then r −→ Γ(t+r, s+r) belongs to AP (R,L(X))

for all t, s ∈ R, where we may take the same pseudo periods for t, s with |t − s| ≥ h > 0. If

f ∈ AP (R,L(X)), then the unique bounded mild solution u(t) =
∫
R Γ(t, s)f(s)ds of the following

equation

u′(t) = A(t)u(t) + f(t), t ∈ R,

is almost periodic.

Lemma 4.5. Assume that (H2)-(H5) hold. If (3.1) and (3.2), or (3.1) and (3.3) hold, then the

integral operators Γ1 and Γ2 defined above map PAP (R, X, µ, ν) into itself.

Proof. Let u ∈ PAP (R, X, µ, ν). setting h(t) = F (t, u(t)), using the assumption (H5) and

Theorem 2.16 it follows that h ∈ PAP (R, X, µ, ν). Now write h = Ψ1 + Ψ2 where Ψ1 ∈ AP (R, X)

and Ψ2 ∈ E(R, X, µ, ν). That is, Γ1h = Ξ(Ψ1) + Ξ(Ψ2) where

ΞΨi(t) :=

∫ t

−∞
U(t, s)P (s)Ψi(s)ds, for i ∈ {1, 2}.
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From Lemma 4.4, we have Ξ(Ψ1) ∈ AP (R, X). To complete the proof, we will prove that Ξ(Ψ2) ∈
E(R, X, µ, ν). Now, let r > 0. From equation (4.3), we have:

1

ν([r,−r])

∫ r

−r
‖(Ξ(Ψ2)(t)‖dµ(t) ≤ 1

ν([r,−r])

∫ r

−r

∫ t

−∞
U(t, s)P (s)Ψ2(s)dsdµ(t)

≤ N

ν([r,−r])

∫ r

−r

∫ t

−∞
e−δ(t−s)‖Ψ2(s)‖dsdµ(t)

Since µ and ν satisfy (3.1.1) and (3.2.1), (3.1.1) and (3.3.1), with k(t) = e−δt, then by Theorem

3.1 or Corollary 3.5, we conclude that:

lim
r→+∞

1

ν([r,−r])

∫ r

−r
‖(Ξ(Ψ2)(t)‖dµ(t) = 0.

The proof for Γ2u(.) is similar to that of Γ1u(.) except that one makes use of equation (4.4) instead

of (4.3), (3.1.2) and (3.2.2), or (3.1.2) and (3.3.2).

Theorem 4.6. Assume that (H2)-(H5) hold. If (3.1) and (3.2), or (3.1) and (3.3) hold, then

equation (1.1) has a unique (µ, ν)-pseudo almost periodic mild solution whenever KF is small

enough.

Proof. Consider the nonlinear operator K defined on PAP (R, X, µ, ν) by

Ku(t) =

∫ t

−∞
U(t, s)P (s)F (s, u(s))ds−

∫ +∞

t

UQ(t, s)Q(s)F (s, u(s))ds, ∀t ∈ R.

By Lemma 4.5, it follows that K maps PAP (R, X, µ, ν) into itself. To complete the proof one has

to show that K is a contraction map on PAP (R, X, µ, ν).

Let u, v ∈ PAP (R, X, µ, ν). Firstly, we have that:

‖Γ1(v)(t)− Γ1(u)(t)‖ ≤
∫ t

−∞
‖U(t, s)P (s)[F (s, v(s))− F (s, u(s))]‖ds

≤ NKF

∫ t

−∞
e−δ(t−s)‖v(s)− u(s)‖ds

≤ NKF δ
−1‖v − u‖∞.

Next, we have that:

‖Γ2(v)(t)− Γ2(u)(t)‖ ≤
∫ +∞

t

‖UQ(t, s)Q(s)[F (s, v(s))− F (s, u(s))]‖ds

≤ NKF

∫ +∞

t

e−δ(t−s)‖v(s)− u(s)‖ds

≤ NKF δ
−1‖v − u‖∞

∫ +∞

t

e−δ(t−s)ds

= NKF δ
−1‖v − u‖∞.

Finally, combining previous approximations it follows that:

‖Kv −Ku‖∞ < 2NKF δ
−1‖v − u‖∞.
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Thus ifKF is small enough, that is, KF < δ(2N)−1, then K is a contraction map on PAP (R, X, µ, ν).

Therefore, K has a unique fixed point in PAP (R, X, µ, ν), that is, there exists a unique function

u satisfying Ku = u, which is the unique (µ, ν)-pseudo almost periodic mild solution to equation

(1.1).

Theorem 4.7 ([11]). Assume that (H2)-(H5) hold. If (H0) holds, then equation (1.1) has a unique

(µ, ν)-pseudo almost periodic mild solution whenever KF is small enough.

4.4 Existence of (µ, ν)-pseudo-almost automorphic solutions

In this section we consider the following assumptions:

(H6): R(ω,A(.)) ∈ AA(R,L(X)).

(H7): We propose F : R×X 7−→ X belongs to PAA(R×X,X, µ, ν) and there exists KF > 0 such

that

‖F (t, u)− F (t, v)‖ ≤ KF ‖u− v‖∞,

for all u, v ∈ X and t ∈ R.

Lemma 4.8 ([14]). Assume that (H2), (H3) and (H6) hold. Let a sequence (s′l)l∈N ⊂ R there is

a sub-sequence (sl)l∈N such that for every h > 0

‖Γ(t+ sl − sk, s+ sl − sk)− Γ(t, s)‖ −→ 0, k, l −→∞.

Lemma 4.9. Assume that (H2), (H3), (H6) and (H7) hold. If (3.1) and (3.2) or (3.1) and (3.3)

or (H0) hold, then the integral operators Γ1 and Γ2 defined above map PAA(R×X,X, µ, ν) into

itself.

Proof. Let u ∈ PAA(R, X, µ, ν). Setting g(t) = F (t, u(t)), by assumption (H7) and Theo-

rem 2.17 we obtain that g ∈ PAA(R, X, µ, ν). Now write g = u1 + u2 where u1 ∈ AA(R, X) and

u2 ∈ E(R, X, µ, ν). That is, Γ1g = Su1 + Su2, where

Su1(t) :=

∫ t

−∞
U(t, s)P (s)u1(s)ds, Su2(t) :=

∫ t

−∞
U(t, s)P (s)u2(s)ds.

From equation (4.3), we obtain:

‖Su1(t)‖ ≤ Nδ−1‖u1‖∞, ‖Su2(t)‖ ≤ Nδ−1‖u2‖∞, ∀t ∈ R.

Then Su1(t),Su2(t) ∈ BC(R, X). Now, we prove that Su1(t) ∈ AA(R, X). Since u1 ∈ AA(R, X),

then for every sequence (τ ′n)n∈N ∈ R there exists a subsequence (τn)n∈N such that:

v1(t) := lim
n→∞

u1(t+ τn), (4.6)

is well defined for each t ∈ R, and

lim
n→∞

v1(t− τn) = u1(t), ∀t ∈ R. (4.7)
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Set for t ∈ R,

M(t) :=

∫ t

−∞
U(t, s)P (s)u1(s)ds, and N(t) :=

∫ t

−∞
U(t, s)P (s)v1(s)ds.

Now, we have

M(t+ τn)−N(t) =

∫ t+τn

−∞
U(t+ τn, s)P (s)u1(s)ds−

∫ t

−∞
U(t, s)P (s)v1(s)ds

=

∫ t

−∞
U(t+ τn, s+ τn)P (s+ τn)u1(s+ τn)ds

−
∫ t

−∞
U(t, s)P (s)v1(s)ds

=

∫ t

−∞
U(t+ τn, s+ τn)P (s+ τn)[u1(s+ τn)− v1(s)]ds

+

∫ t

−∞
[U(t+ τn, s+ τn)P (s+ τn)− U(t, s)P (s)]v1(s)ds.

Using equation (4.3), equation (4.6) and the Lebesgue’s Dominated Convergence Theorem, it

follows that:

lim
n→+∞

∣∣∣∣∣∣∣∣∫ t

−∞
U(t+ τn, s+ τn)P (s+ τn)[u1(s+ τn)− v1(s)]ds

∣∣∣∣∣∣∣∣ = 0, for t ∈ R. (4.8)

Similary, using Lemma 4.8 it follows that:

lim
n→+∞

∣∣∣∣∣∣∣∣∫ t

−∞
[U(t+ τn, s+ τn)P (s+ τn)− U(t, s)P (s)]v1(s)ds

∣∣∣∣∣∣∣∣ = 0, for t ∈ R. (4.9)

Therefore, we have that:

N(t) := lim
n→∞

M(t+ τn),∀t ∈ R. (4.10)

Using similar ideas as the previous ones, then:

M(t) := lim
n→∞

N(t− τn),∀t ∈ R. (4.11)

Therefore, Su1(t) ∈ AA(R, X). Arguing as in Lemma 4.5, we get that Su2(t) ∈ E(R, X, µ, ν). The

proof for Γ2u(.) is similar to that of Γ1u(.) except that one makes use of equation (4.4) instead of

equation (4.3) and, (3.1.2) and (3.2.2), (3.1.2) and (3.3.2).

Theorem 4.10. Under assumptions (H2), (H3), (H6) and (H7), if (3.1) and (3.2) or (3.1) and

(3.3) or (H0) then equation (1.1) has a unique (µ, ν)-pseudo almost automorphic mild solution

whenever KF is small enough.

Proof The proof of Theorem 4.10 is similar to that Theorem 4.6 except that one makes use

of Lemma 4.9 instead of Lemma 4.5.
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4.5 Neutral Systems

In this subsection, we establish the existence and uniqueness of (µ, ν)-pseudo almost periodic

(respectively (µ, ν)-pseudo almost automorphic) solutions for the nonautonomous neutral partial

evolution equation (1.2). For that, we need the following assumptions:

(H8): We suppose G : R × X −→ X belongs to PAP (R × X,X, µ, ν) and there exists KG > 0

such that:

‖G(t, u)−G(t, v)‖ ≤ KG‖u− v‖,

for all u, v ∈ X and t ∈ R.

(H9) We suppose G : R×X −→ X belongs to PAA(R×X,X, µ, ν) and there exists KG > 0 such

that:

‖G(t, u)−G(t, v)‖ ≤ KG‖u− v‖,

for all u, v ∈ X and t ∈ R.

Definition 4.11. A function v : R 7−→ X is said a mild solution of (1.2) on R if :

v(t) = G(t, v(t)) +

∫ t

−∞
U(t, s)P (s)F (s, v(s))ds−

∫ +∞

t

UQ(t, s)Q(s)F (s, v(s))ds,

for all t ∈ R.

Theorem 4.12. Assume that assumptions (H2)-(H5) and (H8) hold. If (3.1) and (3.2) or (3.1)

and (3.3) or (H0) hold, and (KG+ 2NKF δ
−1) < 1, then equation (1.2) has a unique (µ, ν)-pseudo

almost periodic mild solution.

Proof. We consider the nonlinear operator W defined on PAP (R, X, µ, ν) by:

Wv(t) = G(t, v(t)) +

∫ t

−∞
U(t, s)P (s)F (s, v(s))ds−

∫ +∞

t

UQ(t, s)Q(s)F (s, v(s))ds

for all t ∈ R. From (H9), Theorem 2.16, and Lemma 4.5 it follows that W maps PAP (R, X, µ, ν)

into itself. To complete the proof we need to show that W is a contraction map on PAP (R, X, µ, ν).

For that, letting u, v ∈ PAP (R, X, µ, ν), we obtain:

‖Wv −Wu‖∞ ≤ (KG + 2NKF δ
−1)‖v − u‖∞,

which yields W is a contraction map on PAP (R, X, µ, ν). Therefore, W has unique fixed point in

PAP (R, X, µ, ν). Therefore, equation (1.2) has unique (µ, ν)-pseudo almost periodic mild solution.

Theorem 4.13. Assume that (H2), (H3),(H6), (H7) and (H9) hold and (KG + 2NKF δ
−1) < 1.

If (3.1) and (3.2)or (3.1) and (3.3) or (H0) hold, then equation (1.2) has a unique (µ, ν)-pseudo

almost automorphic mild solution.

Proof. Similarly, we can show, by using the assumption (H9), Theorem 2.17 and Lemma 4.9,

that the equation (1.2) has a unique (µ, ν)-pseudo almost automorphic mild solution.
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România.
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1 Introduction

Let R, S, L and r denote the curvature tensor, Ricci tensor, Ricci operator and the scalar curvature

of a (semi)-Riemannian manifold, respectively. It is Mantica and Suh [5] who have introduced the

notion of Q-curvature tensor. In an n-dimensional Riemannian or semi-Riemannian manifold

(Mn, g) (n > 2), the Q-curvature tensor is defined as

R(Y, U, V,W ) = Q(Y,U, V,W ) +
ψ

n− 1
[g(Y,W )g(U, V )− g(Y, V )g(U,W )], (1.1)

where Y, U, V,W are arbitrary vector fields on Mn and ψ is a scalar function. Semi-Riemannian

manifolds with Ricci tensor S of the form

S(Y, V ) = ag(Y, V ) + bT (Y )T (V ),

for any vector fields Y, V , are often termed as perfect fluid spacetimes, where a and b are scalars

and the vector field %, metrically equivalent to the 1-form T (that is, g(Y, %) = T (Y )), is a unit

time like vector field (that is, g(%, %) = −1).

An n-dimensional semi-Riemannian manifold is said to be hyper generalized pseudo Q-symme-

tric (which will be abbreviated hereafter as (HGPQS)n) if it satisfies the equation

(∇XQ)(Y, U, V,W ) (1.2)

= 2A1(X)Q(Y,U, V,W ) +A1(Y )Q(X,U, V,W )

+A1(U)Q(Y,X, V,W ) +A1(V )Q(Y,U,X,W )

+A1(W )Q(Y, U, V,X) + 2A2(X)(g ∧ S)(Y, U, V,W )

+A2(Y )(g ∧ S)(X,U, V,W ) +A2(U)(g ∧ S)(Y,X, V,W )

+A2(V )(g ∧ S)(Y,U,X,W ) +A2(W )(g ∧ S)(Y,U, V,X),

where

(g ∧ S)(Y, U, V,W ) = g(Y,W )S(U, V ) + g(U, V )S(Y,W ) (1.3)

−g(Y, V )S(U,W )− g(U,W )S(Y, V )

and A1, A2 are non-zero 1-forms whose g-dual vector fields will be denoted by θ1 and θ2, i.e.

A1(X) = g(X, θ1) and A2(X) = g(X, θ2).

We organized our paper as follows: section 2 is concerned with preliminaries. After prelimi-

naries, some curvature properties of (HGPQS)n manifolds are studied in section 3. It is obtained

that the Q-curvature tensor in a (HGPQS)n manifold satisfies 2nd Bianchi’s identity. It is further

obtained that the scalar function ψ is always constant. In section 4 we investigate properties of

divergence-free (HGPQS)n manifolds and we prove that a divergence-free (HGPQS)n manifold

(n > 2) under the assumption A1(Q(Y,U)V ) = 0 is a perfect fluid spacetime as well as the integral
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curves of the vector field % are geodesics and the vector field % is irrotational, if the associated

vector fields % and σ corresponding to the 1-forms T1 and T2 are related by (r − 1)%+ nσ = 0.

2 Preliminaries

In this section, some relations useful to the study of (HGPQS)n manifolds are obtained. Let {ei}
be an orthonormal basis of the tangent space at each point of the manifold, where 1 ≤ i ≤ n.

From (1.1) we can easily verify that the tensor Q satisfies the following properties:

(i) Q(Y,U)V +Q(U, Y )V = 0,

(ii) Q(Y,U)V +Q(U, V )Y +Q(V, Y )U = 0, (2.1)

where g(Q(X,Y )U, V ) = Q(X,Y, U, V ).

Also from (1.1) we have

n∑
i=1

εiQ(X,Y, ei, ei) = 0 =

n∑
i=1

εiQ(ei, ei,W,U) (2.2)

and

n∑
i=1

εiQ(ei, Y, V, ei) =

n∑
i=1

εiQ(Y, ei, ei, V ) = S(Y, V )− ψg(Y, V ) (2.3)

=: Z(Y, V ),

where

εi = g(ei, ei) = ±1, S(X,Y ) =

n∑
i=1

εig(R(X, ei)ei, Y ), r =

n∑
i=1

εiS(ei, ei).

From (1.1) and (2.1) it follows that

(i) Q(X,Y, U, V ) +Q(X,Y, V, U) = 0,

(ii) Q(X,Y, U, V )−Q(U, V,X, Y ) = 0. (2.4)

3 Some curvature properties of (HGPQS)n manifolds

In this section we prove that in a (HGPQS)n manifold, the Q-curvature tensor satisfies 2nd

Bianchi’s identity, that is,

(∇XQ)(Y, U, V,W ) + (∇YQ)(U,X, V,W ) + (∇UQ)(X,Y, V,W ) = 0. (3.1)
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In view of (1.1), (1.2) and (3.1) we get

(∇XQ)(Y,U, V,W ) + (∇YQ)(U,X, V,W ) + (∇UQ)(X,Y, V,W ) (3.2)

= A1(V )[Q(Y,U,X,W ) +Q(U,X, Y,W ) +Q(X,Y, U,W )]

+A1(W )[Q(Y, U, V,X) +Q(U,X, V, Y ) +Q(X,Y, V, U)]

+A2(V )[(g ∧ S)(Y,U,X,W ) + (g ∧ S)(U,X, Y,W )

+(g ∧ S)(X,Y, U,W )] +A2(W )[(g ∧ S)(Y,U, V,X)

+(g ∧ S)(U,X, V, Y ) + (g ∧ S)(X,Y, V, U)].

Using (1.3) and 1st Bianchi’s identity for the Q-curvature tensor in (3.2) and then simplifying,

we obtain (3.1).

Thus we can state the following:

Theorem 3.1. The Q-curvature tensor in a (HGPQS)n manifold satisfies 2nd Bianchi’s identity.

Using (1.1) in (3.1), we have

(∇XR)(Y,U, V,W ) + (∇YR)(U,X, V,W ) + (∇UR)(X,Y, V,W ) (3.3)

− dψ(X)

(n− 1)
[g(Y,W )g(U, V )− g(Y, V )g(U,W )]

− dψ(Y )

(n− 1)
[g(U,W )g(X,V )− g(U, V )g(X,W )]

− dψ(U)

(n− 1)
[g(X,W )g(Y, V )− g(X,V )g(Y,W )] = 0.

By virtue of 2nd Bianchi’s identity for the Riemannian curvature tensor, (3.3) yields

dψ(X)

(n− 1)
[g(Y,W )g(U, V )− g(Y, V )g(U,W )] (3.4)

+
dψ(Y )

(n− 1)
[g(U,W )g(X,V )− g(U, V )g(X,W )]

+
dψ(U)

(n− 1)
[g(X,W )g(Y, V )− g(X,V )g(Y,W )] = 0.

Contracting U and V in (3.4), we have

(n− 2)[dψ(X)g(Y,W )− dψ(Y )g(X,W )] = 0 (3.5)

which yields after further contraction

(n− 1)(n− 2)dψ(X) = 0.

This implies that dψ(X) = 0, that is, ψ is constant since n > 2 and leads to the following:

Theorem 3.2. In a (HGPQS)n manifold, the scalar function ψ is always constant.
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Consequently, one can easily bring out the following:

Theorem 3.3. In a (HGPQS)n manifold, (divQ)(X,Y )Z and (divR)(X,Y )Z are equivalent.

In view of (1.1), (1.2) and Theorem 3.2 we have

(∇XR)(Y,U, V,W ) (3.6)

= 2A1(X)Q(Y,U, V,W ) +A1(Y )Q(X,U, V,W )

+A1(U)Q(Y,X, V,W ) +A1(V )Q(Y,U,X,W )

+A1(W )Q(Y, U, V,X) + 2A2(X)(g ∧ S)(Y, U, V,W )

+A2(Y )(g ∧ S)(X,U, V,W ) +A2(U)(g ∧ S)(Y,X, V,W )

+A2(V )(g ∧ S)(Y,U,X,W ) +A2(W )(g ∧ S)(Y,U, V,X)

which yields

(∇XS)(U, V ) (3.7)

= [F1(X) + F2(X)]S(U, V ) + F2(U)S(X,V ) + F2(V )S(U,X)

+[F3(X) + F4(X)]g(U, V ) + F4(U)g(X,V ) + F4(V )g(U,X)

+A1(Q(X,U)V )−A1(Q(V,X)U)

after contraction over Y and W , where

F1(X) = A1(X) + (n+ 1)A2(X),

F2(X) = A1(X) + (n− 3)A2(X),

F3(X) = rA2(X)− ψA1(X) + 3A2(LX),

F4(X) = rA2(X)− ψA1(X)−A2(LX),

where L is the Ricci operator defined by g(LX, Y ) = S(X,Y ).

Definition 3.4. An n-dimensional semi-Riemannian manifold is called almost generalized pseudo

Ricci symmetric if the non-flat Ricci curvature tensor satisfies the equation

(∇XS)(U, V )

= [A(X) +B(X)]S(U, V ) +A(U)S(X,V ) +A(V )S(U,X)

+[C(X) +D(X)]g(U, V ) + C(U)g(X,V ) + C(V )g(U,X),

where A,B,C and D are non-zero 1-forms whose g-dual vector fields will be denoted by γ1, γ2, δ1

and δ2, i.e. A(X) = g(X, γ1), B(X) = g(X, γ2), C(X) = g(X, δ1) and D(X) = g(X, δ2).

Thus we can state the following:
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Theorem 3.5. A (HGPQS)n manifold (n > 2) under the assumption A1(Q(X,U)V )

= A1(Q(V,X)U) is necessarily almost generalized pseudo Ricci symmetric.

Making use of (2.3) in (3.7), we get

(∇XZ)(U, V ) (3.8)

= [F1(X) + F2(X)]Z(U, V ) + F2(U)Z(X,V ) + F2(V )Z(U,X)

+[F3(X) + ψF1(X) + F4(X) + ψF2(X)]g(U, V )

+[F4(U) + ψF2(U)]g(X,V ) + [F4(V ) + ψF2(V )]g(U,X),

where Z = S − ψg is the tensor considered in ([4], [6], [7]). This leads to the following:

Theorem 3.6. A (HGPQS)n manifold (n > 2) under the assumption A1(Q(X,U)V )

= A1(Q(V,X)U) is necessarily almost generalized pseudo Z-symmetric.

4 (HGPQS)n manifolds (n > 2) with divQ = 0

Let (Mn, g) be a semi-Riemannian manifold of dimension n and let {ei} be an orthonormal basis

of the tangent space TpM at any point p ∈M and εi = ±1. Then the divergence of a vector field

U is defined as

divU =

n∑
i=1

εig(∇eiU, ei),

and the divergence of a tensor field of type (1, 3), which is a tensor field of type (0, 3), is defined as

(divK)(X,Y )Z =

n∑
i=1

εig((∇eiK)(X,Y )Z, ei).

Now

(divQ)(Y,U)V =

n∑
i=1

εig((∇eiQ)(Y,U)V, ei)

=

n∑
i=1

εi[2A1(ei)Q(Y,U, V, ei) +A1(Y )Q(ei, U, V, ei)

+A1(U)Q(Y, ei, V, ei) +A1(V )Q(Y,U, ei, ei)

+A1(ei)Q(Y,U, V, ei) + 2A2(ei)(g ∧ S)(Y,U, V, ei)

+A2(Y )(g ∧ S)(ei, U, V, ei) +A2(U)(g ∧ S)(Y, ei, V, ei)

+A2(V )(g ∧ S)(Y, U, ei, ei) +A2(ei)(g ∧ S)(Y,U, V, ei)]



CUBO
23, 1 (2021)

Hyper generalized pseudo Q-symmetric semi-Riemannian manifolds 93

= 3A1(Q(Y,U)V ) +A1(Y )[S(U, V )− ψg(U, V )]

−A1(U)[S(Y, V )− ψg(Y, V )] + 3A2(Y )S(U, V )

+3A2(LY )g(U, V )− 3A2(LU)g(Y, V )− 3A2(U)S(Y, V )

+A2(Y )[(n− 2)S(U, V ) + rg(U, V )]

−A2(U)[(n− 2)S(Y, V ) + rg(Y, V )]

= 3A1(Q(Y,U)V ) + S(U, V )[A1(Y ) + (n+ 1)A2(Y )]

−S(Y, V )[A1(U) + (n+ 1)A2(U)]

+g(U, V )[3A2(LY ) + rA2(Y )− ψA1(Y )]

−g(Y, V )[3A2(LU) + rA2(U)− ψA1(U)]

= 3A1(Q(Y, U)V ) + T1(Y )S(U, V )− T1(U)S(Y, V )

+T2(Y )g(U, V )− T2(U)g(Y, V ),

hence

(divQ)(Y, U)V = 3A1(Q(Y, U)V ) + T1(Y )S(U, V )− T1(U)S(Y, V ) (4.1)

+T2(Y )g(U, V )− T2(U)g(Y, V ),

where

T1(Y ) = A1(Y ) + (n+ 1)A2(Y ) =: g(Y, %), for % = θ1 + (n+ 1)θ2,

T2(Y ) = 3A2(LY ) + rA2(Y )− ψA1(Y ) =: g(Y, σ), for σ = 3Lθ2 + rθ2 − ψθ1.

Assuming (divQ)(Y, U)V = 0 and A1(Q(Y, U)V ) = 0, we get from the above equation

T1(Y )S(U, V ) + T2(Y )g(U, V ) = T1(U)S(Y, V ) + T2(U)g(Y, V ). (4.2)

Now contracting (4.2) over U and V we get

S(Y, %) = rT1(Y ) + (n− 1)T2(Y ). (4.3)

Again putting V = % in (4.2) we get

(n− 2)[T1(Y )T2(U)− T1(U)T2(Y )] = 0, (4.4)

which under the assumption n > 2 implies T1(Y )T2(U) = T1(U)T2(Y ).

Now putting U = % in (4.2) and using (4.3) and (4.4) we get

T1(%)S(Y, V ) + T2(%)g(Y, V ) = T1(Y )[rT1(V ) + nT2(V )] (4.5)

and we can state:
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Theorem 4.1. A divergence-free (HGPQS)n manifold (n > 2) under the assumption

A1(Q(Y,U)V ) = 0 is a perfect fluid spacetime with unit timelike vector field %, provided the associ-

ated vector fields % and σ corresponding to the 1-forms T1 and T2 are related by (r− 1)%+nσ = 0.

In this case, (4.5) becomes

S(Y, V ) = ag(Y, V )− T1(Y )T1(V ), (4.6)

where a =: T2(%).

Again, (divQ)(Y,U)V = 0 gives

(∇Y S)(U, V )− (∇US)(Y, V ) = 0. (4.7)

Now using (4.6) in (4.7) we find

da(Y )g(U, V )− da(U)g(Y, V ) (4.8)

−[T1(V )(∇Y T1)(U) + T1(U)(∇Y T1)(V )]

+[T1(V )(∇UT1)(Y ) + T1(Y )(∇UT1)(V )] = 0.

Taking a frame field and contracting Y and V we get

(n− 1)da(U) + [T1(U)(δT1) + (∇%T1)(U)] = 0, (4.9)

where

δT1 =

n∑
i=1

εi(∇eiT1)(ei).

Setting V = Y = % in (4.8) we find

(∇%T1)(U) = −da(U)− da(%)T1(U). (4.10)

Substituting (4.10) in (4.9) we get

(n− 2)da(U) + T1(U)(δT1)− da(%)T1(U) = 0 (4.11)

which yields

δT1 = (n− 1)da(%) (4.12)

for U = %.

Using (4.12) in (4.11) we obtain

da(U) = −T1(U)da(%), (4.13)

provided n > 2.
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Putting V = % in (4.8) and using (4.13) we get

(∇Y T1)(U)− (∇UT1)(Y ) = 0.

This means that the 1-form T1 is closed, that is,

dT1(Y,U) = 0.

Hence

g(∇U%, Y ) = g(∇Y %, U) for all U, Y, (4.14)

which yields

g(∇%%, Y ) = g(∇Y %, %), (4.15)

for U = %. Since g(∇Y %, %) = 0, from (4.15) it follows that g(∇%%, Y ) = 0 for all Y . Hence

∇%% = 0. This implies that the integral curves of the vector field % are geodesics. Therefore we

can state the following:

Theorem 4.2. In a divergence-free (HGPQS)n manifold (n > 2) under the assumption

A1(Q(Y,U)V ) = 0, the integral curves of the unit timelike vector field % are geodesics, provided the

associated vector fields % and σ corresponding to the 1-forms T1 and T2 are related by

(r − 1)%+ nσ = 0.

Taking into account that the divergence of the conformal curvature tensor of a Riemannian

manifold (Mn, g) is ([3], [6]):

(divC)(X,Y )Z =
n− 3

n− 2
[(∇XS)(Y,Z)− (∇Y S)(X,Z)] (4.16)

=
n− 3

n− 2
(divQ)(X,Y )Z,

for any vector fields X,Y, Z on Mn, from the Lemma 2.1 of [2] we infer

Theorem 4.3. Let (M, g) be a (HGPQS)n perfect fluid spacetime (n > 2). If (divQ)(X,Y )Z = 0,

for any vector fields X,Y, Z on M , then the unit timelike vector field % is irrotational.

Also, in [2] was proved the following result:

Theorem 4.4. [2] Let (M, g) be a (HGPQS)n perfect fluid spacetime (n > 2). If (divQ)(X,Y )Z =

0, for any vector fields X,Y, Z on M , then (M, g) is a GRW spacetime whose fiber is Einstein.
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ABSTRACT

We provide a local as well as a semi-local analysis of a fifth

convergence order scheme involving operators valued on Ba-

nach space for solving nonlinear equations. The convergence

domain is extended resulting a finer convergence analysis for

both types. This is achieved by locating a smaller domain

included in the older domain leading this way to tighter Lip-

schitz type functions. These extensions are obtained without

additional hypotheses. Numerical examples are used to test

the convergence criteria and also to show the superiority for

our results over earlier ones. Our idea can be utilized to ex-

tend other schemes using inverses in a similar way.

RESUMEN

Entregamos un análisis local y uno semi-local de un esquema

de quinto orden de convergencia que involucra operadores con

valores en un espacio de Banach para resolver ecuaciones no-

lineales. El dominio de convergencia es extendido resultando

en un análisis de convergencia más fino para ambos tipos.

Esto se logra ubicando un dominio más pequeño incluido en

el dominio antiguo, entregando funciones de tipo Lipschitz

más ajustadas. Estas extensiones se obtienen sin hipótesis

adicionales. Se usan ejemplos numéricos para verificar los cri-

terios de convergencia y también para mostrar que nuestros

resultados son superiores a otros anteriores. Nuestra idea se

puede utilizar para extender otros esquemas usando inversos

de manera similar.
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Banach space.

2020 AMS Mathematics Subject Classification: 65H10, 47H17, 49M15, 65D10, 65G99.

Accepted: 25 January, 2021

Received: 02 June, 2020

©2021 I. K. Argyros et al. This open access article is licensed under a Creative Commons

Attribution-NonCommercial 4.0 International License.

http://cubo.ufro.cl/
http://dx.doi.org/10.4067/S0719-06462021000100097
http://orcid.org/0000-0002-9189-9298
http://orcid.org/0000-0002-3530-5539


98 I. K. Argyros & S. George CUBO
23, 1 (2021)

1 Introduction

In this article, B1, B2 are standing for Banach spaces, D ⊂ B1 is denoting a convex and open set,

and F : D −→ B2 is considered differentiable according to the Fréchet notion. One of the most

important tasks is the location of a solution x∗ of nonlinear equation

F (x) = 0. (1.1)

Solving equation F (x) = 0 is useful because using modeling (Mathematical) problems from many

areas can be formulated as (1.1). The explosion of technology requires the development of higher

convergence schemes. Starting from the quadratically convergent Newton’s method higher order

schemes develop all the time [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19].

Recently, Singh et al. [13] provided a semi-local convergence for efficient fifth order scheme

under Lipschitz continuity on F ′′ defined as follows

yn = xn − F ′(xn)−1F (xn)

zn = yn − F ′(xn)−1F (yn) (1.2)

xn+1 = zn − F ′(yn)−1F (zn).

Later in [14] the applicability of scheme (1.2) was extended using w- continuity conditions. In

general, the convergence domain is small. That is why we develop a technique where a tighter

domain than before is obtained containing the iterates. This way the new w-functions are tighter

leading to a finer semi-local convergence analysis. It is worth noticing that these extensions do

not involve new hypotheses because the new w-functions are specializations of the old one. Hence,

we extend the applicability of the method. It turns out that the local convergence analysis can be

extended too.

For example: Let B1 = B2 = R, Ω = [− 1
2 ,

3
2 ]. Define G on Ω by

G(x) =

 x3 log x2 + x5 − x4, x 6= 0

0, x = 0.

Then, we get x∗ = 1, and

G′(x) = 3x2 log x2 + 5x4 − 4x3 + 2x2,

G′′(x) = 6x log x2 + 20x3 − 12x2 + 10x,

G′′′(x) = 6 log x2 + 60x2 − 24x+ 22.

Obviously G′′′(x) is not bounded on Ω. So, the convergence of scheme (1.2) is not guaranteed by

the analysis in [13, 14]. In this study we use only assumptions on the first derivative to prove our

results. Relevant studies can be found in [6, 19].

The structure of the rest of the article involves local and semi-local convergence analysis in

Section 2 and Section 3, respectively. The numerical experiments appear in Section 4.
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2 Local convergence

It is easier for the local convergence of method (1.2), if we develop some real functions. We start

with a function ω0 defined on the interval I = [0,∞) with values in I satisfying ω0(0) = 0. Assume

equation

ω0(t) = 1 (2.1)

has a least positive solution called ρ0. Assume the existence of function ω, continuous increasing

defined on I0 = [0, ρ0) with values in I satisfying ω(0) = 0. Define functions λ1 and µ1 on I0 as

follows

λ1(t) =

∫ 1

0
ω((1− θ)t)dθ
1− ω0(t)

and

µ1(t) = λ1(t)− 1.

These definitions lead to µ1(0) = −1 and µ1(t) −→ ∞ as t −→ ρ−0 . Then, the theorem on

intermediate value assure the existence of solutions for the equation µ1(t) = 0 in (0, ρ0). Set R1 to

be the least such solution. Assume equation

ω0(λ1(t)t) = 1 (2.2)

has a least positive solution called ρ1. Set I1 = [0, ρ2), ρ2 = min{ρ0, ρ1}. Define functions λ2 and

µ2 on I1 as follows

λ2(t) =

∫ 1

0
ω((1− θ)λ1(t)t)dθλ1(t)

1− ω0(λ1(t)t)

and

µ2(t) = λ2(t)− 1.

This time we also have λ2(0) = −1 and λ2(t) −→∞ as t −→ ρ−2 . Call R2 the smallest solution of

equation λ2(t) = 0 in (0, ρ2). Assume equation

ω0(λ2(t)t) = 1 (2.3)

has a least positive solution called ρ3. Set I2 = [0, ρ4), ρ4 = min{ρ2, ρ3}. Consider functions λ3

and µ3 on I2 as follows

λ3(t) =

[∫ 1

0
ω((1− θ)λ2(t)t)dθ

1− ω0(λ2(t)t)
+

(ω0(λ2(t)t) + ω0(λ1(t)t)
∫ 1

0
v(θλ2(t)t)dθ

(1− ω0(λ2(t)t))(1− ω0(λ1(t)t))

]
λ2(t)

and

µ3(t) = λ3(t)− 1,
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where v : I2 −→ I is an increasing and continuous function. By these functions, we obtain

µ3(0) = −1 and µ3(t) −→ ∞ as t −→ ρ−4 . Let R3 stand for the smallest solution of equation

µ3(t) = 0 in (0, ρ4). A radius of convergence can be given as follows

R = min{Ri}, i = 1, 2, 3. (2.4)

Then, for all t ∈ [0, R).

0 ≤ ω0(t) < 1 (2.5)

0 ≤ ω0(λ1(t)t) < 1 (2.6)

0 ≤ ω0(λ1(t)t) < 1 (2.7)

0 ≤ ω0(λ2(t)t) < 1 (2.8)

and

0 ≤ λi(t) < 1. (2.9)

Denote by U(x∗, γ) a ball of center x∗ and with a radius γ > 0. Then, Ū(x∗, γ) stands for the

closure of U(x∗, γ).

We base the local convergence on this notation and the conditions (C).

(c1) F : D −→ B2 is differentiable according to Fréchet, and x∗ ∈ D with F (x∗) = 0 is a simple

solution.

(c2) There exists an increasing and continuous real function ω0 on I satisfying ω0(0) = 0 and

such that for all x ∈ D

‖F ′(x∗)−1(F ′(x)− F ′(x∗))‖ ≤ ω0(‖x− x∗‖).

Set U0 = D ∩ U(x∗, ρ0).

(c3) There exists a function ω on I0 continuous and increasing satisfying ω(0) = 0 such that for

all x, y ∈ U0

‖F ′(x∗)−1(F ′(y)− F ′(x))‖ ≤ ω(‖y − x‖).

Set U1 = D ∩ U(x∗, ρ4).

(c4) There exists a function v on I2 continuous and increasing, such that for all x ∈ U1

‖F ′(x∗)−1F ′(x)‖ ≤ v(‖x− x∗‖).

(c5) Ū(x∗, R) ⊆ D.

(c6) There exists R1 ≥ R such that ∫ 1

0

ω0(θR1)dθ < 1.

Set U2 = D ∩ Ū(x∗, R1).
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Theorem 2.1. Assume hypotheses (C) hold and starting point x0 ∈ U(x∗, R) − {x∗}. Then the

following assertions are valid, sequence {xn} belongs in U(x∗, R) − {x∗} and converges to x∗ ∈
U(x∗, R) so that this limit point uniquely solves equation F (x) = 0 in the set U2.

Proof. Let z ∈ U(x∗, R)− {x∗} and utilize (c2), (2.4) and (2.5) to obtain

‖F ′(x∗)−1(F ′(z)− F ′(x∗))‖ ≤ ω0(‖z − x∗‖) ≤ ω0(R) < 1,

which together with a result by Banach [12] for linear operators whose inverse exists imply

‖F ′(z)−1F ′(x∗)‖ ≤
1

1− ω0(‖z − x∗‖)
. (2.10)

In particular, by scheme (1.2) y0, z0 are well defined since if we set z = x0 ∈ U(x∗, R)− {x∗}, and

F ′(x0) is invertible. Then, by (2.4), (2.8) (for k = 1), (c1), (c3) and (2.10) (for z = x0), we have

‖y0 − x∗‖ = ‖x0 − x∗ − F ′(x0)−1F (x0)‖

≤ ‖F ′(x0)−1F ′(x∗)‖
[∫ 1

0

‖F ′(x∗)−1[F ′(x0 + θ(x0 − x∗))− F ′(x0)](x0 − x∗)dθ‖
]

≤
∫ 1

0
ω((1− θ)‖x0 − x∗‖)dθ
1− ω0(‖x0 − x∗‖)

‖x0 − x∗‖

≤ λ1(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < R. (2.11)

Hence, y0 ∈ U(x∗, R). Using the second substep of method (1.2) and replacing x0, y0, by y0, z0,

respectively as in (2.10) and (2.11), we get

‖z0 − x∗‖ ≤
∫ 1

0
ω((1− θ)‖y0 − x∗‖)dθ
1− ω0(‖y0 − x∗‖)

‖y0 − x∗‖

≤
∫ 1

0
ω((1− θ)λ1(‖x0 − x∗‖)‖x0 − x∗‖)dθλ1(‖x0 − x∗‖)‖x0 − x∗‖

1− ω0(λ1(‖x0 − x∗‖)‖x0 − x∗‖
≤ λ2(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖. (2.12)

That is z0 ∈ U(x∗, R) and also x1 exists (for y0 = z, in (2.10)). Notice that (c1), (c4), (2.12) and

F (z0) = F (z0)− F (x∗) =

∫ 1

0

F ′(x∗ + θ(z0 − x∗))dθ(z0 − x∗),

we obtain that

‖F ′(x∗)−1F ′(z0)‖

≤
∫ 1

0

v(θ‖z0 − x∗‖)dθ‖z0 − x∗‖

≤
∫ 1

0

v(θλ2(‖x0 − x∗‖)‖x0 − x∗‖dθλ2(‖x0 − x∗‖)‖x0 − x∗‖. (2.13)

Moreover, by the last substep of method (1.2), (2.4), (2.5), (2.8) (for k = 3), (2.10), (2.13) (for
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z = x0, y0), (2.11) and (2.12), we have in turn that

‖x1 − x∗‖ ≤ ‖z0 − x∗ − F ′(z0)−1F (z0)‖ (2.14)

+‖F ′(z0)−1[(F ′(y0)− F ′(x∗)) + (F ′(x∗)− F ′(z0))]F ′(y0)−1F (z0)‖

≤

[∫ 1

0
ω((1− θ)‖z0 − x∗‖)dθ
1− ω0(‖z0 − x∗‖)

+
(ω0(‖z0 − x∗‖) + ω0(‖y0 − x∗‖))

∫ 1

0
v(θ‖z0 − x∗‖)dθ

(1− ω0(‖z0 − x∗‖))(1− ω0(‖y0 − x∗‖))

]
‖z0 − x∗‖

≤ λ3(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖, (2.15)

so x1 ∈ U(x∗, R). Replacing x0, y0, z0, x1 by xk, yk, zk, xk+1, in the previous computations we

obtain

‖yk − x∗‖ ≤ λ1(‖xk − x∗‖)‖xk − x∗‖ ≤ ‖xk − x∗‖ < R, (2.16)

‖zk − x∗‖ ≤ λ2(‖xk − x∗‖)‖xk − x∗‖ ≤ ‖xk − x∗‖ (2.17)

and

‖xk+1 − x∗‖ ≤ λ3(‖xk − x∗‖)‖xk − x∗‖ ≤ ‖xk − x∗‖, (2.18)

so yk, zk, xk+1 stay in U(x∗, R) and limk−→∞ xk = x∗. Furthermore, let x1∗ ∈ U2 with F (x1∗) = 0.

In view of (c2) and (c6) we obtain∣∣∣∣∣∣∣∣F ′(x∗)−1(∫ 1

0

F ′(x∗ + θ(x1∗ − x∗))dθ − F ′(x∗)
)∣∣∣∣∣∣∣∣ ≤ ∫ 1

0

ω0(θ‖x1∗ − x∗‖)dθ

≤
∫ 1

0

ω0(θR1)dθ < 1,

so x1∗ = x∗, since T =
∫ 1

0
F ′(x∗ + θ(x1∗ − x∗))dθ is invertible and

0 = F (x1∗)− F (x∗) = T (x1∗ − x∗).

Remark 2.2. 1. In view of (2.10) and the estimate

‖F ′(x∗)−1F ′(x)‖ = ‖F ′(x∗)−1(F ′(x)− F ′(x∗)) + I‖

≤ 1 + ‖F ′(x∗)−1(F ′(x)− F ′(x∗))‖ ≤ 1 + L0‖x− x∗‖

condition (2.13) can be dropped and M can be replaced by

M(t) = 1 + L0t

or

M(t) = M = 2,

since t ∈ [0, 1
L0

).
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2. The results obtained here can be used for operators F satisfying autonomous differential

equations [2] of the form

F ′(x) = P (F (x))

where P is a continuous operator. Then, since F ′(x∗) = P (F (x∗)) = P (0), we can apply the

results without actually knowing x∗. For example, let F (x) = ex − 1. Then, we can choose:

P (x) = x+ 1.

3. Let ω0(t) = L0t, and ω(t) = Lt. In [2, 3] we showed that rA = 2
2L0+L

is the convergence

radius of Newton’s method:

xn+1 = xn − F ′(xn)−1F (xn) for each n = 0, 1, 2, · · · (2.19)

under the conditions (2.11) and (2.12). It follows from the definition of R in (2.4) that the

convergence radius R of the method (1.2) cannot be larger than the convergence radius rA of

the second order Newton’s method (2.19). As already noted in [2, 3] rA is at least as large

as the convergence radius given by Rheinboldt [12]

rR =
2

3L
, (2.20)

where L1 is the Lipschitz constant on D. The same value for rR was given by Traub [15]. In

particular, for L0 < L1 we have that

rR < rA

and
rR
rA
→ 1

3
as

L0

L1
→ 0.

That is the radius of convergence rA is at most three times larger than Rheinboldt’s.

4. It is worth noticing that method (1.2) is not changing when we use the conditions of Theo-

rem 2.1 instead of the stronger conditions used in [13, 14]. Moreover, we can compute the

computational order of convergence (COC) defined by

ξ = ln

(
‖xn+1 − x∗‖
‖xn − x∗‖

)
/ ln

(
‖xn − x∗‖
‖xn−1 − x∗‖

)
or the approximate computational order of convergence

ξ1 = ln

(
‖xn+1 − xn‖
‖xn − xn−1‖

)
/ ln

(
‖xn − xn−1‖
‖xn−1 − xn−2‖

)
.

This way we obtain in practice the order of convergence in a way that avoids the bounds

involving estimates using estimates higher than the first Fréchet derivative of operator F.

Note also that the computation of ξ1 does not require the usage of the solution x∗.
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3 Semi-local convergence analysis

Let Γ0 = F ′(x0)−1 ∈ L(B2, B1) exists at x0 ∈ D, where L(B2, B1) denotes the set of bounded

linear operators from B2, B1 and the following conditions hold.

(1) ‖Γ0‖ ≤ β0.

(2) ‖Γ0F (x0)‖ ≤ η0.

(3)’ ‖F ′(x)− F ′(x0)‖ ≤M0‖x− x0‖ for all x ∈ D. Set D0 = D ∩ U
(
x0,

1
β0M0

)
.

(3) ‖F ′′(x)‖ ≤M for all x ∈ D0.

(4) ‖F ′′(x) − F ′′(y)‖ ≤ ω(‖x − y‖) for all x, y ∈ D0 for a continuous nondecreasing function

ω, ω(0) ≥ 0 such that ω(tx) ≤ tpω(x) for t ∈ [0, 1], x ∈ (0,∞) and p ∈ [0, 1].

Then, as in [13, 14], let r0 = Mβ0η0, s0 = β0η0ω(η0) and define sequences {rk}, {sk} and {ηk} for

k = 0, 1, 2, . . . , by

rk+1 = rkϕ(rk)2ψ(rk, sk), (3.1)

sk+1 = skϕ(rk)2+pψ(rk, sk)1+p, (3.2)

ηk+1 = ηkϕ(rk)ψ(rk, sk), (3.3)

where

ϕ(t) =
1

1− tg(t)
(3.4)

g(t) =

(
1 +

t

2
+

t2

2(1− t)

(
1 +

t

4

))
(3.5)

and

ψ(t, s) =
t2

2(1− t)
(1 +

t

4
)

[
s

1 + p

(
t1+p

21+p
+

1

2 + p

(
t2

2(1− t)

(
1 +

t

4

))1+p
)

+
t

2

(
t+

t2

2(1− t)

(
1 +

t

4

))]
. (3.6)

Remark 3.1. In [14] the following conditions were used instead of (3), (4), respectively

(3)’ ‖F ′′(x)‖ ≤M1 for all x ∈ D

(4)’ ‖F ′′(x)− F ′′(y)‖ ≤ ω1(‖x− y‖) for all x, y ∈ D and ω1 as ω.

But, we have

D0 ⊆ D,

so

M0 ≤M1
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M ≤M1

and

ω(θ) ≤ ω1(θ).

Examples where the preceding items are strict can be found in [1, 2, 3, 4, 5, 6]. Notice that

(3)’ is used to determine D0 leading to M = M(D0, x)). Hence, the results in [13, 14] can

be rewritten with M replacing M1. So, if M < M1 the new semi-local convergence analysis

is finer. This is also done under the same computational effort because in practice finding

ω1,M1 requires finding ω,M0,M as special cases. This technique can be used to extend the

applicability of other schemes involving inverses in an analogous fashion. Hence, the proof

of the following semi-local convergence result for scheme (1.2) is omitted.

Theorem 3.2. Let r0 = Mβ0η0 < ν, s0 = β0η0ω(η0) and assumptions (1)-(4) hold. Then,

for Ū(x0, Rη0) ⊆ D, where R = g(r0)
1−δγ , the sequence {xk} generated by (1.2) converges to the

solution x∗ of F (x) = 0. Moreover, yk, zk, xk+1, x∗ ∈ Ū(x0, Rη0) and x∗ is the unique solution in

U
(
x0,

2
M0β0

−Rη0
)
∩D. Furthermore, we have

‖xk − x∗‖ ≤ g(r0)δk
γ

(4+q)k−1
3+q

1− δγ(4+q)k
η0.

4 Numerical Examples

Example 4.1. Let us consider a system of differential equations governing the motion of an object

and given by

F ′1(x) = ex, F ′2(y) = (e− 1)y + 1, F ′3(z) = 1

with initial conditions F1(0) = F2(0) = F3(0) = 0. Let F = (F1, F2, F3). Let B1 = B2 = R3, D =

Ū(0, 1), p = (0, 0, 0)T . Define function F on D for w = (x, y, z)T by

F (w) =

(
ex − 1,

e− 1

2
y2 + y, z

)T
.

The Fréchet-derivative is defined by

F ′(v) =


ex 0 0

0 (e− 1)y + 1 0

0 0 1

 .
Notice that using the (A) conditions, we get for α = 1, w0(t) = (e− 1)t, w(t) = e

1
e−1 t, v(t) = e

1
e−1 .

The radii are

R1 = 0.38269191223238574472986783803208, R2 = 0.33841523581069998805048726353562,

R3 = 0.32249343047238987480795913143083 and R = R3.
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Example 4.2. Let B1 = B2 = C[0, 1], the space of continuous functions defined on [0, 1] be equipped

with the max norm. Let D = U(0, 1). Define function F on D by

F (ϕ)(x) = ϕ(x)− 5

∫ 1

0

xθϕ(θ)3dθ. (4.1)

We have that

F ′(ϕ(ξ))(x) = ξ(x)− 15

∫ 1

0

xθϕ(θ)2ξ(θ)dθ, for each ξ ∈ D.

Then, we get that x∗ = 0, so w0(t) = 7.5t, w(t) = 15t and v(t) = 2. Then the radii are

R1 = 0.066666666666666666666666666666667, R2 = 0.059338915721683857529278327547217,

R3 = 0.047722035514509826559237382070933 and R = R3.

Example 4.3. Returning back to the motivational example at the introduction of this study, we

have w0(t) = w(t) = 96.6629073t and v1(t) = 2. The parameters for method (1.2) are

R1 = 0.0068968199414654552878434223828208, R2 = 0.0061008926455964288676492301988219,

R3 = 0.004463243021326804456372361329386 and R = R3.

5 Conclusion

In general, the convergence domain of iterative schemes is small limiting their applications. Hence,

any attempt to increase it is very important. This is achieved here by finding smaller ω− functions

than before which are also specialization of the previous ones. Hence, the extensions are obtained

under the same computational cost. Our idea can be used to extend the usage of other schemes in

a similar way. Numerical experiments further demonstrate the superiority of our findings.
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ABSTRACT

Inequalities and sufficient conditions that lead to exponential

stability of the zero solution of the variable delay nonlinear

Volterra difference equation

x(n + 1) = a(n)h(x(n)) +

n−1∑
s=n−g(n)

b(n, s)h(x(s))

are obtained. Lyapunov functionals are constructed and em-

ployed in obtaining the main results. A criterion for the in-

stability of the zero solution is also provided. The results

generalizes some results in the literature.

RESUMEN

Se obtienen desigualdades y condiciones suficientes que im-

plican la estabilidad exponencial de la solución cero de la

ecuación en diferencias no lineal de Volterra con retardo va-

riable

x(n + 1) = a(n)h(x(n)) +

n−1∑
s=n−g(n)

b(n, s)h(x(s)).

Se construyen funcionales de Lyapunov y se utilizan para

obtener los resultados principales. Se entrega también un cri-

terio para la inestabilidad de la solución cero. Los resultados

generalizan algunos resultados en la literatura.
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1 Introduction

Let R and Z+ denote the set of real numbers and the set of positive integers respectively. In recent

times, research into the stability properties of solutions of difference equations have gained the

attention of many Mathematicians, see [1], [2], [4], [6], [7], [8] and the references cited therein.

We are mainly motivated by the work of Kublik and Raffoul in [6] in which the authors obtained

inequalities that lead to the exponential stability of the zero solution of the linear Volterra difference

equation with finite delay

x(n+ 1) = a(n)x(n) +

n−1∑
s=n−r

b(n, s)x(s), (1.1)

for some positive constant r.

In this paper we consider the scalar nonlinear Volterra difference equation with variable delay

x(n+ 1) = a(n)h(x(n)) +

n−1∑
s=n−g(n)

b(n, s)h(x(s)), (1.2)

where a : Z+ → R, b : Z+ × [−g0,∞)→ R, h : R→ R and 0 < g(n) ≤ g0, for all n ∈ Z+ for some

positive constant g0. We will obtain some inequalities regarding the solutions of (1.2) by employing

Lyapunov functionals. These inequalities can be used to deduce exponential stability of the zero

solution. Also, by means of a Lyapunov functional an instability criterion of the zero solution of

equation (1.2) will be provided.

Let ψ : [−g0, 0]→ (−∞,∞) be a given bounded initial function with

||ψ|| = max
−g0≤s≤0

|ψ(s)|.

We further denote the norm of a function ϕ : [−g0,∞)→ (−∞,∞) by

||ϕ|| = sup
−g0≤s≤∞

|ϕ(s)|.

Throughout this paper we let

h(x) = xh1(x).

The notation xn means that xn(τ) = x(n + τ), τ ∈ [−g0, 0] as long as x(n + τ) is defined. Thus,

xn is a function mapping an interval [−g0, 0] into R. We say that x(n) ≡ x(n, n0, ψ) is a solution

of (1.2) if x(n) satisfies (1.2) for n ≥ n0 and xn0
= x(n0 + s) = ψ(s), s ∈ [−g0, 0].

In this paper we use the convention that
∑b
s=a h(s) = 0 if a > b. The following notation is

introduced.

Let

A(n, s) =

γ∑
u=n−s

b(u+ s, s), where 0 < γ ≤ g(n− 1) for all n ∈ Z+. (1.3)
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It follows from (1.3) that

A(n, n− g(n− 1)− 1) = 0. (1.4)

We assume throughout the paper that

∆nA
2(n, z) ≤ 0, for all n+ s+ 1 ≤ z ≤ n− 1. (1.5)

Due to (1.3) we can express (1.2) in the equivalent form

∆x(n) =
(
a(n)h1(x(n)) +A(n+ 1, n)h1(x(n))− 1

)
x(n)

− ∆n

n−1∑
s=n−g(n−1)−1

A(n, s)h(x(s)). (1.6)

Definition 1.1. The zero solution of (1.2) is said to be exponentially stable if any solution

x(n, n0, ψ) of (1.2) satisfies

|x(n, n0, ψ)| ≤ C(||ψ||, n0)ζγ(n−n0), for all n ≥ n0,

where ζ is a constant with 0 < ζ < 1, C : R+ × Z+ → R+, and γ is a positive constant. The zero

solution of (1.2) is said to be uniformly exponentially stable if C is independent of n0.

We end this section by stating a fact which will be used in the proof of Lemma 2.1, that is, if

u(n) is a sequence, then

∆u2(n) = u(n+ 1)∆u(n) + u(n)∆u(n).

For more on the calculus of difference equations we refer to [3] and [5].

2 Exponential Stability

In this section we obtain inequalities that can be used to deduce the exponential stability of (1.2).

To simplify notation we let

Q(n, x) =
(
a(n) +A(n+ 1, n)

)
h1(x(n))− 1,

and

Q1(n) =
(
a(n) +A(n+ 1, n)

)
− 1.

Lemma 2.1. Suppose that (1.3), (1.5) and for δ > 0,

− δ

δg0 + g(n)
≤ Q(n, x) ≤ −δg0A2(n+ 1, n)h21(x(n))−Q2(n, x), (2.1)
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holds. If 1 ≤ h1(x), and

V (n) =

x(n) +

n−1∑
s=n−g(n−1)−1

A(n, s)h(x(s))

2

+ δ

−1∑
s=−g0

n−1∑
z=n+s

A2(n, z)h2(x(z)), (2.2)

then based on the solutions of (1.2) we have

∆V (n) ≤ Q1(n)V (n). (2.3)

Proof. Let x(n, n0, ψ) be a solution of (1.2) and let V (n) be defined by (2.2). It must also be

noted that in view of condition (2.1), Q(n, x) < 0 for all n ≥ 0. This together with the fact that

1 ≤ h1(x) also implies that Q(n, x) ≤ Q1(n) < 0. Then based on the solutions of (1.2) we have

∆V (n) =

x(n+ 1) +

n∑
s=n−g(n)

A(n+ 1, s)h(x(s))


× ∆

x(n) +

n−1∑
s=n−g(n−1)−1

A(n, s)h(x(s))


+

x(n) +

n−1∑
s=n−g(n−1)−1

A(n, s)h(x(s))


× ∆

x(n) +

n−1∑
s=n−g(n−1)−1

A(n, s)h(x(s))


+ δ∆n

−1∑
s=−g0

n−1∑
z=n+s

A2(n, z)h2(x(z)). (2.4)

But

x(n+ 1) +

n∑
s=n−g(n)

A(n+ 1, s)h(x(s))

=
(
Q(n, x) + 1

)
x(n)−∆n

n−1∑
s=n−g(n−1)−1

A(n, s)h(x(s)) +

n∑
s=n−g(n)

A(n+ 1, s)h(x(s))

=
(
Q(n, x) + 1

)
x(n) +

n−1∑
s=n−g(n−1)−1

A(n, s)h(x(s))

=
(
Q(n, x) + 1

)
x(n) +

n−1∑
s=n−g(n)

A(n, s)h(x(s)) (2.5)
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where we have used the fact that A(n, n− g(n− 1)− 1) = 0. Using (2.5) in (2.4) we obtain

∆V (n) =

(Q(n, x) + 1)x(n) +

n−1∑
s=n−g(n)

A(n, s)h(x(s))

Q(n, x)x(n)

+

x(n) +

n−1∑
s=n−g(n)

A(n, s)h(x(s))

Q(n, x)x(n)

+ δ∆n

−1∑
s=−g0

n−1∑
z=n+s

A2(n, z)h2(x(z))

= Q(n, x)V (n) + (Q2(n, x) +Q(n, x))x2(n) + δ∆n

−1∑
s=−g0

n−1∑
z=n+s

A2(n, z)h2(x(z))

− Q(n, x)

 n−1∑
s=n−g(n)

A(n, s)h(x(s))

2

− δQ(n, x)

−1∑
s=−g0

n−1∑
z=n+s

A2(n, z)h2(x(z)) (2.6)

Considering the third term on the right hand side of (2.6) we obtain

∆n

−1∑
s=−g0

n−1∑
z=n+s

A2(n, z)h2(x(z))

=

−1∑
s=−g0

n∑
z=n+s+1

A2(n+ 1, z)h2(x(z))−
−1∑

s=−g0

n−1∑
z=n+s

A2(n, z)h2(x(z))

=

−1∑
s=−g0

[
A2(n+ 1, n)h(x2(n)) +

n−1∑
z=n+s+1

A2(n+ 1, z)h2(x(z))

−
n−1∑

z=n+s+1

A2(n, z)h2(x(z))−A2(n, n+ s)h2(x(n+ s))

]

=

−1∑
s=−g0

(
A2(n+ 1, n)h21(x(n))x2(n)−A2(n, n+ s)h2(x(n+ s))

)

+

−2∑
s=−g0

n−1∑
z=n+s+1

∆nA
2(n, z)h2(x(z))

= g0A
2(n+ 1, n)h21(x(n))x2(n)−

−1∑
s=−g0

A2(n, n+ s)h2(x(n+ s))

+

−2∑
s=−g0

n−1∑
z=n+s+1

∆nA
2(n, z)h2(x(z))

≤ g0A
2(n+ 1, n)h21(x(n))x2(n)−

−1∑
s=−g0

A2(n, n+ s)h2(x(n+ s)).

= g0A
2(n+ 1, n)h21(x(n))x2(n)−

n−1∑
z=n−g0

A2(n, z)h2(x(z)) (2.7)
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Applying the Holder’s inequality to the squared term in the fourth term on the right hand side of

(2.6) gives

 n−1∑
s=n−g(n)

A(n, s)h(x(s))

2

≤ g(n)

n−1∑
s=n−g(n)

A2(n, s)h2(x(s))

≤ g(n)

n−1∑
s=n−g0

A2(n, s)h2(x(s)). (2.8)

Considering the last term on the right hand side of (2.6) we obtain

−1∑
s=−g0

n−1∑
z=n+s

A2(n, z)h2(x(z)) ≤ g0

n−1∑
s=n−g0

A2(n, s)h2(x(s)) (2.9)

Substituting (2.7), (2.8) and (2.9) in (2.6) we obtain

∆V (n) ≤ Q(n, x)V (n) + (Q2(n, x) +Q(n, x) + δg0A
2(n+ 1, n)h21(x(n)))x2(n)

+ [−(g(n) + δg0)Q(n, x)− δ]
n−1∑

s=n−g0

A2(n, s)h2(x(s))

≤ Q(n, x)V (n) + (Q2(n, x) +Q(n, x) + δg0A
2(n+ 1, n))x2(n)

+ [−(g(n) + δg0)Q(n, x)− δ]
n−1∑

s=n−g0

A2(n, s)h2(x(s))

≤ Q(n, x)V (n)

≤ Q1(n)V (n).

Theorem 2.2. Suppose the hypothesis of Lemma 2.1 hold. Then any solution x(n) = x(n, n0, ψ)

of (1.2) satisfies the exponential inequality

|x(n)| ≤

√√√√g0 + δ

δ
V (n0)

n−1∏
s=n0

(
a(n) +A(n+ 1, n)

)
(2.10)

for n ≥ n0.

Proof. Let V (n) be defined by (2.2). Changing the order of summation in the second term on the

right hand side of (2.2) we obtain

δ

−1∑
s=−g0

n−1∑
z=n+s

A2(n, z)h2(x(z)) = δ

n−1∑
z=n−g0

z−n∑
s=−g0

A2(n, z)h2(x(z))

= δ

n−1∑
z=n−g0

A2(n, z)h2(x(z))(z − n+ g0 + 1)

≥ δ

n−1∑
z=n−g0

A2(n, z)h2(x(z))

≥ δ

n−1∑
z=n−g(n)

A2(n, z)h2(x(z)),
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where we have used the fact that if n − g0 ≤ z ≤ n − 1 then 1 ≤ z − n + g0 + 1 ≤ g0 and

n− g0 ≤ n− g(n).

Also, we note that n−1∑
z=n−g(n)

A(n, z)h(x(z))

2

≤ g0
n−1∑

z=n−g(n)

A2(n, z)h2(x(z)).

Hence,

δ

−1∑
s=−g0

n−1∑
z=n+s

A2(n, z)h2(x(z)) ≥ δ

g0

 n−1∑
z=n−g(n)

A(n, z)h(x(z))

2

Thus,

V (n) ≥

x(n) +

n−1∑
s=n−g(n)

A2(n, z)h2(x(z))

2

+
δ

g0

 n−1∑
z=n−g(n)

A(n, z)h(x(z))

2

=
δ

g0 + δ
x2(n) +

√ g0
g0 + δ

x(n) +

√
g0 + δ

g0

n−1∑
z=n−g(n)

A(n, z)h(x(z))

2

≥ δ

g0 + δ
x2(n).

But

V (n) ≤ V (n0)

n−1∏
s=n0

(
(a(n) +A(n+ 1, n)

)
This implies that

δ

g0 + δ
x2(n) ≤ V (n0)

n−1∏
s=n0

(
(a(n) +A(n+ 1, n)

)
Hence,

|x(n)| ≤

√√√√g0 + δ

δ
V (n0)

n−1∏
s=n0

(
a(n) +A(n+ 1, n)

)
. (2.11)

This completes the proof.

Corollary 2.3. Suppose that the hypotheses of Theorem 3.2 hold. Suppose that there exists a

positive number α < 1 such that

0 < a(n) +A(n+ 1, n) ≤ α.

Then the zero solution of (1.2) is exponentially stable.
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Proof. It follows from (2.10) that

|x(n)| ≤

√√√√g0 + δ

δ
V (n0)

n−1∏
s=n0

(a(n) +A(n+ 1, n))

≤
√
g0 + δ

δ
V (n0)αn−n0

for n ≥ n0. Since α ∈ (0, 1) the proof is complete.

3 Instability Criteria

In this section we consider the problem of finding a criteria for instability of the zero solution of

(1.2). A suitable Lyapunov functional will be used to obtain the instability criteria.

Theorem 3.1. Assume that (1.3), (1.5) hold and let ρ > g0 be a constant. Assume that Q1(n) > 0

and Q(n, x) > 0 such that

Q2(n, x) +Q(n, x)− ρA2(n+ 1, n)h21(x(n)) ≥ 0. (3.1)

If 1 ≤ h1(x) and

V (n) =

x(n) +

n−1∑
s=n−g(n−1)−1

A(n, s)h(x(s))

2

− ρ
n−1∑

s=n−g(n−1)−1

A2(n, s)h2(x(s)) (3.2)

then, based on the solutions of (1.2) we have

∆V (n) ≥ Q1(n)V (n).

Proof. Let x(n, n0, ψ) be a solution of (1.2) and let V (n) be defined by (3.2). Then based on the

solutions of (1.2) we have

∆V (n) =

x(n+ 1) +

n−1∑
s=n−g(n)

A(n, s)h(x(s))


× ∆

x(n) +

n−1∑
s=n−g(n−1)−1

A(n, s)h(x(s))


+

x(n) +

n−1∑
s=n−g(n−1)−1

A(n, s)h(x(s))


× ∆

x(n) +

n−1∑
s=n−g(n−1)−1

A(n, s)h(x(s))


− ρ

A2(n+ 1, n)h2(x(n)) +

n−1∑
s=n−g(n)

∆nA
2(n, s)h2(x(s))


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≥

(Q(n, x) + 1)x(n) +

n−1∑
s=n−g(n)

A(n, s)h(x(s))

Q(n, x)x(n)

+

x(n) +

n−1∑
s=n−g(n)

A(n, s)h(x(s))

Q(n, x)x(n)

− ρA2(n+ 1, n)h2(x(n))

= Q(n, x)V (n) + (Q2(n, x) +Q(n, x)− ρA2(n+ 1, n)h21(x(n)))x2(n)

− Q(n, x)

 n−1∑
s=n−g(n−1)−1

A(n, s)h(x(s))

2

+ Q(n, x)ρ

n−1∑
s=n−g(n−1)−1

A2(n, s)h2(x(s))

≥ Q(n, x)V (n) + (Q2(n, x) +Q(n, x)− ρA2(n+ 1, n)h21(x(n)))x2(n)

+ Q(n, x)(ρ− g0)

n−1∑
s=n−g(n−1)−1

A2(n, s)h2(x(s))

≥ Q(n, x)V (n)

≥ Q1(n)V (n).

This completes the proof.

Theorem 3.2. Suppose the hypothesis of Theorem 3.1 hold. Then the zero solution of (1.2) is

unstable, provided that
∞∏
s=0

(a(n) +A(n+ 1, n)) =∞.

Proof. We have from Theorem 3.1 that

∆V (n) ≥ Q1(n)V (n),

which implies that

V (n) ≥ V (n0)

∞∏
s=n0

(a(s) +A(s+ 1, s)). (3.3)

Using the definition of V (n) in (3.2) we have that

V (n) = x2(n) + 2x(n)

n−1∑
s=n−g(n−1)−1

A(n, s)h(x(s))

+

 n−1∑
s=n−g(n−1)−1

A(n, s)h(x(s))

2

− ρ
n−1∑

s=n−g(n−1)−1

A2(n, s)h2(x(s)) (3.4)

Now let β = ρ− g0, then from (√g0√
β
a−

√
β
√
g0
b
)2
≥ 0,
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we have

2ab ≤ g0
β
a2 +

β

g0
b2.

It follows from this inequality that

2x(n)

n−1∑
s=n−g(n−1)−1

A(n, s)h(x(s)) ≤ 2|x(n)|

∣∣∣∣∣∣
n−1∑

s=n−g(n−1)−1

A(n, s)h(x(s))

∣∣∣∣∣∣
≤ g0

β
x2(n) +

β

g0

 n−1∑
s=n−g(n−1)−1

A(n, s)h(x(s))

2

≤ g0
β
x2(n) +

β

g0
g0

n−1∑
s=n−g(n−1)−1

A2(n, s)h2(x(s)).

(3.5)

Substituting (3.5) into (3.4) we obtain

V (n) ≤ x2(n) +
g0
β
x2(n) + (β + g0 − ρ)

n−1∑
s=n−g(n−1)−1

A2(n, s)h2(x(s))

=
β + g0
β

x2(n)

≤ ρ

ρ− g0
x2(n).

Using the last inequality and (3.3) we obtain

|x(n)|2 ≥ ρ− g0
ρ

V (n)

=
ρ− g0
ρ

V (n0)

∞∏
s=n0

[a(n) +A(n+ 1, n)].

This completes the proof.
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1 Introduction

Energy transfer in classical and quantum systems and the validity of Fourier’s law of heat

conduction have been a hot topic for many years (see [3, 4, 6, 7, 12, 18, 25, 26] and the references

therein). For quantum systems, in particular, after experimental evidence of effective quantum

energy transfer in photosynthesis in some biological systems has been found (see [14, 24]), investi-

gations have focused on understanding to what extent quantum mechanics contributes to transport

efficiency.

Several models have been proposed involving open quantum systems (see e.g. [5, 6, 27]), mostly

phenomenological, and also numerical simulations have been done showing different behaviours.

The interaction of the open quantum system with reservoirs is described through interaction oper-

ators that appear in the dissipative part of the Gorini-Kossakowski-Sudharshan-Lindblad (GKSL)

[17, 22] generator L of the dynamics, while the Hamiltonian part is given by the commutator with

the system Hamiltonian HS . However, when the GKSL generator is rigorously deduced from some

scaling (weak coupling or low density limit) both the system Hamiltonian and the interaction op-

erators appear in the GKSL generator L after non-trivial transformations (see [1, 2, 9, 10, 13, 19]).

In this paper we study models of open quantum systems rigorously deduced from the weak

coupling limit. We consider a quantum system with non-degenerate Hamiltonian HS coupled with

two reservoirs in equilibrium at inverse temperatures β1 ≤ β2 and study variation of energy due

to couplings with each reservoir. It is well-known (see Lebowitz and Spohn [25] (V.28)) that, by

the second law of thermodynamics, energy (heat) flows from the hotter to the cooler reservoir.

The energy flow, in general, is not proportional to the difference of temperature because of the

nonlinear dependence of susceptibilities on temperature, namely an exact Fourier’s law does not

hold.

However, we rigorously prove that it holds in an approximate way when the temperatures

of reservoirs are not too small or, as an alternative, differences between nearest energy levels are

small. More precisely, we show that the amount of energy flowing through the system, Theorem

4.2, formula (4.5), is approximately proportional to the product of the temperature differences and

a constant (conductivity) which can be interpreted as the average energy needed to jump from a

level to the following higher level.

The paper is organised as follows. In Section 2 we introduce quantum Markov semigroups

(QMS) arising from the weak coupling limit of a non-degenerate system with two Boson reservoirs.

The energy flow is computed explicitly in Section 3, Theorem 3.3, formula (3.7). The dependence

of the energy flow on temperatures is studied in Section 4. Moreover, we also study (Theorem 4.3)

the asymptotic behaviour of the invariant state when the eigenvalues of HS increase in number

and form a set more and more packed. It turns out that the invariant state converges towards a
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Gibbs state with temperature equal to the mean temperatures of the two baths.

Finally, in Section 5, we consider as system the Ising model Hamiltonian and show that the

energy flow in this case is zero. We have not been able to extend our analysis to quantum spin

chains because their Hamiltonians are highly degenerate and the GKSL generator arising from the

weak coupling limit, albeit explicit, is not easily treatable. In particular, we could not extract the

relevant information on invariant states.

2 Semigroups of weak coupling limit type

We consider an open quantum system with Hamiltonian HS acting on a complex separable Hilbert

space h with discrete spectral decomposition

HS =
∑
m≥0

εmPεm (2.1)

where εm, with εm < εn for m < n, are the eigenvalues of HS and Pεm are the corresponding

eigenprojectors. The system is coupled with two reservoirs each one in equilibrium with inverse

temperatures β1 ≤ β2 with interaction Hamiltonians

H1 = D1 ⊗A+(φ1) +D∗1 ⊗A−(φ1), H2 = D2 ⊗A+(φ2) +D∗2 ⊗A−(φ2),

where D1, D2 are bounded operators on h and A+(φj), A
−(φj) creation and annihilation operators,

in the Fock space of the reservoir j, with test function φj .

It is well-known (see [2, 9, 13, 25]) that, in the weak coupling limit, the evolution of the

system observables is governed by a quantum Markov semigroup (QMS) on B(h), the algebra of

all bounded operators in h, with generator of the form

L =
∑

j=1,2, ω∈B

Lj,ω (2.2)

where B is the set of all Bohr frequencies

B := {ω | ∃ εn, εm s.t. ω = εn − εm > 0}. (2.3)

For every Bohr frequency ω, Lj,ω is a generator with the Gorini-Kossakowski-Sudharshan-Lindblad

(GKSL) structure (see [17, 22])

Lj,ω(x) = i[Hj,ω, x]−
Γ−j,ω

2

(
D∗j,ωDj,ωx− 2D∗j,ωxDj,ω + xDj,ωD

∗
j,ω

)
−

Γ+
j,ω

2

(
Dj,ωD

∗
j,ωx− 2Dj,ωxD

∗
j,ω + xDj,ωD

∗
j,ω

)
(2.4)

for all x ∈ B(h), with Kraus operators Dj,ω defined by

Dj,ω =
∑

(εn,εm)∈Bω

PεmDjPεn (2.5)
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where Bω = { (εn, εm) | εn − εm = ω }, Γ±j,ω = fj,ωγ
±
j,ω

γ−j,ω =
eβjω

eβjω − 1
, γ+j,ω =

1

eβjω − 1
, fj,ω =

∫
{ y∈R3 | |y|=ω}

|φj(y)|2dsy

(ds denotes the surface integral) and Hj,ω are bounded self-adjoint operators on h commuting with

HS of the form

Hj,ω = κ−j,ωD
∗
j,ωDj,ω + κ+j,ωDj,ωD

∗
j,ω

for some real constants κ±j,ω.

In the sequel, following a customary convention to simplify the notation, we also denote

D−j,ω := Dj,ω and D+
j,ω := D∗j,ω and write

Q±j,ω(x) = −1

2
D∓j,ωD

±
j,ωx+D∓j,ωxD

±
j,ω −

1

2
xD∓j,ωD

±
j,ω (2.6)

the term of the GKSL generator arising from the interaction with the bath j due the Bohr frequency

ω is

Lj,ω = Γ−j,ωQ
−
j,ω + Γ+

j,ωQ
+
j,ω + i[Hj,ω, · ]

and the term arising from the interaction with the reservoir j is

Lj =
∑
ω∈B

Lj,ω.

We now make some assumptions on constants in such a way as to ensure boundedness of

operators Lj . First of all note that the series
∑
ωD

∗
j,ωDj,ω is strongly convergent. Indeed, for all

vector u =
∑
n≥0 Pεnu in h, we have∑

ω

〈
u,D∗j,ωDj,ωu

〉
=

∑
ω

∑
n,m≥0

〈Pεm−ωDjPεmu, Pεn−ωDjPεnu〉

=
∑
ω

∑
n≥0

〈DjPεnu, Pεn−ωDjPεnu〉

≤
∑
n≥0

‖DjPεnu‖
2

= ‖Dj‖2 ‖u‖2 .

As a consequence, if we assume

sup
ω∈B

Γ±j,ω < +∞, sup
ω∈B

∣∣κ±j,ω∣∣ < +∞,

for j = 1, 2 GKSL generators Lj turn out to be bounded. The above condition will be assumed to

be in force throughout the paper.

Remark. Note that Lj depends on the inverse temperature βj only through the constants γ±j,ω.

The above notation follows that of [1].
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For all normal linear operator S on B(h) we denote by S∗ the predual operator acting on the

Banach space of trace class operators on h. Therefore, we denote by T = (Tt)t≥0 the QMS on

B(h) generated by L and by T∗ = (T∗t)t≥0 the predual semigroup acting on trace class operators.

In the same way, T j (resp. T j,ω and T j,ω∗ ) stand for the QMS generated by Lj (resp. Lj,ω and its

predual semigroup). In this paper we are concerned with normal states, therefore we shall identify

them with their densities which are positive operators on h with unit trace.

We end this section by checking that, if reservoirs have the same temperature β1 = β2 = β

and Zβ := tr
(
e−βHS

)
< +∞, then the Gibbs state has density

ρβ = Z−1β e−βHS (2.7)

and is stationary.

Proposition 2.1. If β1 = β2 = β and

Zβ := tr
(
e−βHS

)
=
∑
n≥0

e−βεndim(Pεn) < +∞

then the Gibbs state (2.7) is invariant for all QMSs generated by L, L1, L2.

Proof. We begin by observing that for (εn + ω, εn), (εn, εn − ω) ∈ Bω, we can compute directly

(Lj,ω)∗(Pεn) =Γ−j,ω(Pεn−ωDjPεnD
∗
jPεn−ω − PεnD∗i Pεn−ωDjPεn)+

Γ+
j,ω(Pεn+ωD

∗
jPεnDjPεn+ω − PεnDjPεn+ωD

∗
jPεn).

A state of the form ρ =
∑
n ρεnPεn , which is a function of the system Hamiltonian HS (also called

a diagonal state), satisfies

L∗j(ρ) =
∑
ω

∑
n

(Lj,ω)∗(ρεnPεn)

=
∑
ω

∑
(εn+ω,εn)∈Bω

(ρεn+ωΓ−j,ω − ρεnΓ+
j,ω)PεnDjPεn+ωD

∗
jPεn+

∑
ω

∑
(εn,εn−ω)∈Bω

(ρεn−ωΓ+
j,ω − ρεnΓ−j,ω)PεnD

∗
jPεn−ωDjPεn .

Now if β1 = β2 = β and ρεn = e−βεn as in (2.7), we have

Γ+
j,ω

Γ−j,ω
=
γ+j,ω

γ−j,ω
= e−βω =

ρεn+ω
ρεn

,

for all j = 1, 2, so that L∗j(ρ) = 0 and ρ = e−βHS/Zβ is an invariant state for the QMS generated

by Lj . Since L = L1 + L2 it is an invariant state also for the QMS generated by L.
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3 Energy current

The rate of energy variation in the system, in a state ρ, due to interaction with the reservoir j is

tr (ρLj(HS)) (see [25] (V.28)). Therefore

tr (ρL1(HS))− tr (ρL2(HS)) (3.1)

is twice the rate at which the energy flows through the system from the hotter bath to the colder

bath, namely, the energy current through the system.

Adapting a result by Lebowitz and Spohn [25] Theorem 2 and Corollary 1, it is possible to

prove that the energy current is non-negative for finite dimensional systems.

Theorem 3.1. Suppose that h is finite dimensional and let ρ be a faithful invariant state, then

the energy current (3.1) is non-negative.

Proof. If a system is weakly coupled to a single bath j at inverse temperature βj , it is well-known

that the Gibbs state ρβj
= Z−1βj

e−βjHS , with Zβj
= tr

(
e−βjHS

)
, is invariant.

Consider the relative entropy of ρ with respect to ρβj
defined by S(ρ|ρβj

) = tr
(
ρ(log(ρ− log ρβj

)
)

which is a notoriously non-increasing function (see [23], Theorem 1.5), i.e.

S
(
T j∗t(ρ)|T j∗t(ρβj

)
)
≤ S(ρ|ρβj

),

for all ρ and t ≥ 0. States T j∗t(ρ), j = 1, 2 will still be faithful for small t, therefore no problem arises

when considering logarithms. Since ρβj
is invariant, denoting ρt := T j∗t(ρ), and differentiating we

find

d

dt
S(ρt|ρβj

) =
d

dt
tr
(
ρt(log ρt − log ρβj

)
)

= tr
(
ρ′t(log ρt − log ρβj

)
)

+ tr

(
ρt

d

dt
log ρt

)
.

Since for every x > 0, log x =
∫ +∞
0

(
1

1+s −
1
x+s

)
ds,

d

dt
log ρt =

∫ +∞

0

(s+ ρt)
−1ρ′t(s+ ρt)

−1ds

so that

tr

(
ρt

d

dt
log ρt

)
= tr

(
ρ′t

∫ +∞

0

ρt(s+ ρt)
−2ds

)
= tr (ρ′t) = 0.

By imposing ρβj
= Z−1βj

e−βjHS , and recalling that ρ′t = L∗j(ρt), tr (ρ′t) = 0 by trace preservation,

we obtain

d

dt
S(ρt|ρβj

) = tr
(
ρ′t(log ρt − log ρβj

)
)

= tr
(
ρ′t(log ρt + βjHS − logZ−1βj

)
)

= tr (ρ′t log ρt) + βjtr (ρtLj(HS)) .
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In particular tr (ρ′t(log ρt)) + βjtr (ρtL(HS)) ≤ 0 by monotonicity of the relative entropy, namely

−tr (L∗j(ρt) log ρt)− βjtr (ρtLj(HS)) ≥ 0.

In our context, the entropy production of the system due to interaction with the bath at inverse

temperature βj is

− tr (L∗j(ρt) log ρt)− βjtr (ρtLj(HS)) ≥ 0. (3.2)

Now, for all β, β1, β2 and ρ stationary state for the system S interacting with both baths, By

taking a sum over j of the inequality before (3.2), we obtain

β1tr (ρL1(HS)) + β2tr (ρL2(HS)) ≤ 0.

Moreover, tr (ρL1(HS)) = −tr (ρL2(HS)) and so

(β2 − β1)tr (ρL2(HS)) ≥ 0

In view β1 ≥ β2, we have tr (ρL1(HS)) = −tr (ρL2(HS)) ≥ 0 and the proof is complete.

In this section we prove a general explicit formula for the energy current in a stationary state

ρ which is a function of the system Hamiltonian HS . This not only confirms that it is positive

also for possibly infinite dimensional systems if the eigenvalues of stationary state are a monotone

system (i.e. there are no population inversions), but it allows us to establish proportionality to the

difference of bath temperatures when they are not too small, namely an approximate Fourier law.

Lemma 3.2. For all ω ∈ B and j = 1, 2 we have

Q−j,ω(HS) = −ωD∗j,ωDj,ω Q+
j,ω(HS) = ωDj,ωD

∗
j,ω (3.3)

and

Lj(HS) =
∑
ω∈B

ω
(
Γ+
j,ωDj,ωD

∗
j,ω − Γ−j,ωD

∗
j,ωDj,ω

)
. (3.4)

Proof. Writing HS as in (2.1) we compute

Q−j,ω(HS) = −1

2
D∗j,ωDj,ωHS +D∗j,ωHSDj,ω −

1

2
HSD

∗
j,ωDj,ω

=
∑

(εn,εm)∈Bω

(
εm PεnD

∗
jPεmDjPεn − εn PεnD∗jPεmDjPεn

)
= −

∑
(εn,εm)∈Bω

ωPεnD
∗
jPεmDjPεn

= −ωD∗j,ωDj,ω.

The proof of the other identity (3.3) is similar. Since [Hj,ω, HS ] = 0 for all j, ω, (3.4) follows

immediately.
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We can now prove our formula for the energy current in a stationary state ρ which is a function

of the system Hamiltonian HS . We suppose that the interaction of the system with both reservoirs

is similar; this property is reflected by the assumptions on tr
(
PεnD

∗
jPεmDj

)
and f1,ω. In the

sequel, to simplify the notation we also write ρn instead of ρεn .

Theorem 3.3. For any state ρ which is a function of the system Hamiltonian HS, i.e.

ρ =
∑
n≥0

ρnPεn (3.5)

we have

tr (ρLj(HS)) =
∑
ω∈B

ω
∑

(εn,εm)∈Bω

(
Γ+
j,ωρm − Γ−j,ωρn

)
tr
(
PεnD

∗
jPεmDj

)
. (3.6)

If the state ρ is also stationary and, moreover,

(1) tr (PεnD
∗
1PεmD1) = tr (PεnD

∗
2PεmD2) for all n,m,

(2) f1,ω = f2,ω for all ω,

then

tr (ρL1(HS)) =
1

2

∑
ω∈B

ω f1,ω
(
γ+1,ω − γ

+
2,ω

) ∑
(εn,εm)∈Bω

(ρm − ρn) tr (PεnD
∗
1PεmD1) . (3.7)

Proof. The proof of (3.6) is immediate from (3.4) and the following identities (cyclic property of

the trace)

tr
(
PεmDj,ωPεnD

∗
j,ω

)
= tr

(
(PεmDj,ω)PεmD

∗
j,ω

)
= tr

(
PεnD

∗
j,ωPεmDj,ω

)
.

If the state ρ is stationary, then tr (ρL1(HS)) = tr (ρL(HS)) − tr (ρL2(HS)) = −tr (ρL2(HS)), so

that tr (ρL1(HS)) = (tr (ρL1(HS))− tr (ρL2(HS))) /2. Computing the right-hand side difference

by means of (3.6) with j = 1, 2 we can write 2tr (ρL1(HS)) as∑
ω∈B

ω f1,ω
∑

(εn,εm)∈Bω

(
γ+1,ωρm − γ

−
1,ωρn − γ

+
2,ωρm + γ−2,ωρn

)
tr (PεnD

∗
1PεmD1)

=
∑
ω∈B

ω f1,ω
∑

(εn,εm)∈Bω

(
(γ+1,ω − γ

+
2,ω)ρm − (γ−1,ω − γ

−
2,ω)ρn

)
tr (PεnD

∗
1PεmD1) .

Since γ−j,ω = γ+j,ω + 1 for all j, ω, then γ+1,ω − γ
+
2,ω = γ−1,ω − γ

−
2,ω and (3.7) follows.

Remark. Note that the above identity tr (PεnD
∗
1PεmD1) = tr (PεnD

∗
2PεmD2) holds whenever

there exists an isometry R on h, commuting with HS , such that D2 = RD1R
∗. Indeed, in this

case, R commutes with all spectral projections of HS and

tr (PεnD
∗
2PεmD2) = tr (PεnRD

∗
1R
∗PεmRD1R

∗)

= tr (PεnD
∗
1PεmD1R

∗R)

= tr (PεnD
∗
1PεmD1) .
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We will see later (Section 5) that this happens when the system interacts in the same way with

the two baths.

Formula (3.7) can be applied to effectively compute the energy current in several models

highlighting the dependence on the difference of temperatures. Indeed, one readily sees that, for

β1, β2 very close the term ω
(
γ+1,ω − γ

+
2,ω

)
is an infinitesimum of order β−11 − β−12 while the other

terms are close to some nonzero values. Moreover, it is also clear from (3.7) that the energy current

is non-negative whenever the invariant state satisfies ρm > ρn for all n,m such that εm < εn i.e.

population inversion does not occur.

However, in order to find more explicit formulae we need additional information on the invari-

ant state. This problem will be studied in the next section. We end this section by the following

example

Example 3.4. Let h = Cn+1 with orthonormal basis (ek)0≤k≤n. Consider an n-level system with

Hamiltonian

HS =

n∑
k=0

k|ek〉〈ek|

and interaction operators D1, D2 acting as

Djek = ek−1 for k = 1, . . . , n Dje0 = 0.

Clearly B = {1, 2, . . . , n} but the only nonzero Dj,ω are those corresponding to the frequency ω = 1

and D1,1 = D1, D2,1 = D2. Moreover, since εk = k,

tr
(
PεkD

∗
1Pεk−1

D1

)
= tr

(
PεkD

∗
2Pεk−1

D2

)
= 1

for k = 1, . . . , n. By Theorem 3.3 formula (3.6) we have

tr (ρLj(HS)) =

n−1∑
k=0

(
Γ+
j,1ρk − Γ−j,1ρk+1

)
.

If all Γ±j,1 (j = 1, 2) are nonzero, a straightforward computation shows that the unique stationary

state is

ρ =
1− ν

1− νn+1

n∑
k=0

νk|ek〉〈ek|, ν :=
Γ+
1,1 + Γ+

2,1

Γ−1,1 + Γ−2,1

and the energy current due to interaction with reservoir j is

tr (ρLj(HS)) =
1− ν

1− νn+1

n−1∑
k=0

(
Γ+
j,1ν

k − Γ−j,1ν
k+1
)

=
1− νn

1− νn+1

(
Γ+
j,1 − νΓ−j,1

)
.

Note that, dropping the index 1 corresponding to the unique effective frequency ω to simplify the
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notation, we have

Γ+
j − νΓ−j = Γ−j

(
Γ+
j

Γ−j
− Γ+

1 + Γ+
2

Γ−1 + Γ−2

)

= Γ−j

(
γ+j

γ−j
− f1 γ

+
1 + f2 γ

+
2

f1 γ
−
1 + f2 γ

−
2

)

= Γ−j

(
e−βj − f1 (eβ2 − 1) + f2 (eβ1 − 1)

f1 eβ1(eβ2 − 1) + f2 eβ2(eβ1 − 1)

)
= Γ−j

(
e−βj − f1 e−β1(1− e−β2) + f2e−β2(1− e−β1)

f1(1− e−β2) + f2(1− e−β1)

)
.

For j = 1 we find

Γ+
j,1 − νΓ−j,1 = Γ−j f2(1− e−β1)

e−β1 − e−β2

f1(1− e−β2) + f2(1− e−β1)

and so

tr (ρL1(HS)) =
1− ((Γ+

1 + Γ+
2 )/(Γ−1 + Γ−2 ))n

1− ((Γ+
1 + Γ+

2 )/(Γ−1 + Γ−2 ))n+1

Γ−1 f2(1− e−β1)(e−β1 − e−β2)

f1(1− e−β2) + f2(1− e−β1)

Since Γ+
j < Γ−j , this formula, for n big and β1, β2 small becomes

tr (ρL1(HS)) ≈ f1f2(e−β1 − e−β2)

f1(1− e−β2) + f2(1− e−β1)

≈ f1f2(β2 − β1)

f2β1 + f1β2

=
f1f2

(
1
β1
− 1

β2

)
f1
β1

+ f2
β2

showing that, in a certain regime of high temperature a Fourier law holds for all choices f1, f2 of

the interactions strength.

4 Dependence of the energy current from temperature dif-

ference and conductivity

In this section we consider systems whose Hamiltonian HS has simple spectrum, namely each

spectral projection Pεn is one-dimensional, and make explicit the dependence of the energy current

on the difference of temperatures 1/β1 and 1/β2.

We begin by noting that, if spectral projections Pεn are one-dimensional one can associate

with the open quantum system a classical (time continuous) Markov chain with state space V the
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spectrum sp(HS) of HS in a canonical way. Indeed, for every bounded function f on V , we have

L(f(HS)) =
∑
n≥0

f(εn)L(Pεn)

=
∑

ω∈B, (εn,εm)∈Bω

∑
j

Γ−j,ωPεnD
∗
jPεmDjPεn

 (f(εm)− f(εn))

+
∑

ω∈B, (εn,εm)∈Bω

∑
j

Γ+
j,ωPεmDjPεnD

∗
jPεm

 (f(εn)− f(εm))

and we find a classical Markov chain with transition rate matrix Q = (qnm)

qnm =


∑
j Γ−j,εn−εmtr

(
D∗jPεmDjPεn

)
, if εn > εm,∑

j Γ+
j,εm−εntr

(
DjPεmD

∗
jPεn

)
, if εn < εm,

−
∑
m 6=n qnm, if n = m.

Now, if we consider the conditional expectation

E : B(h)→ `∞(V ;C), E(x) =
∑
m≥0

PεmxPεm ,

where `∞(V ;C) is the abelian algebra of bounded functions on V , we have that

E ◦ L = L ◦ E . (4.1)

Therefore, by defining the predual map E∗ such that tr (E∗(ρ)x) = tr (ρE(x)), if ρ is an invariant

state, we have also 0 = E∗(L∗(ρ)) = L∗(E∗(ρ)) and

(πn) 7→
∑
n≥0

πnPεn

gives a one-to-one correspondence between diagonal invariant states of the open quantum system

and invariant measures of the associated Markov chain.

In the following, in order to have at hand an explicit formula for the invariant measure, we

suppose, for simplicity, that the graph associated with the above Markov chain is a path graph

and jumps can occur only to nearest neighbour levels, namely qnm = 0 for |n − m| ≥ 2. This

assumption may hold, for instance, if the Hamiltonian HS is generic in the sense of [8], namely it

is not only non-degenerate but also if εn− εm = εn′ − εm′ then εn = εn′ and εm = εm′ . Moreover,

we assume that qnm 6= 0 for |n−m| ≤ 1. In this case the associated classical Markov chain has a

simpler structure allowing one to make explicit computations and describe explicitly the structure

of invariant states (see also [11] in a more general situation).

The explicit expression for the invariant state is ρ =
∑
n ρnPεn where

ρn =
∏

0≤k<n

qk,k+1

qk+1,k
ρ0 (4.2)
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with

qk,k+1 =

2∑
j=1

Γ+
j,εk+1−εktr

(
DjPεk+1

D∗jPεk
)
,

qk+1,k =

2∑
j=1

Γ−j,εk+1−εktr
(
D∗jPεkDjPεk+1

)
provided that the normalization condition∑

n≥1

∏
0≤k<n

qk,k+1

qk+1,k
< +∞ (4.3)

holds, in which case ρ0 is the inverse of the sum of the above series increased by 1.

With the explicit formula for the invariant state we can find a Fourier’s law for the energy

current through the system. We begin by a technical lemma

Lemma 4.1. The following inequalities hold

e−(β1+β2)ω/2

1

β1
− 1

β2
1

β1
+

1

β2

≤

1

eβ1ω − 1
− 1

eβ2ω − 1
eβ1ω

eβ1ω − 1
+

eβ2ω

eβ2ω − 1

≤

1

β1
− 1

β2
1

β1
+

1

β2

, (4.4)

for all 0 < β1 ≤ β2 and ω > 0.

Proof. Note that 1/(eβ1ω − 1) − 1/(eβ2ω − 1) ≤ 1/(β1ω) − 1/(β2ω) because the function x 7→
1/(exω − 1)− 1/(ωx) is increasing on ]0,+∞[ since

d

dx

(
1

exω − 1
− 1

ωx

)
=

1

ωx2
− ω(

eωx/2 − e−ωx/2
)2 ≥ 0

by the elementary inequality eωx/2 − e−ωx/2 ≥ ωx. Moreover, by another elementary inequality

1− e−βjω ≤ βjω, we have

eβ1ω

eβ1ω − 1
+

eβ2ω

eβ2ω − 1
=

1

1− e−β1ω
+

1

1− e−β2ω
≥ 1

β1ω
+

1

β2ω

and the second inequality (4.4) follows.

In order to prove the first inequality we first write the right-hand side as

(eβ1ω − 1)−1 − (eβ2ω − 1)−1

eβ1ω(eβ1ω − 1)−1 + eβ2ω(eβ2ω − 1)−1

=
eβ2ω − eβ1ω

eβ1ωeβ2ω/2(eβ2ω/2 − e−β2ω/2) + eβ2ωeβ1ω/2(eβ1ω/2 − e−β1ω/2)

= e−(β1+β2)ω/2
e(β2−β1)ω/2 − e−(β2−β1)ω/2

(1− e−β2ω) + (1− e−β1ω)
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Noting that

e(β2−β1)ω/2 − e−(β2−β1)ω/2 ≥ 1 +
(β2 − β1)ω

2
−
(

1− (β2 − β1)ω

2

)
(1− e−β2ω) + (1− e−β1ω) ≤ (β1 + β2)ω

we find

(eβ1ω − 1)−1 − (eβ2ω − 1)−1

eβ1ω(eβ1ω − 1)−1 + eβ2ω(eβ2ω − 1)−1
≥ e−(β1+β2)ω/2

(β2 − β1)ω

(β1 + β2)ω
.

This completes the proof.

Remark. Note that the inequalities of Lemma 4.1 provide a sharp estimate in terms of the inverse

temperature difference β2−β1 for small β1, β2, i.e. when the average of temperatures T1, T2 is big.

Indeed, the difference of the right-hand side and left-hand side is equal to(
1− e−(β1+β2)ω/2

) β2 − β1
β1 + β2

and for temperatures Tj > kB ·180 K= 2.49·10−21 J (approximately the lowest natural temperature

ever recorded at ground level) we have βj < 1/(kB · 180 K) = 4.02 · 1020 J−1 so that the quantity

that multiplies β2 − β1 is

1

β1 + β2
< 1.24 · 10−21J.

Theorem 4.2. Suppose that

(1) tr
(
PεnD

∗
jPεmDj

)
= 1 for all n,m and all j = 1, 2,

(2) fj,ω = 1 for all ω and all j = 1, 2,

(3) Jumps can occur only to nearest neighbour levels,

(4) Formula (4.3) holds so that the state ρ defined by (4.2) with ρ0 determined by the normal-

ization condition is invariant.

Then

κm

1

β1
− 1

β2
1

β1
+

1

β2

κ(ρ,HS) ≤ tr (ρL1(HS)) ≤

1

β1
− 1

β2
1

β1
+

1

β2

κ(ρ,HS) (4.5)

where κm = infm≥0 e−(β1+β2)(εm+1−εm)/2 and

ĤS =
∑
m≥0

εm+1Pεm , κ(ρ,HS) = tr
(
ρ(ĤS −HS)

)
.
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Proof. By applying (3.7) in this context, we have

tr (ρL1(HS)) =
1

2

∑
n≥0

(εn+1 − εn)(ρn − ρn+1)
(

Γ+
1,εn+1−εn − Γ+

2,εn+1−εn

)
=

1

2

∑
n≥0

(εn+1 − εn)

(
1− qn,n+1

qn+1,n

)
ρn

(
Γ+
1,εn+1−εn − Γ+

2,εn+1−εn

)
=
∑
n≥0

(εn+1 − εn)ρn
Γ+
1,εn+1−εn − Γ+

2,εn+1−εn

Γ−1,εn+1−εn + Γ−2,εn+1−εn
.

Now the proof follows applying Lemma 4.1 with ω = εn+1 − εn to estimate the right-hand side

ratio.

Remark. Formula (4.5) shows that the energy current tr (ρL1(HS)) has an explicit dependence

on the difference β−11 − β−12 of the reservoirs’ temperatures. This dependence holds only through

two inequalities, but it suggests the existence of an “approximate” Fourier law (see [4, 21]) for the

current. Clearly there can be further dependecies through the term κ(ρ,HS), however it holds

inf
k

(εk+1 − εk) ≤ κ(ρ,HS) ≤ sup
k

(εk+1 − εk) .

Therefore the energy current depends on the temperature difference mainly through the explicit

term and one could say that there really is an “approximate” Fourier Law. Furthermore it is worth

noticing that, for β1, β2 fixed, the inequality (4.5) is better the smaller is supm≥0(εm+1 − εm) so

that κm is close to 1 and the inequalities are approximately equalities. However, it should also be

noted that, in this case, κ(ρ,HS) becomes small as well. Eventually note that, due to the nature of

our system, we cannot investigate spatial properties of energy flow. Therefore our discussion of the

Fourier’s law is concerned with proportionality to temperature difference and not with dependency

on size.

Remark. Since the above QMS are of weak coupling limit type, one can write explicitly the

entropy production (in the sense of [15, 16]).

It is tempting to study in detail what happens when supm≥0(εm+1 − εm) tends to 0 so that

the eigenvalues of HS increase in number and form a set more and more packed. In a more precise

way, for all n ≥ 1 we assume that the system Hamiltonian is a self-adjoint operator H
(n)
S on an

(n + 1)-dimensional Hilbert space h with simple pure point spectrum
(
ε
(n)
k

)
0≤k≤n

with ε0 = 0

and, for all a, b with 0 ≤ a < b ≤ +∞, we have

lim
n→∞

card
{
k | a < ε

(n)
k ≤ b

}
n

= µ(]a, b]) (4.6)

for some continuous probability density µ on [0,+∞[. In other words, the empirical distribution

of eigenvalues of H
(n)
S converges weakly to a probability distribution on [0,+∞[ . Suppose, for

simplicity, that µ has no atoms, i.e. µ({r}) = 0 for all r ≥ 0.
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We can now prove the following result on the distribution of eigenvalues of the stationary state

and energy in stationary conditions.

Theorem 4.3. Under the assumptions of Theorem 4.2, for all n ≥ 1, let H
(n)
S be as above and

suppose that (4.6) holds. Let ρ(n) be the invariant state (4.2) and let

β̃ = 2 (1/β1 + 1/β2)
−1

be the harmonic mean of the inverse temperatures (i.e. β̃−1 arithmetic mean of β−11 , β−12 ).

(i) Eigenvectors ρ
(n)
k of ρ(n) satisfy

lim
n→∞

∑
{ k | a<εk≤b}

ρ
(n)
k =

∫ b

a

e−β̃rdµ(r)∫ ∞
0

e−β̃rdµ(r)

(ii) The average energy in the system satisfies

lim
n→∞

tr
(
ρ(n)H

(n)
S

)
=

∫ ∞
0

e−β̃r rdµ(r)∫ ∞
0

e−β̃rdµ(r)

.

This result reminds the one in [20] where the steady state can be described by a general-

ized Gibbs state and the steady-state current is proportional to the difference in the reservoirs’

magnetizations.

In the proof we need the following Lemma.

Lemma 4.4. Let β̃ = 2/
(
β−11 + β−12

)
be the harmonic mean of inverse temperatures (i.e. β̃−1 is

the arithmetic mean of β−11 and β−12 ). For all 1 ≤ k ≤ n and for supj ωj < 1/(3β2),

1− β̃ ωk ≤
qk,k+1

qk+1,k
≤ 1− β̃ ωk +

(
β̃ ωk

)2
(4.7)

where ωk = εk+1 − εk and

e−β̃εk(1+β̃ supj ωj) ≤
k−1∏
j=0

qj,j+1

qj+1,j
≤ e−β̃εk(1−β̃ supj ωj) (4.8)

Proof. By the elementary inequality 1− e−βjωk ≤ βjωk we have

qk,k+1

qk+1,k
=

1

eβ1ωk − 1
+

1

eβ2ωk − 1
eβ1ωk

eβ1ωk − 1
+

eβ2ωk

eβ2ωk − 1

= 1− 2

(1− e−β1ωk)
−1

+ (1− e−β2ωk)
−1

≥ 1− 2ωk
1/β1 + 1/β2
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In the same way, by the elementary inequalities 1−e−βjωk ≥ βjωk−(βjωk)
2
/2 and 1/(1− βjωk/2) ≤

1 + βjωk, we find for βjωk < 1

qk,k+1

qk+1,k
≤ 1− 2ωk

1/ (β1 (1− β1ωk/2)) + 1/ (β2 (1− β2ωk/2))

≤ 1− 2ωk
1/β1 (1 + β1ωk/2) + 1/β2 (1 + β2ωk/2)

≤ 1− 2ωk
1/β1 + 1/β2 + 2ωk

= 1− β̃ ωk

1 + β̃ ωk

and so (4.7) follows.

In order to prove the upper bound in (4.8), note that, since log(1− x) ≤ −x

log

k−1∏
j=0

qj,j+1

qj+1,j

 ≤ k−1∑
j=0

log
(

1− β̃ ωj
(

1− β̃ ωj
))
≤ −

k−1∑
j=0

β̃ωj

(
1− β̃ωj

)
,

as a consequence

log

k−1∏
j=0

qj,j+1

qj+1,j

 ≤ − k−1∑
j=0

β̃ωj

(
1− β̃ sup

l
ωl

)
= −β̃εk

(
1− β̃ sup

l
ωl

)
.

For the lower bound, we begin by the inequality

log

k−1∏
j=0

qj,j+1

qj+1,j

 =

k−1∑
j=0

log

(
qj,j+1

qj+1,j

)
≥
k−1∑
j=0

log
(

1− β̃ωj
)
.

Note that log(1 − x) + x + x2 ≥ 0 for 0 ≤ x ≤ 2/3 and, since β̃ωj < 2/3 by our assumption, we

have

log

k−1∏
j=0

qj,j+1

qj+1,j

 ≥ − k−1∑
j=0

β̃ωj

(
1 + β̃ sup

l
ωl

)
= −β̃εk

(
1 + β̃ sup

l
ωl

)
.

This completes the proof.

Proof of Theorem 4.3. Let µn be the empirical distribution of the eigenvalues of H
(n)
S i.e.

µn =
1

n+ 1

n∑
k=0

δεk

and note that

∑
{ k | a<εk≤b}

ρ
(n)
k =

1

n+ 1

∑
{ k | a<εk≤b}

k−1∏
j=0

qj,j+1

qj+1,j

1

n+ 1

n∑
k=0

k−1∏
j=0

qj,j+1

qj+1,j

. (4.9)



CUBO
23, 1 (2021)

Energy transfer in open quantum systems weakly coupled . . . 137

Clearly, by Lemma 4.4,

1

n+ 1

∑
{ k | a<εk≤b}

k−1∏
j=0

qj,j+1

qj+1,j
≤ 1

n+ 1

∑
{ k | a<εk≤b}

e−β̃εk(1−β̃ supj ωj)

≤ eβ̃
2b supj ωj

∫
]a,b]

e−β̃εk dµn(r)

and also

1

n+ 1

∑
{ k | a<εk≤b}

k−1∏
j=0

qj,j+1

qj+1,j
≥ e−β̃

2a supj ωj

n+ 1

∑
{ k | a<εk≤b}

e−β̃εk

= e−β̃
2a supj ωj

∫
]a,b]

e−β̃εk dµn(r).

Since supj ωj goes to 0, probability measures µn converge weakly to µ and the function r → e−β̃r

is bounded continuous on [0,+∞[, taking the limit as n→∞, we have

lim
n→∞

1

n+ 1

∑
{ k | a<εk≤b}

k−1∏
j=0

qj,j+1

qj+1,j
=

∫
]a,b]

e−β̃εk dµ(r).

In the same way, taking a = 0 and b = +∞, we see that the denominator of (4.9) converges to∫ +∞

0

e−β̃r dµ(r)

and the proof of (i) is complete. The proof of (ii) is similar. �

Remark. Theorem 4.3 (i) shows that, if µ has density µ′, then the asymptotic distribution of

eigenvalues of the stationary state is

λ 7→ e−β̃λµ′(λ)∫ +∞

0

e−β̃rµ′(r)dr

.

The asymptotic average energy in the system can be easily computed in some remarkable cases

noting that the integral of e−β̃r with respect to µ is the moment generating function φ of µ

evaluated at −β̃ and so the asymptotic average energy in the system is

−
d
dβ̃
φ(−β̃)

φ(−β̃)
= − d

dβ̃
log
(
φ(−β̃)

)
.

We can easily find an explicit result in two cases:

µ normal distribution N(m,σ2) average energy m− β̃σ

µ gamma distribution Γ(α, θ) average energy α/(β̃ + θ)

The asymptotic average energy in the system is decreasing in β̃, i.e. increasing in the average

temperature as expected, for all probability measure µ because the moment generating function

of a probability distribution is log-convex and the derivative of a convex function is increasing.

Remark. Note that, by choosing a suitable spacing of eigenvalues εn we can control the rate of

convergence to 0 of κ
(
ρ(n), H

(n)
S

)
at will, as n tends to +∞.
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5 One dimensional Ising chain

In this section we consider a one-dimensional Ising chain with nearest neighbour interaction. We

will show that, in this case, if the heat baths interact locally at both ends of the chain, then the

energy current is zero. Spin interaction (see 5.1) occurs only in the z component. In the case where

also the other components interact the derivation of the GKSL generator turns out to be really

difficult (see [5]). Indeed, starting from the diagonalized HS , one finds a cumbersome expression

for the operators Dω.

In spite of the simple system Hamitonian HS (5.1) Theorems 4.2 and 4.3 do not apply to this

model because its spectrum is degenerate.

The system space is h = C2⊗N with N > 2. Define Pauli matrices

σx =

 0 1

1 0

 σy =

 0 −i

i 0

 σz =

 1 0

0 −1


with respect to the orthonormal basis e+ = [1, 0]T, e− = [0, 1]T of C2.

Consider the one dimensional Ising chain with Hamiltonian

HS = Jz

N−1∑
j=1

σzjσ
z
j+1, Jz > 0, N > 2 (5.1)

Subsequently let us define

eα := ⊗Nj=1eα(j), α ∈ {−1, 1}N ,

as a basis of h, where e−1 := e− and e+1 := e+. Vectors {eα}α form an eigenbasis for HS and the

spectrum is

sp(HS) = { Jz (2k − (N − 1)) | k = 0, . . . , N − 1 }.

The eigenspace associated with the eigenvalue εk = Jz(2k− (N − 1)) is the linear span of the

elements eα such that exactly k neighbouring elements in α have the same sign. Thus one can

define the sets

Ak :=
{
α ∈ {−1, 1}N

∣∣∣ ∑N−1
j=1 α(j)α(j + 1) = 2k − (N − 1)

}
,

and the spectral projection associated with the eigenvalue εk is given by

Pk :=
∑
α∈Ak

|eα〉〈eα|.

The system is coupled with two heat reservoirs at inverse temperature β1, β2 with β1 ≤ β2 through

the interaction

H1 = σu1 ⊗ (A−(φ1) +A+(φ1)), H2 = σvN ⊗ (A−(φ2) +A+(φ2)), (5.2)
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where u, v ∈ R3 and σui is defined as

σui = u1σ
x
i + u2σ

y
i + u3σ

z
i .

The set of positive Bohr frequencies is given by

B := { 2Jz(n−m) = εn − εm | n,m ∈ {0, . . . , N − 1}, n > m },

while the operators Dj,ω are given by (2.5). Thus one has

D1,2Jz = (u1 − iu2)
∑

α∈Cl
++

σx1 |eα〉〈eα|+ (u1 + iu2)
∑

α∈Cl
−−

σx1 |eα〉〈eα|

where Cl++ (resp. Cl−−) denotes the set of configurations α ∈ {−1,+1}N with ++ (resp. −−) in

the first two sites (l stands for left). While D1,ω = 0 for every ω ∈ B − {2Jz} because the Pauli

matrices act only on the first site and so the number of neighbouring sites with the same sign can

vary of at most one after the action of σu1 and for ω = 2Jz one has

D1,2Jz =

N−1∑
n=1

∑
α∈An

∑
β∈An+1

〈eα, σx1 eβ〉 |eα〉〈eβ |.

With similar arguments one can see that D2,ω = 0 for every ω ∈ B− {2Jz}, while

D2,2Jz = (v1 − iv2)
∑

α∈Cr
++

σxN |eα〉〈eα|+ (v1 + iv2)
∑

α∈Cr
−−

σxN |eα〉〈eα|

where Cr++ (resp. Cr−−) denotes the set of configurations with ++ (resp. −−) in the last two sites

(r stands for right).

From now on we will drop the subscript 2Jz and only deal with operators related to that Bohr

frequency, as the others vanish.

Recalling the definition of linear maps (2.6) and the constants

γ+i = 1/(e2Jzβi − 1), γ−i = e2Jzβi/(e2Jzβi − 1),

we can write the GKSL generator of the evolution as follows

L =
∑

i∈{1,N}

γ−i Q
−
i + γ+i Q

+
i .

A close scrutiny at the operators Di, D
∗
i shows that, for each fixed configuration α ∈ {−1,+1}N−2

of the N − 2 inner sites of the chain the 4-dimensional projections pα on subspaces

hα := span { eα | α(j) = α(j) for all 2 ≤ j ≤ N − 1; α(1), α(N) ∈ {−1, 1} }

commute with both Di and D∗i for i ∈ {1, N}, then subalgebras pα1
B(h)pα2

are invariant for the

semigroup T generated by L. This commutation allows us to restrict our study only to cases where
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the invariant state is of the form

ρ =
∑

α∈{−1,1}N−2

pαρpα =
∑

α∈{−1,1}N−2

λαρα, (5.3)

where ρα is an invariant state supported only on hα and λα are real constants that sum up to 1.

Indeed the off diagonal terms, pα1
ρpα2

with α1 6= α2, do not contribute to current flow, since

tr (pα1ρpα2L1(HS)) = tr (pα1ρL1(HS)pα2) = 0.

Moreover all the conditional expectations Eα(x) := pαxpα commute with L, ensuring that both∑
α Eα,∗(ρ) and every Eα,∗(ρ) must also be invariant states on their own. As a further refinement

we can repeat the same argument using the conditional expectation E(x) :=
∑N−1
k=0 PkxPk. Indeed

E commutes with the Lindbladian L and

tr (Pk1ρPk2L1(HS)) = tr (Pk1ρL1(HS)Pk2) = 0

for k1 6= k2, since the spectral projections commute with DjD
∗
j , D∗jDj and L1(HS) is a linear

combination of these operators by Lemma 3.2, equation (3.3). In this way we can focus our study

on invariant states of the form (5.3) with

pαρpα = ρα =


ρα11 0 0 0

0 ρα22 ρα23 0

0 ρα32 ρα33 0

0 0 0 ρα44

 ,

where we expanded the state with respect to the basis of four vectors ec α c, edα c, ecαd, edαd defined

as follows: ecαc is the vector eα(2),α(2),...,α(N−1),α(N−1), ecαd = eα(2),α(2),...,α(N−1),−α(N−1) and

vectors edαc, edαd are defined in a similar way.

Now we have reduced and simplified the class of states we want to use when looking for a

invariant state, without, however, losing any contribution to the current flow. In order to find the

invariant state, first of all it is not too difficult to show that L∗ leaves invariant the subspace of

diagonal elements. Then compute

L∗(ρα23|edα c〉〈ec α d|) = −1

2

[
Γ+
1 + Γ−1 + Γ+

N + Γ−N
]
ρα23|edα c〉〈ec α d|,

and similarly

L∗(ρα32|ec α d〉〈edα c|) = −1

2

[
Γ+
1 + Γ−1 + Γ+

N + Γ−N
]
ρα32|ec α d〉〈edα c|,

where Γ±1 = ‖u1 + iu2‖2 γ±1 and Γ±N = ‖v1 + iv2‖2 γ±N . (The above Γ±i slightly differ from the

constants in Section 2). Therefore the invariant state condition L∗(ρ) = 0 implies ρα23 = ρα32 = 0.
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We can now just consider the reduced dynamics on diagonal elements of pαB(h)pα, given by

L∗ =


−(Γ−1 + Γ−N ) Γ−1 Γ−N 0

Γ+
1 −(Γ+

1 + Γ−N ) 0 Γ−N

Γ+
N 0 −(Γ+

N + Γ−1 ) Γ−1

0 Γ+
N Γ+

1 −(Γ+
N + Γ+

1 )

 ,

The unique invariant law for the time-continuous Markov chain generated by the above matrix

is

π = Z−1
[
1, e2Jzβ1 , e2Jzβ2 , e2Jz(β1+β2)

]
,

where Z−1 is a normalization constant that is independent of u, v and is the same for all α.

Therefore the unique T -invariant state supported on hα is

ρα = Z−1
(
|ecαc〉〈ecαc|+ e2Jzβ1 |edαc〉〈edαc|

+ e2Jzβ2 |ecα d〉〈ecα d|+ e2Jz(β1+β2)|edα d〉〈edα d|
)
.

Recalling (5.3) we can now write any invariant state for the semigroup T .

We can now evaluate the energy flow tr (ρL1(HS)) via the expression

L1(HS) =
∑
ω∈B+

ω
(
γ+1,ωD1D

∗
1 − γ−1,ωD∗1D1

)
= 2Jz

(
γ+1 D1D

∗
1 − γ−1 D∗1D1

)
that, together with the formula for ρα, yields

Z tr (ρL1(HS)) = Z tr

 ∑
α∈{−1,1}N−2

λαραL1(HS)


=

∑
α∈{−1,1}N−2

2Jzλα

(
γ+1 eβ1ω + γ+1 e(β1+β2)ω − γ−1 eβ2ω − γ−1

)
= 0

Remark. For N = 2, it can be shown by direct computation that the energy current is strictly

positive. Indeed, because of low dimensionality the ends of the chain can interact directly.
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ABSTRACT

In this work, we present some results on the existence of attractive

solutions of fractional differential equations of the ψ-Hilfer hybrid

type. The results on the existence of solutions are a consequence

of the Schauder fixed point theorem. Next, we prove that all

solutions are uniformly locally attractive.

RESUMEN

En este trabajo, presentamos algunos resultados sobre la existen-

cia de soluciones atractivas de ecuaciones diferenciales fraccionar-

ias de tipo ψ-Hilfer h́ıbridas. Los resultados de existencia de solu-

ciones son consecuencia del teorema de punto fijo de Schauder.

A continuación, probamos que todas las soluciones son uniforme-

mente localmente atractivas.

Keywords and Phrases: ψ-Hilfer fractional derivative; Schauder fixed-point Theorem; uniformly locally

attractive.
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1 Introduction

The theory of derivatives and integrals to a real or complex order is none other than the fractional

theory which began in 1695 between G.A. de L’Hospital and G.W. Leibniz. The fractional integra-

tion and differentiation go back to Leibniz, Riemann, Liouville, Abel, Weyl, and Riesz [27]. Many

monographs to which the reader can refer such as Abbas et al. [1, 5, 6], Diethelm [13], Kilbas et al.

[17], Oldham et al. [22], Podlubny [23], Samko et al. [24], Zhou [32, 33], Zhou et al. [34] and the

works by Abbas and Benchohra [2], Lakshmikantham et al. [19, 20, 21]. Recently several works

have been done concerning hybrid fractional differential equations see [9, 12, 14, 26, 31], and the

references therein.

Functional ψ− fractional differential equations received a great importance in applied math-

ematics and other sciences, see [8, 16, 18, 25, 28, 29, 30], and the references therein.

Some interesting results on existence and attractivity have been obtained in [3, 4, 7]. In this

work, we are interested in the existence and attractivity of solutions for the following problemD
λ,σ;ψ
0+

u(t)
v(t,u(t)) = w (t, u(t)) ; a.e. t ∈ R+,

(ψ(t)− ψ(0))1−ςu(t) |t=0= u0; u0 ∈ R,
(1.1)

where R+ := [0,+∞), 0 < λ < 1, 0 ≤ σ ≤ 1, ς = λ+σ(1−λ), HDλ,σ;ψ
0+ is the ψ -Hilfer fractional

derivative of order λ and type σ, v : R+ × R→ R∗ and w : R+ × R→ R, are given functions.

Special cases:

• For σ = 0, ψ(t) = t, u0 = 0, we will get nonlinear hybrid FDEs of the form
RLDλ

0+

[
u(t)

v(t,u(t))

]
= w(t, u(t)), a.e. t ∈ R+,

u(0) = 0.

• For λ = 1, σ = 1, ψ(t) = t, we will get nonlinear integer order hybrid differential equations of the

form 
d
dt

[
u(t)

v(t,u(t))

]
= w(t, y(t)), a.e. t ∈ R+,

u(0) = u0 ∈ R.

For v = 1, we will get nonlinear ψ-Hilfer FDEs of the form
HDλ,σ;ψ

0+ u(t) = w(t, y(t)), a.e. t ∈ R+,

(ψ(t)− ψ(0))1−ςu(t)
∣∣
t=0

= u0 ∈ R.

• For v = 1, σ = 0 (in this case ς = λ), ψ(t) = t, we will get nonlinear FDEs involving Riemann-

Liouville fractional derivative

RLDλ
0+u(t) = w(t, y(t)), a.e. t ∈ R+.
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2 Preliminaries

Let ψ : [a, b] → R be an increasing differentiable function such that ψ′(t) 6= 0, for all t ∈ [a, b],

(−∞ ≤ a < b ≤ +∞). Define on [a, b], (0 < a < b <∞) the weighted space

Cςψ[a,b] = {τ : (a, b]→ R : (ψ(t)− ψ(a))ςτ(t) ∈ C[a, b]}, 0 ≤ ς < 1,

with the norm

‖τ‖Cς;ψ[a,b] = ‖(ψ(t)− ψ(a))ςτ(t)‖C[a,b] = max {|(ψ(t)− ψ(a))ςτ(t)| : t ∈ [a, b]} ,

where C([a, b]) denotes the Banach space of all real continuous functions on [a, b].

Let BC := BC(R+) be the Banach space of all bounded and continuous functions from R+

into R. By BCς := BCς(R+), we denote the weighted space of all bounded and continuous functions

defined by BCς = {φ : R+ → R : (ψ(t)− ψ(0))1−ςφ(t) ∈ BC}, with the norm

‖φ‖BCς := sup
t∈R+

∣∣(ψ(t)− ψ(0))1−ςφ(t)
∣∣ .

Let us recall some definitions and properties of fractional calculus.

Definition 2.1. [17] The left-sided ψ-Riemann-Liouville fractional integral and fractional deriva-

tive of order λ, (n − 1 < λ < n) for an integrable function φ : [a, b] → R with respect to another

function ψ : [a, b] → R, that is an increasing differentiable function such that ψ′(t) 6= 0, for all

t ∈ [a, b], (−∞ ≤ a < b ≤ +∞), are respectively defined as follows:

Iλ;ψa+ φ(t) =
1

Γ(λ)

∫ t

a

ψ′(s)(ψ(t)− ψ(s))λ−1φ(s)ds,

and

Dλ;ψ
a+ φ(t) =

(
1

ψ′(t)

d

dt

)n
In−α;ψa+ φ(t) =

1

Γ(n− λ)

(
1

ψ′(t)

d

dt

)n ∫ t

a

ψ′(s)(ψ(t)− ψ(s))n−λ−1φ(s)ds,

where Γ(·) is the Euler gamma function defined by

Γ(δ) =

∫ ∞
0

e−ttδ−1dt, δ > 0.

Definition 2.2. [10] The left-sided ψ -Caputo fractional derivative of function χ ∈ Cn[a, b],

(n− 1 < λ < n) n = [α] + 1 with respect to another function ψ is defined by

cDλ;ψ
a+ φ(t) = In−λ;ψa+

(
1

ψ′(t)

d

dt

)n
φ(t) =

1

Γ(n− λ)

∫ t

a

ψ′(s)(ψ(t)− ψ(s))n−λ−1φ
[n]
ψ (s)ds,

where φ
[n]
ψ (t) =

(
1

ψ′(t)
d
dt

)n
φ(t) and ψ defined as in Definition Q. Moreover, the ψ− Caputo frac-

tional derivative of function φ ∈ ACn[a, b] is determined as

cDλ;ψ
a+ φ(t) = Dλ;ψ

a+

φ(t)−
n−1∑
k=0

[
1

ψ′(t)
d
dt

]k
φ(a)

k!
(ψ(t)− ψ(a))k

 .
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Definition 2.3. [29] Let n − 1 < λ < n, n ∈ N, with [a, b],−∞ ≤ a < b ≤ +∞, and

ψ ∈ Cn([a, b],R) a function such that ψ(t) is increasing and ψ′(t) 6= 0, for all t ∈ [a, b].

The ψ -Hilfer fractional derivative (left-sided) of function φ ∈ Cn([a, b],R) of order λ and type

σ ∈ [0, 1] is determined as

Dλ,σ;ψ
a+ φ(t) = I

σ(n−λ);ψ
a+

[
1

ψ′(t)

d

dt

]n
I
(1−σ)(n−λ);ψ
a+ φ(t), t > a.

In other way

Dλ,σ;ψ
a+ φ(t) = I

σ(n−λ);ψ
a+ Dγ;ψ

a+ φ(t), t > a,

where

Dγ;ψ
a+ φ(t) =

[
1

ψ′(t)

d

dt

]n
I
(1−σ)(n−λ);ψ
a+ φ(t).

In particular, the ψ -Hilfer fractional derivative of order λ ∈ (0, 1) and type σ ∈ [0, 1], can be

written in the following form

Dλ,σ;ψ
a+ φ(t) =

1

Γ(ς − λ)

∫ t

a

(ψ(t)− ψ(s))ς−λ−1Dγ;ψ
a+ φ(s)ds

= Iς−λ;ψa+ Dς;ψ
a+ φ(t),

where ς = λ+ σ − λσ, and Dς;ψ
a+ φ(t) =

[
1

ψ′(t)
d
dt

]
I1−ς;ψa+ φ(t).

Lemma 2.4. [29] Let λ > 0, 0 ≤ ς < 1 and φ ∈ L1(a, b). Then

Iλ;ψa+ Iσ;ψa+ φ(t) = Iλ+σ;ψa+ φ(t), a.e. t ∈ [a, b].

In particular (i) if φ ∈ Cς;ψ[a, b], then Iλ;ψa+ Iσ;ψa+ φ(t) = Iλ+σ;ψa+ φ(t), t ∈ (a, b].

(ii) If φ ∈ C[a, b], then Iλ;ψa+ Iσ;ψa+ φ(t) = Iλ+σ;ψa+ φ(t), t ∈ [a, b].

Lemma 2.5. [29] Let λ > 0, 0 ≤ σ ≤ 1 and 0 ≤ ς < 1. If h ∈ Cς;ψ[a, b] then

Dλ,σ;ψ
a+ Iλ;ψa+ φ(t) = φ(t), t ∈ (a, b].

If φ ∈ C1[a, b] then

Dλ,σ;ψ
a+ Iα;ψa+ φ(t) = φ(t), t ∈ [a, b].

Lemma 2.6. Let λ > 0, 0 ≤ ς < 1 and φ ∈ Cς;ψ[a, b]. If λ > ς, then Iλ;ψa+ φ ∈ C[a, b] and

Iλ;ψa+ φ(a) = lim
t→a+

Iλ;ψa+ φ(t) = 0.

Lemma 2.7. [29] Let φ ∈ Cn[a, b], n − 1 < λ < n, 0 ≤ σ ≤ 1, and ς = λ + σ − λσ. Then for all

t ∈ (a, b]

Iλ;ψa+ Dλ,σ;ψ
a+ φ(t) = φ(t)−

n∑
k=1

[ψ(t)− ψ(a)]ς−k

Γ(ς − k + 1)
φ
(n−k)
ψ I

(1−σ)(n−λ);ψ
a+ φ(a).

In particular, if 0 < λ < 1, we have

Iλ;ψa+ Dλ,σ;ψ
a+ φ(t) = φ(t)− [ψ(t)− ψ(a)]ς−1

Γ(ς)
I
(1−σ)(1−λ);ψ
a+ φ(a).
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Moreover, if φ ∈ C1−ς;ψ[a, b] and I1−ς;ψa+ φ ∈ C1
1−ς;ψ[a, b] such that 0 < ς < 1. Then for all t ∈ (a, b]

Iς;ψa+ D
ς;ψ
a+ φ(t) = φ(t)− [ψ(t)− ψ(a)]γ−1

Γ(ς)
I1−ς;ψa+ φ(a).

We deduce from the above lemma the following lemmas:

Lemma 2.8. [18] Let v ∈ C(Υ× R,R∗); Υ := [0, d], d > 0, κ ∈ C1−ζ,ψ(Υ). Then the problemD
λ,σ;ψ
0+

u(t)
v(t,u(t)) = κ(t), a.e. t ∈ Υ.

(ψ(t)− ψ(0))1−ςu(t) |t=0= u0, u0 ∈ R,

has a unique solution given by

u(t) = v(t, u(t))

{
u0

v(0, u(0))
(ψ(t)− ψ(0))ς−1 + Iλ;ψ0+ κ(t)

}
.

Lemma 2.9. Let v ∈ C(Υ× R,R∗), w : Υ× R→ R be a function such that w(·, u(·)) ∈ BCς for

any u ∈ BCς . Then the problem (1.1) is equivalent to the problem of obtaining the solutions of the

integral equation

u(t) = v(t, u(t))

{
u0

v(0, u(0))
(ψ(t)− ψ(0))ς−1 + Iλ;ψ0+ w(·, u(·))(t)

}
.

Let ∅ 6= Λ ⊂ BC and let K : Λ→ Λ. We consider the solution of the equation

(Ku)(t) = u(t). (2.1)

We introduce the concept of attractivity of solutions for equation (2.1).

Definition 2.10. Solutions of equation (2.1) are locally attractive if there exists a ball B (u0, µ)

in the space BC such that, for any solutions τ = τ(t) and ξ = ξ(t) of equations (2.1) that belong

to B (u0, µ) ∩ Λ, we can write

lim
t→∞

(τ(t)− ξ(t)) = 0. (2.2)

If the limit (2.2) is uniform with respect to B (u0, µ) ∩ Λ, then the solutions of equation (2.1)

are said to be uniformly locally attractive (or, equivalently, that the solutions of (2.1) are locally

asymptotically stable).

Lemma 2.11. [11] Let M ⊂ BC. Then M is relatively compact in BC if the following conditions

are satisfied:

(a) M is uniformly bounded in BC;

(b) the functions belonging to M are almost equicontinuous in R+, i.e., equicontinuous on every

compact set in R+;
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(c) the functions from M are equiconvergent, i.e., given ε > 0, there exists L(ε) > 0 such that∣∣∣u(t)− lim
t→∞

u(t)
∣∣∣ < ε,

for any t ≥ L(ε) and u ∈M.

Theorem 2.12. (Schauder Fixed-Point Theorem [15]). Let F be a Banach space, let U be a

nonempty bounded convex and closed subset of F, and let K : U → U be a compact and continuous

map. Then K has at least one fixed point in U.

3 Existence and Attractivity Results

Definition 3.1. A measurable function u ∈ BCς is a solution of problem (1.1) if it verifies the

initial condition (ψ(t)−ψ(0))1−ςu(t) |t=0= u0 and the equation Dλ,σ;ψ
0+

u(t)
v(t,u(t)) = w (t, u(t)) on R+.

We will give the following hypotheses:

(H1) The function t 7→ w(t, u) is measurable on R+ for each u ∈ BCς , the function u 7→ w(t, u) is

continuous on BCς for a.e. t ∈ R+, and the function v is bounded such that u 7→ v(t, u) is

continuous.

(H2) There exists a continuous function T : R+ → R+ such that for a.e. t ∈ R+ and each u ∈ R,

|w(t, u)| ≤ T (t)

1 + |u|
,

and

lim
t→∞

(ψ(t)− ψ(0))1−ς
(
Iλ;ψ0+ T

)
(t) = 0.

Set

T ∗ = sup
t∈R+

(ψ(t)− ψ(0))1−ς
(
Iλ;ψ0+ T

)
(t) <∞.

Now we present a theorem on the existence and attractivity of solutions of the problem (1.1).

Theorem 3.2. Assume that the hypotheses (H1) and (H2) hold. Then the problem (1.1) has at

least one solution defined on R+ and the solutions of problem (1.1) are uniformly locally attractive.

Proof. Consider the operator K such that, for any u ∈ BCς ,

(Ku)(t) = v(t, u(t))

{
u0

v(0, u(0))
(ψ(t)− ψ(0))ς−1 +

1

Γ(λ)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))λ−1w(s, u(s))ds

}
.
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Let L be a bound of the function v. For any u ∈ BCς , and for each t ∈ R+, we have∣∣∣∣(ψ(t)− ψ(0))1−ς(Ku)(t)

∣∣∣∣
≤|v(t, u(t))|

{∣∣∣∣ u0
v(0, u(0))

∣∣∣∣+
(ψ(t)− ψ(0))1−ς

Γ(λ)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))λ−1|w(s, u(s))|ds
}

≤|v(t, u(t))|
{∣∣∣∣ u0
v(0, u(0))

∣∣∣∣+
(ψ(t)− ψ(0))1−ς

Γ(λ)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))λ−1T (s)ds

}
≤L
{∣∣∣∣ u0
v(0, u(0))

∣∣∣∣+ T ∗
}

:=R∗.

So

|K(u)‖BC ≤ R∗. (3.1)

Therefore, K(u) ∈ BCς . Since, the mapK(u) is continuous on R+; for any u ∈ BCς , andK(BCς) ⊂
BCς , then the operator K maps BCς into itself. Furthermore, equation (3.1) implies that the

operator K transforms the ball

BR∗ := B(0, R∗) = {v ∈ BCς : ‖v‖BCς ≤ R∗}

into itself. From Lemma 2.9 the solution of problem (1.1) is reduced to finding the solutions of the

operator equation K(u) = u. We show that the operator K : BCς → BCς satisfies all assumptions

of Theorem 2.12. The proof is divided into several steps:

Step 1. K is continuous.

Let {un}n∈N be a sequence such that un → u in BR∗ .

Then, for each t ∈ R+, we have∣∣((ψ(t)− ψ(0))1−ς (Kun) (t)− ((ψ(t)− ψ(0))1−ς(Ku)(t)
∣∣

≤
∣∣∣∣v(t, un(t))

{
u0

v(0, u(0))
+

(ψ(t)− ψ(0))1−ς

Γ(λ)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))λ−1w(s, un(s))ds

}
− v(t, u(t))

{
u0

v(0, u(0))
+

(ψ(t)− ψ(0))1−ς

Γ(λ)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))λ−1w(s, u(s))ds

}∣∣∣∣
≤
∣∣∣∣v(t, un(t))

{
u0

v(0, u(0))
+

(ψ(t)− ψ(0))1−ς

Γ(λ)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))λ−1w(s, un(s))ds

}
− v(t, u(t))

{
u0

v(0, u(0))
+

(ψ(t)− ψ(0))1−ς

Γ(λ)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))λ−1w(s, un(s))ds

}
+ v(t, u(t))

{
u0

v(0, u(0))
+

(ψ(t)− ψ(0))1−ς

Γ(λ)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))λ−1w(s, un(s))ds

}
− v(t, u(t))

{
u0

v(0, u(0))
+

(ψ(t)− ψ(0))1−ς

Γ(λ)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))λ−1w(s, u(s))ds

}∣∣∣∣
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≤
∣∣∣∣v(t, un(t))− v(t, u(t))

∣∣∣∣∣∣∣∣ u0
v(0, u(0))

+
(ψ(t)− ψ(0))1−ς

Γ(λ)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))λ−1

× w(s, un(s))ds

∣∣∣∣+ |v(t, u(t))| (ψ(t)− ψ(0))1−ς

Γ(λ)

×
∫ t

0

ψ′(s)(ψ(t)− ψ(s))λ−1|w(s, un(s))− w(s, u(s))|ds.

Hence ∣∣(ψ(t)− ψ(0))1−ς (Kun) (t)− (ψ(t)− ψ(0))1−ς(Ku)(t)
∣∣

≤
∣∣∣∣v(t, un(t))− v(t, u(t))

∣∣∣∣{∣∣∣∣ u0
v(0, u(0))

∣∣∣∣
+

(ψ(t)− ψ(0))1−ς

Γ(λ)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))λ−1|w(s, un(s))|ds
}

+ L
(ψ(t)− ψ(0))1−ς

Γ(λ)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))λ−1|w(s, un(s))− w(s, u(s))|ds. (3.2)

Case 1. If t ∈ [0, d], then, in view of the facts that un → u as n→∞, v and w are continuous,

by the Lebesgue dominated convergence theorem, from the equation (3.2), we have

‖K (un)−K (u)‖BCς → 0 as n→∞.

Case 2. If t ∈ (d,∞), then, from the hypotheses and (3.2), we have∣∣(ψ(t)− ψ(0))1−ς (Kun) (t)− (ψ(t)− ψ(0))1−ς(Ku)(t)
∣∣

≤
∣∣∣∣v(t, un(t))− v(t, u(t))

∣∣∣∣{∣∣∣∣ u0
v(0, u(0))

∣∣∣∣
+

(ψ(t)− ψ(0))1−ς

Γ(λ)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))λ−1T (s)ds

}
+ 2L

(ψ(t)− ψ(0))1−ς

Γ(λ)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))λ−1T (s)ds.

Then ∣∣(ψ(t)− ψ(0))1−ς (Kun) (t)− (ψ(t)− ψ(0))1−ς(Ku)(t)
∣∣

≤
∣∣∣∣v(t, un(t))− v(t, u(t))

∣∣∣∣{∣∣∣∣ u0
v(0, u(0))

∣∣∣∣+ ((ψ(t)− ψ(0))1−ς
(
Iλ;ψ0+ T

)
(t)

}
+ 2L((ψ(t)− ψ(0))1−ς

(
Iλ;ψ0+ T

)
(t). (3.3)

Since un → u as n→∞, v is continuous and (ψ(t)−ψ(0))1−ς
(
Iλ;ψ0+ T

)
(t)→ 0 as t→∞, it follows

from (3.3) that

‖K (un)−K(u)‖BCς → 0 as n→∞.

Step 2. L (BR∗) is uniformly bounded, and equicontinuous on every compact subset [0, d] of

R+, d > 0.
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We have L (BR∗) ⊂ BR∗ and BR∗ is bounded, so L (BR∗) is uniformly bounded.

Next, for each t1, t2 ∈ [0, d], t1 < t2, and u ∈ BR∗ , we have

∣∣(ψ(t2)− ψ(0))1−ς (Ku) (t2)− (ψ(t1)− ψ(0))1−ς(Ku)(t1)
∣∣

≤
∣∣∣∣v(t2, u(t2))

{
u0

v(0, u(0))
+

(ψ(t2)− ψ(0))1−ς

Γ(λ)

∫ t2

0

ψ′(s)(ψ(t2)− ψ(s))λ−1w(s, u(s))ds

}
− v(t1, u(t1))

{
u0

v(0, u(0))
+

(ψ(t1)− ψ(0))1−ς

Γ(λ)

∫ t1

0

ψ′(s)(ψ(t1)− ψ(s))λ−1w(s, u(s))ds

}∣∣∣∣
≤
∣∣∣∣v(t2, u(t2))

{
u0

v(0, u(0))
+

(ψ(t2)− ψ(0))1−ς

Γ(λ)

∫ t2

0

ψ′(s)(ψ(t2)− ψ(s))λ−1w(s, u(s))ds

}
− v(t1, u(t1))

{
u0

v(0, u(0))
+

(ψ(t2)− ψ(0))1−ς

Γ(λ)

∫ t2

0

ψ′(s)(ψ(t2)− ψ(s))λ−1w(s, u(s))ds

}
+ v(t1, u(t1))

{
u0

v(0, u(0))
+

(ψ(t2)− ψ(0))1−ς

Γ(λ)

∫ t2

0

ψ′(s)(ψ(t2)− ψ(s))λ−1w(s, u(s))ds

}
− v(t1, u(t1))

{
u0

v(0, u(0))
+

(ψ(t1)− ψ(0))1−ς

Γ(λ)

∫ t1

0

ψ′(s)(ψ(t1)− ψ(s))λ−1w(s, u(s))ds

}∣∣∣∣.
Thus ∣∣(ψ(t2)− ψ(0))1−ς (Ku) (t2)− (ψ(t1)− ψ(0))1−ς(Ku)(t1)

∣∣
≤ |v(t2, u(t2))− v(t1, u(t1))|

∣∣∣∣ u0
v(0, u(0))

+
(ψ(t2)− ψ(0))1−ς

Γ(λ)

∫ t2

0

ψ′(s)(ψ(t2)− ψ(s))λ−1w(s, u(s))ds

∣∣∣∣
+ |v(t1, u(t1))|

∣∣∣∣ (ψ(t2)− ψ(0))1−ς

Γ(λ)

∫ t1

0

ψ′(s)(ψ(t2)− ψ(s))λ−1w(s, u(s))ds

+
(ψ(t2)− ψ(0))1−ς

Γ(λ)

∫ t2

t1

ψ′(s)(ψ(t2)− ψ(s))λ−1w(s, u(s))ds

− (ψ(t1)− ψ(0))1−ς

Γ(λ)

∫ t1

0

ψ′(s)(ψ(t1)− ψ(s))λ−1w(s, u(s))ds

∣∣∣∣.
Hence ∣∣(ψ(t2)− ψ(0))1−ς (Ku) (t2)− (ψ(t1)− ψ(0))1−ς(Ku)(t1)

∣∣
≤ |v(t2, u(t2))− v(t1, u(t1))|

(∣∣∣∣ u0
v(0, u(0))

∣∣∣∣
+

(ψ(t2)− ψ(0))1−ς

Γ(λ)

∫ t2

0

ψ′(s)(ψ(t2)− ψ(s))λ−1|w(s, u(s))|ds
)

+ L

(∫ t1

0

∣∣∣∣ (ψ(t2)− ψ(0))1−ς

Γ(λ)
ψ′(s)(ψ(t2)− ψ(s))λ−1

− (ψ(t1)− ψ(0))1−ς

Γ(λ)
ψ′(s)(ψ(t1)− ψ(s))λ−1

∣∣∣∣
|w(s, u(s))|ds+

(ψ(t2)− ψ(0))1−ς

Γ(λ)

∫ t2

t1

ψ′(s)(ψ(t2)− ψ(s))λ−1|w(s, u(s))|ds
)
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≤ |v(t2, u(t2))− v(t1, u(t1))|
(∣∣∣∣ u0
v(0, u(0))

∣∣∣∣
+

(ψ(t2)− ψ(0))1−ς

Γ(λ)

∫ t2

0

ψ′(s)(ψ(t2)− ψ(s))λ−1T (s)ds

)
+ L

(∫ t1

0

∣∣∣∣ (ψ(t2)− ψ(0))1−ς

Γ(λ)
ψ′(s)(ψ(t2)− ψ(s))λ−1

− (ψ(t1)− ψ(0))1−ς

Γ(λ)
ψ′(s)(ψ(t1)− ψ(s))λ−1

∣∣∣∣
T (s)ds+

(ψ(t2)− ψ(0))1−ς

Γ(λ)

∫ t2

t1

ψ′(s)(ψ(t2)− ψ(s))λ−1T (s)ds

)
.

From the continuity of the functions T and v, by setting T∗ = supt∈[0,d] T (t), we obtain∣∣(ψ(t2)− ψ(0))1−ς (Ku) (t2)− (ψ(t1)− ψ(0))1−ς(Ku)(t1)
∣∣

≤ |v(t2, u(t2))− v(t1, u(t1))|
(∣∣∣∣ u0
v(0, u(0))

∣∣∣∣+
T∗(ψ(t2)− ψ(0))1−ς

Γ(λ)

∫ t2

0

ψ′(s)(ψ(t2)− ψ(s))λ−1ds

)
+ LT∗

(∫ t1

0

∣∣∣∣ (ψ(t2)− ψ(0))1−ς

Γ(λ)
ψ′(s)(ψ(t2)− ψ(s))λ−1

− (ψ(t1)− ψ(0))1−ς

Γ(λ)
ψ′(s)(ψ(t1)− ψ(s))λ−1

∣∣∣∣ds
+

(ψ(t2)− ψ(0))1−ς

Γ(λ)

∫ t2

t1

ψ′(s)(ψ(t2)− ψ(s))λ−1ds

)
≤ |v(t2, u(t2))− v(t1, u(t1))|

(∣∣∣∣ u0
v(0, u(0))

∣∣∣∣+
T∗(ψ(t2)− ψ(0))1−ς+λ

Γ(λ+ 1)

)
+ LT∗

(∫ t1

0

∣∣∣∣ (ψ(t2)− ψ(0))1−ς

Γ(λ)
ψ′(s)(ψ(t2)− ψ(s))λ−1

− (ψ(t1)− ψ(0))1−ς

Γ(λ)
ψ′(s)(ψ(t1)− ψ(s))λ−1

∣∣∣∣ds+
(ψ(t2)− ψ(0))1−ς

Γ(λ+ 1)
(ψ(t2)− ψ(t1))λ

)
.

As t1 → t2, the right-hand side of the inequality tends to zero.

Step 3. L (BR) is equiconvergent.

Let u ∈ BR∗. Then, for each t ∈ R+ we have∣∣∣∣(ψ(t)− ψ(0))1−ς(Ku)(t)|
∣∣∣∣ ≤ |v(t, u(t))|

{∣∣∣∣ u0
v(0, u(0))

∣∣∣∣
+

∣∣∣∣ (ψ(t)− ψ(0))1−ς

Γ(λ)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))λ−1w(s, u(s))ds

∣∣∣∣}
≤ |v(t, u(t))|

{∣∣∣∣ u0
v(0, u(0))

∣∣∣∣+

∣∣∣∣ (ψ(t)− ψ(0))1−ς

Γ(λ)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))λ−1T (s)ds

∣∣∣∣}
≤ L

{∣∣∣∣ u0
v(0, u(0))

∣∣∣∣+ (ψ(t)− ψ(0))1−ς
(
Iλ;ψ0+ T

)
(t)

}
.

Since

(ψ(t)− ψ(0))1−ς
(
Iλ;ψ0+ T

)
(t)→ 0 as t→ +∞,



CUBO
23, 1 (2021)

Existence and attractivity results for ψ-Hilfer hybrid fractional. . . 155

we find

|(Ku)(t)| ≤ L
{∣∣∣∣ u0

(ψ(t)− ψ(0))1−ςv(0, u(0))

∣∣∣∣+
(ψ(t)− ψ(0))1−ς

(
Iλ;ψ0+ T

)
(t)

(ψ(t)− ψ(0))1−ς

}
.

Hence,

|(Lu)(t)− (Lu)(+∞)| → 0 as t→ +∞,

in view of Lemma 2.11 as a consequence of Steps 1 − 4, we conclude that K : BR∗ → BR∗ is

compact and continuous. Applying the Theorem 2.12, we have that K has a fixed point u, which

is a solution of problem (1.1) on R+.

Step 4. The uniform local attractivity of solutions.

We assume that u∗ is a solution of problem (1.1) under the conditions of this theorem.

Set u ∈ B
(
u∗, 2L

{∣∣∣∣ u0
v(0, u(0))

∣∣∣∣+ 2T ∗
})

, we have

∣∣(ψ(t)− ψ(0))1−ς (Ku) (t)− (ψ(t)− ψ(0))1−ς(u∗)(t)
∣∣

≤
∣∣(ψ(t)− ψ(0))1−ς (Ku) (t)− (ψ(t)− ψ(0))1−ς(Ku∗)(t)

∣∣
≤ |v(t, u(t))− v(t, u∗(t))|

{∣∣∣∣ u0
v(0, u(0))

∣∣∣∣
+

(ψ(t)− ψ(0))1−ς

Γ(λ)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))λ−1|w(s, u(s))|ds
}

+ L
(ψ(t)− ψ(0))1−ς

Γ(λ)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))λ−1|w(s, u(s))− w(s, u∗(s))|ds

≤ 2L

{∣∣∣∣ u0
v(0, u(0))

∣∣∣∣+
(ψ(t)− ψ(0))1−ς

Γ(λ)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))λ−1T (s)ds

}
+ 2L

(ψ(t)− ψ(0))1−ς

Γ(λ)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))λ−1T (s)ds

≤ 2L

{∣∣∣∣ u0
v(0, u(0))

∣∣∣∣+ 2T ∗
}
.

Thus, we get

‖K(u)− u∗‖BCς ≤ 2L

{∣∣∣∣ u0
v(0, u(0))

∣∣∣∣+ 2T ∗
}
.

So, we conclude that K is a continuous function such that

K

(
B

(
u∗, 2L

{∣∣∣∣ u0
v(0, u(0))

∣∣∣∣+ 2T ∗
}))

⊂ B
(
u∗, 2L

{∣∣∣∣ u0
v(0, u(0))

∣∣∣∣+ 2T ∗
})

.
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Moreover, if u is a solution of problem (1.1), then

|u(t)− u∗(t)| = |(Ku)(t)− (Ku∗) (t)|

≤ |v(t, u(t))− v(t, u∗(t))|
{

(ψ(t)− ψ(0))ς−1
∣∣∣∣ u0
v(0, u(0))

∣∣∣∣
+

1

Γ(λ)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))λ−1|w(s, u(s))|ds
}

+
L

Γ(λ)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))λ−1|w(s, u(s))− w(s, u∗(s))|ds

≤ 2L

{
(ψ(t)− ψ(0))ς−1

∣∣∣∣ u0
v(0, u(0))

∣∣∣∣
+

1

Γ(λ)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))λ−1|w(s, u(s))|ds
}

+
L

Γ(λ)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))λ−1|w(s, u(s))− w(s, u∗(s))|ds

≤ 2L

{
(ψ(t)− ψ(0))ς−1

∣∣∣∣ u0
v(0, u(0))

∣∣∣∣+ 2(Iλ;ψ0+ T )(t)

}
.

Therefore,

|u(t)− u∗(t)| ≤ 2L

{
(ψ(t)− ψ(0))ς−1

∣∣∣∣ u0
v(0, u(0))

∣∣∣∣+ 2
(ψ(t)− ψ(0))1−ς(Iλ;ψ0+ T )(t)

(ψ(t)− ψ(0))1−ς

}
. (3.4)

By using (3.4) and the fact that

lim
t→∞

(ψ(t)− ψ(0))1−ς(Iλ;ψ0+ T )(t) = 0,

we conclude

lim
t→∞

|u(t)− u∗(t)| = 0.

Consequently, all solutions of problem (1.1) are uniformly locally attractive.

4 An Example

As an application of our results, we consider the following problem for a ψ-Hilfer fractional differ-

ential equation 
D

1
2 ,

1
2 ;ψ

0+
u(t)

v(t, u(t))
= w (t, u(t)) , a.e. t ∈ R+,

(ψ(t)− ψ(0))
1
4u(t) |t=0= 1,

(4.1)

where ψ : [0, 1]→ R with ψ(t) =
√
t+ 3,

v(t, u) =
1

(1 + t)(1 + |u|)
,


w(t, u) =

β(ψ(t)− ψ(0))
−1
4 sin t

64(1 +
√
t)(1 + |u|)

, t ∈ (0,∞), u ∈ R,

w(0, u) = 0, u ∈ R,
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and

β =
9
√
π

16
.

Clearly, the function w is continuous. The hypothesis (H2) is satisfied with
T (t) =

β(ψ(t)− ψ(0))
−1
4 | sin t|

64(1 +
√
t)

, t ∈ (0,∞),

T (0) = 0.

In addition, we have

(ψ(t)− ψ(0))
1
4

(
I

1
2 ;ψ

0+ T
)

(t) =
(ψ(t)− ψ(0))

1
4

Γ
(
1
2

) ∫ t

0

ψ′(τ)(ψ(t)− ψ(τ))
−1
2 T (τ)dτ

≤ 1

4
(ψ(t)− ψ(0))

−1
4 → 0 as t→∞.

Simple computations show that all conditions of Theorem 3.2 are satisfied. Consequently,

our problem (4.1) has at least one solution defined on R+, and all solutions of this problem are

uniformly locally attractive.

5 Conclusion

In this paper, we provided some sufficient conditions ensuring the existence and the uniform locally

attractivity of solutions of some ψ-Hilfer fractional differential equations. The technique used is

based on Schauder’s fixed point theory theorem.
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ABSTRACT

Let IK be a complete ultrametric field and let A be a unital commu-

tative ultrametric Banach IK-algebra. Suppose that the multiplicative

spectrum admits a partition in two open closed subsets. Then there

exist unique idempotents u, v ∈ A such that φ(u) = 1, φ(v) = 0 ∀φ ∈
U, φ(u) = 0 φ(v) = 1 ∀φ ∈ V . Suppose that IK is algebraically closed.

If an element x ∈ A has an empty annulus r < |ξ − a| < s in its

spectrum sp(x), then there exist unique idempotents u, v such that

φ(u) = 1, φ(v) = 0 whenever φ(x − a) ≤ r and φ(u) = 0, φ(v) = 1

whenever φ(x− a) ≥ s.

RESUMEN

Sea IK un cuerpo ultramétrico completo y sea A una IK-algebra de

Banach ultramétrica unital conmutativa. Suponga que el espectro mul-

tiplicativo admite una partición en dos conjuntos abiertos y cerrados.

Luego, existen idempotentes únicos u, v ∈ A tales que φ(u) = 1, φ(v) =

0 ∀φ ∈ U, φ(u) = 0 φ(v) = 1 ∀φ ∈ V . Suponga que IK es algebraica-

mente cerrado. Si un elemento x ∈ A tiene un anillo vaćıo r < |ξ−a| < s

en su espectro sp(x), entonces existen idempotentes únicos u, v tales

que φ(u) = 1, φ(v) = 0 cada vez que φ(x−a) ≤ r y φ(u) = 0, φ(v) = 1

cada vez que φ(x− a) ≥ s.
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1 Introduction and main Theorem

Ultrametric Banach algebras have been a topic of many resarch along the last years [1], [3], [4],

[5],[6], [10], [11], [12]. The following Theorem 1.1 (stated in [14]) corresponds in ultrametric Banach

algebras to a well known theorem in complex Banach algebra: if the spectrum of maximal ideals

admits a partition in two open closed subsets U and V with respect to the Gelfand topology, there

exist idempotents u and v such that χ(u) = 1, χ(v) = 0 ∀χ ∈ U and χ(u) = 0, χ(v) = 1 ∀χ ∈ V .

In an ultrametric Banach algebra, it is impossible to have a similar result because a partition

in two open closed subsets for the Gelfand topology on the spectrum of maximal ideals then

makes no sense, due to the total disconnection of the spectrum. B. Guennebaud first had the

idea to consider the set of continuous multiplicative semi-norms of an ultrametric Banach algebra,

denoted by Mult(A, ‖ . ‖) instead of the spectrum of maximal ideals [14], an idea that later

suggested Berkovich theory [2]. Recall that Mult(A, ‖ . ‖) is compact with respect to the topology

of pointwise convergence (Theorem 1.11 in [7]).

The proof of Theorem 1.1, stated in [14], was heavy and involved many particular notions in

a chapter of over 40 pages that was never published. We will use Propositions 2.10, 2.11, 2.12 in

order to assure the unicity. Finally, we will show that if the theorem is proven for affinoid algebras,

that may be generalised to all ultrametric Banach algebras (Proposition 2.12).

Notations: We denote by IK a complete ultrametric field. Given a IK-algebra A, we denote by

Mult(A) the set of multplicative semi-norms of A and if A is a normed IK-algebra, we denote by

Mult(A, ‖ . ‖) the set of continuous multplicative semi-norms of A provided with the topology of

pointwise convergence. Next, we denote by Multm(A, ‖ . ‖) the set of continuous multplicative

semi-norms of A whose kernel is a maximal ideal of A. Given φ ∈ Mult(A, ‖ . ‖), we denote by

Ker(φ) the closed prime ideal of the x ∈ A such that φ(x) = 0.

It is well known that every maximal ideal is the kernel of at least one multiplicative semi-norm

on A (see for example [9]). The algebra A is said to be multbijective if for every maximal idealM,
A

M
admits only one absolute value that is an expansion of this of IK. It is easily seen that if every

maximal ideal is of finite codimension, then the algebra A is multbijective.

Consider then a multbijective unital commutative ultrametric IK-Banach algebra A. We de-

note by X (A) the set of algebra homomorphisms from A onto a field extension of IK of the form
A

M
where M is a maximal ideal of A. So, for every χ ∈ X (A), the mapping |χ| defined on A by

|χ|(x) = |χ(x)| belongs to Multm(A, ‖ . ‖) and this is the unique φ ∈ Multm(A, ‖ .‖) such that

Ker(φ) = Ker(χ).

Theorem 1.1. Let A be a unital commutative ultrametric IK-Banach algebra such that Mult(A, ‖ . ‖)
admits a partition in two compact subsets U, V . There exist unique idempotents u, v ∈ A such

that φ(u) = 1, φ(v) = 0, ∀φ ∈ U and φ(u) = 0, φ(v) = 1, ∀φ ∈ V .
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Corollary 1.2. Let A be a unital commutative ultrametric IK-Banach algebra such that Mult(A, ‖ . ‖)
admits a partition in two compact subsets U, V . Then A is isomorphic to a direct product of two

IK-Banach algebras AU ×AV such that Mult(AU , ‖ . ‖) = U and Mult(AV , ‖ . ‖) = V . Given the

idempotent u ∈ A such that φ(u) = 1 ∀φ ∈ U, φ(u) = 0 ∀φ ∈ V , then AU = uA, AV = (1− u)A.

As an easy consequence, we have Theorem 1.3. A few definitions are necessary:

Definitions and notations: Suppose that IK is algebraically closed. Let a ∈ IK and r, s ∈ IR+

with 0 < r < s. We denote by Γ(a, r, s) the set {x ∈ IK| r < |x − a| < s}. Let D be a subset of

IK, let a ∈ D be such that D ∩ Γ(a, r, s) = ∅ and that r = sup{|a − x|, x ∈ D, |a − x| ≤ r} and

s = inf{|a− x|, x ∈ D, |a− x| ≥ s}. The annulus Γ(a, r, s) is called an empty-annulus of D.

Let A be a unital commutative IK-algebra and let x ∈ A. We denote by sp(x) the set of all

λ ∈ IK such that x− λ is not invertible.

Theorem 1.3. Suppose that IK is algebraically closed. Let A be a unital commutative ultrametric

IK-Banach algebra such that Multm(A, ‖ . ‖) is dense in Mult(A, ‖ . ‖) and let x ∈ A be such

that sp(x) admits an empty-annulus Γ(a, r, s). Then there exist a unique idempotent u ∈ A and a

unique idempotent v ∈ A such that χ(u) = 1, χ(v) = 0 ∀χ ∈ X (A) satisfying |χ(x) − a| ≤ r and

χ(u) = 0, χ(v) = 1 ∀χ ∈ X (A) satisfying |χ(x)− a| ≥ s.

2 The proofs

Proving theorem 1.1 requires some preparation. We will use Propositions 2.10, 2.11 and 2.12 and

mainly Theorem 2.7.

Definitions and notations: Let A be a unital commutative ultrametric IK-Banach algebra

whose norm is ‖ . ‖. We define the spectral semi-norm ‖ . ‖sp as ‖f‖sp = limn→+∞ ‖fn‖
1
n . By

[13] we have Theorem 2.1 (see also [9], theorem 6.19).

Theorem 2.1. ‖f‖sp = sup{φ(f) | φ ∈Mult(A, ‖ . ‖)}.

Affinoid algebras were introduced by John Tate in [17] who called them algebras topologically

of finite type and are now usually called affinoid algebras. As this first name suggests, such an

algebra is the completion of an algebra of finite type for a certain norm.

Definitions and notation: The IK-algebra of polynomials in n variables

IK[X1, . . . , Xn] is equipped with the Gauss norm ‖ . ‖ defined as∣∣∣∣∣∣
∣∣∣∣∣∣
∑

i1,...,in

ai1,...,inX
i1
1 · · ·Xin

n

∣∣∣∣∣∣
∣∣∣∣∣∣ = sup

i1,...,in

|ai1,...,in |.
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We denote by IK{X1, . . . , Xn} the set of power series in n variables∑
i1,...,in

ai1,...,inX
i1
1 · · ·Xin

n such that lim
i1+...+in→∞

ai1,...,in = 0. The elements of such an algebra

are called the restricted power series in n variables, with coefficients in IK. Hence, by definition,

IK[X1, . . . , Xn] is dense in IK{X1, . . . , Xn}. Then IK{X1, . . . , Xn} is a IK-Banach algebra which is

just the completion of IK[X1, . . . , Xn] and is denoted by Tn.

By [16] (see also [9]): we have Theorem 2.2:

Theorem 2.2. Every algebra IK{X1, . . . , Xn} is factorial and all ideals are closed.

A IK- affinoid algebra corresponds to a quotient of any algebra of the form IK{X1, . . . , Xn}
by one of its ideals equipped with its quotient norm of Banach IK-algebra.

By Theorems 31.1 and 32.7 of [9] (see also [17] and [14]):

Theorem 2.3. Let A be a IK-affinoid algebra. Then A is noetherian and all its ideals are closed.

Each maximal ideal is of finite codimension. Moreover the nilradical of A is equal to its Jacobson

radical. Further, A has finitely many minimal prime ideals.

By Theorems 35.4 in [9] or Proposition 2.8 of III in [14], we have Theorem 2.4:

Theorem 2.4. Let A be a IK-affinoid algebra. Then Multm(A, ‖ . ‖) is dense in Mult(A, ‖ . ‖)
for the topology of pointwise convergence.

By Theorems 35.4 in [9] we can state Theorem 2.5:

Theorem 2.5. Let A be a reduced IK-affinoid algebra. Then the spectral norm ‖ . ‖ of A is a

norm and is equivalent to the norm of affinoid algebra.

Remark 2.6. The proofs given in [9] for Theorems 2.2, 2.3, 2.4, 2.5 are given for algebraically

closed complete ultrametric field but they hold on any complete ultrametric field.

By Corollary 2.2.7 in [2] we have Theorem 2.7:

Theorem 2.7. Let A be a reduced IK-affinoid algebra such that Mult(A, ‖ . ‖) admits a partition

in two compact subsets U1 and U2. Then A is isomorphic to a direct product A1 ×A2 where Aj is

a IK-affinoid algebra such that Mult(Aj , ‖ . ‖) is homeomorphic to Uj , j = 1, 2.

Proposition 2.8. Let A be a IK-affinoid algebra of Jacobson radical R and let w ∈ R. The

equation x2 − x+ w = 0 has a solution in R.

Proof. Since A is affinoid, by Theorem 2.3, w is nilpotent, hence we can consider the element

u = −1

2

+∞∑
n=1

( 1
2

n

)
(−4w)n.
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Now we can check that (2u− 1)2 = 1− 4w and then u2 − u− w = 0.

Proposition 2.9. Let A be a IK-affinoid algebra of Jacobson radical R and let w ∈ A be such that

w2 − w ∈ R. There exists an idempotent u ∈ A such that w − u ∈ R.

Proof. We will roughly follow the proof known in complex algebra [15]. Let r = w2 − w. We first

notice that 1 + 4r = (2w − 1)2. Next,
r

1 + 4r
belongs to R hence by Proposition 2.8, there exists

x ∈ R such that x2 − x+
r

1 + 4r
= 0, and hence

((2w − 1)x)2 − (2w − 1)2x+ r = 0.

Now set s = (2w − 1)x. Then s belongs to R, as x. Then we obtain

s2 − (2w − 1)s+ r = 0.

Let us now put u = w − s and compute u2:

(w − s)2 = w2 − 2ws+ s2 = w + r − 2ws+ s2.

But s2 = −r + (2w − 1)s, hence finally:

(w + s)2 = w − r + 2ws+ r − (2w − 1)s = w + s.

Thus u is an idempotent such that u− w ∈ R.

Proposition 2.10. [14] Let A be a commutative unital ultrametric IK-Banach algebra and assume

that Mult(A, ‖ . ‖) admits a partition in two compact subsets U, V . Suppose that there exist two

idempotents u and e such that ∀φ ∈ U, φ(u) = φ(e) = 1 and ∀φ ∈ V, φ(u) = φ(e) = 0 . Then

u = e.

Proof. Put e = u + r. Since e2 = e, we have (u + r)2 = u + 2ur + r2 hence u + r = u + 2ur + r2

and hence r = 2ur + r2, therefore r(2u+ r − 1) = 0.

Suppose r 6= 0. Then 2u+ r− 1 is a divisor of zero. Now, when φ ∈ U , we have φ(1− u) = 0,

hence φ(−1 + 2u + r) = φ(u + r) = φ(e) = 1, and when φ ∈ V , we have φ(u) = φ(e) = 0, hence

φ(1−2u−r) = φ(1−u−r) = φ(1−e) = 1. Hence, ∀φ ∈Mult(A, ‖ . ‖), we have φ(1−2u−r) = 1.

Consequently, 1− 2u− r does not belong to any maximal ideal of A and hence is invertible. But

then 1− 2u− r is not a divisor of zero, which proves that r = 0 and hence e = u.

Proposition 2.11. [14] Let A be a IK-affinoid algebra such that Mult(A, ‖ . ‖) admits a partition

in two compact subsets U1, U2. There exist unique idempotents e1, e2 ∈ A such that φ(e1) =

1, φ(e2) = 0 ∀φ ∈ U1 and φ(e1) = 0, φ(e2) = 1∀φ ∈ U2.
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Proof. Suppose first that A is reduced. By Theorem 2.7, A is isomorphic to the direct product

A1 × A2 where Aj is a IK-affinoid algebra such that Mult(Aj , ‖ . ‖) = Uj , j = 1, 2. Let Φ

be the isomorphism from A1 × A2 onto A, let uj be the unity of Aj , j = 1, 2 and let e1 =

Φ(u1, 0), e2 = Φ(0, u2). So e1, e2 are idempotents of A. Let A′1 = {Φ(x, 0) |x ∈ A1} and let

A′2 = {Φ(0, x) |x ∈ A2}.

Then, given ϕ ∈ Uj , it factorizes in the form ψ ◦ Φ−1 with ψ ∈ Mult(Aj , ‖ . ‖), (j = 1, 2)

and for ϕ ∈ U1, we have ϕ(e1) = 1, ϕ(e2) = 0, and given ϕ ∈ U2, we have ϕ(e1) = 0, ϕ(e2) = 1.

By Proposition 2.10, the idempotents e1, e2 are unique.

We can easily greneralize when A is no longer supposed to be reduced. Let R be the Jacobson

radical of A and let B =
A

R
. Let θ be the canonical surjection from A onto B. Every φ ∈

Mult(A, ‖ . ‖) is of the form ϕ ◦ θ with ϕ ∈ Mult(B, ‖ . ‖). Let U ′1 = {ϕ ∈ Mult(B, ‖ . ‖)} be

such that ϕ ◦ θ ∈ U1 and let U ′2 = {ϕ ∈Mult(B, ‖ . ‖)} be such that ϕ ◦ θ ∈ U2. Then U ′1 and U ′2

are two compact subsets making a partition of Mult(B, ‖ . ‖). Therefore, B has an idempotent

u1 such that ϕ(u1) = 1 ∀ϕ ∈ U ′1 and ϕ(u1) = 0 ∀ϕ ∈ U ′2. Let w ∈ A be such that θ(w) = u1.

Then we can check that φ(w) = 1 ∀φ ∈ U1 and φ(w) = 0 ∀φ ∈ U2. But by Proposition 2.9,

there exists an idempotent e1 ∈ A such that e1 − w ∈ R. Then χ(e1) = χ(w) ∀χ ∈ X(A) and

hence φ(e1) = φ(w) ∀φ ∈ Mult(A, ‖ . ‖) because, by Theorem 2.4 Multm(A, ‖ . ‖) is dense in

Mult(A, ‖ . ‖). The unicity of e1 follows from Proposition 2.10. Similarly, there exists a unique

idempotent e2 ∈ A such that φ(e2) = 1 ∀φ ∈ U2 and φ(e2) = 0 ∀φ ∈ U1.

Definition and notations: We will denote by | . |∞ the Archimedean absolute value of IR. Given

a unital commutative ultrametric IK-normed algebra A and φ ∈Mult(A, ‖ . ‖), y1, . . . yq ∈ A and

ε > 0, we will denote by W (φ, y1, . . . , yq, ε) the set of θ ∈Mult(A, ‖ . ‖) such that |φ(yj)−θ(yj)|∞ ≤
ε ∀j = 1, . . . , q. Given a unital commutative ultrametric IK-normed algebra A and a subalgebra

B, we call canonical mapping from Mult(A, ‖ . ‖) to Mult(B, ‖ . ‖) the mapping Φ defined by

Φ(ϕ)(x) = ϕ(x) ∀x ∈ B, ϕ ∈Mult(A, ‖ . ‖).

Proposition 2.12. [14] Let A be a unital commutative ultrametric IK-Banach algebra and assume

that Mult(A, ‖ . ‖) admits a partition in two compact subsets U, V . There exists a IK-affinoid

algebra B included in A, admitting for norm this of A, such that Mult(B, ‖ . ‖) admits a partition

in two open subsets U ′, V ′ where the canonical mapping Φ from Mult(A, ‖ . ‖) to Mult(B, ‖ . ‖)
satisfies Φ(U) ⊂ U ′, Φ(V ) ⊂ V ′.

Proof. Since U and V are compact sets, we can easily define a covering of open sets (Oj)j∈J such

that Oj ∩ V = ∅ ∀j ∈ J . From this, we can extract a finite covering (Ui)1≤i≤n of U where the Ui

are of the form W (fi, xi,1, . . . , xi,mi
, εi) with xi,j ∈ A, such that Ui ∩ V = ∅ ∀i = 1, . . . , n. Let

Ã be the finite type IK-subalgebra generated by all the xi,j , 1 ≤ j ≤ mi, 1 ≤ i ≤ n. Consider

the image of Mult(A, ‖ . ‖) in Mult(Ã, ‖ . ‖) through the mapping Φ that associates to each
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φ ∈ Mult(A, ‖ . ‖) its restriction to Ã and let Ũ = Φ(U), Ṽ = Φ(V ). Then both Ũ , Ṽ are

compact with respect to the topology of Mult(Ã, ‖ . ‖) and hence there exist open neighborhoods

U ′ of Ũ and V ′ of Ṽ in Mult(Ã, ‖ . ‖) such that U ′ ∩ V ′ = ∅. Let Y = U ′ ∪ V ′. By construction

we have Φ(U) ⊂ U ′, Φ(V ) ⊂ V ′.

Let φ ∈ Mult(Ã, ‖ . ‖) \ Y . There exists a finite type algebra Ãφ containing Ã, such that

the canonical image Hϕ of Mult(Ãφ, ‖ . ‖) in Mult(Ã, ‖ . ‖) does not contain φ. Since this

image Hφ is compact, there exists a neighborhood G(φ) of φ such that G(φ) ∩ Hφ = ∅. Next,

we notice that Mult(Ã, ‖ . ‖) \ Y is compact, hence we can find φ1, . . . , φn ∈ Mult(Ã, ‖ . ‖) \ Y
and neighborhoods Z(φ1), . . . , Z(φn) making a covering of Mult(Ã, ‖ . ‖) \ Y . Let E be the finite

type algebra generated by the Ãφi
, 1 ≤ i ≤ n. Then E is a IK-subalgebra of A of finite type which

contains Ã and hence is equipped with the IK-algebra norm ‖ . ‖ of A. Moreover, by construction,

Mult(E, ‖ . ‖) is equal to Y = U ′ ∪ V ′.

Let {x1, . . . , xN} be a finite subset of the unit ball of E such that IK[x1, . . . , xN ] = E. Let

T be the topologically pure extension IK{X1, . . . , XN} and consider the canonical morphism Θ

from IK[X1, . . . , XN ] equipped with the Gauss norm, into E, equipped with the norm ‖ . ‖ of A,

defined as Θ(F (X1, . . . , XN )) = F (x1, . . . , xN ). Since by hypotheses, ‖xj‖ ≤ 1 ∀j = 1, . . . , N , Θ is

continuous and has expansion to a continuous morphism Θ from T into A. Let I be the closed ideal

of the elements F ∈ T such that Θ(F ) = 0. Then Θ(T ) is the IK-affinoid algebra B =
T

I
containing

E and included in A. By construction, the IK-affinoid norm of B is the restriction of the norm ‖ . ‖
of A. Since by construction E is dense in B, we have Mult(B, ‖ . ‖) = Mult(E, ‖ . ‖) = U ′ ∪ V ′.
Consequently, Φ(U) ⊂ U ′, Φ(V ) ⊂ V ′, which ends the proof.

Remark 2.13. Proposition 2.12 was roughly stated in [14]. However, its proof was confusing

about subsets containing U and V and norms defined on an affinoid subalgebra B, which then puts

in doubt the conclusion.

We can now conclude.

Proof of Theorem 1.1. By Proposition 2.12, there exists a IK-affinoid algebra B included in A

such that Mult(B, ‖ . ‖) admits a partition in two open disjoint subsets U ′, V ′ and such that

the canonical mapping Φ from Mult(A, ‖ .‖) to Mult(B, ‖ . ‖) satisfies Φ(U) ⊂ U ′, Φ(V ) ⊂ V ′.

Now, by Proposition 2.11, there exist idempotents u′, v′ ∈ B such that φ(u′) = 1 ∀φ ∈ U ′ and

φ(u′) = 0 ∀φ ∈ V ′. Consequently, we have φ(u) = 1 ∀φ ∈ U , φ(u) = 0 ∀φ ∈ V and φ(v) = 0 ∀φ ∈ U ,

φ(v) = 1 ∀φ ∈ V . The unicity follows from Proposition 2.11. That ends the proof.

Proof of Theorem 1.3. Without loss of generality, we can suppose a = 0. Let U = {φ ∈
Mult(A, ‖ . ‖)} such that φ(x) ≤ r, and let V = {φ ∈ Mult(A, ‖ . ‖)} such that φ(x) ≥ s.

Since Multm(A, ‖ . ‖) is dense in Mult(A, ‖ . ‖), it is clear that no φ ∈ Mult(A, ‖ . ‖) can sat-

isfy r < φ(x) < s. Consequently, U, V make a partition of Mult(A, ‖ . ‖). Next, one can easily



168 A. Escassut CUBO
23, 1 (2021)

check that U and V are open and closed with respect to the pointwise convergence. Indeed, given

φ ∈Mult(A, ‖ . ‖), g1, . . . , gt ∈ A and ε > 0, we denote by W (φ, g1, . . . , gt, ε) the neighborhood of

φ defined as {θ ∈ Mult(A, ‖ . ‖) |φ(gj) − θ(gj)|∞ ≤ ε ∀j = 1, . . . , t}. So, let ε ∈
]
0,
s− r

2

[
and consider the families of neighborhoods of U and V of the form W (φ, x, f1, . . . , fm, ε)φ∈U

and W (ψ, x, g1, . . . , gn, ε)ψ∈V respectively. Then given any W (φ, x, f1, . . . , fm, ε), φ ∈ U and

W (ψ, x, g1, . . . , gn, ε), ψ ∈ V we have W (φ, x, f1, . . . , fm, ε) ∩W (ψ, x, g1, . . . , gn, ε) = ∅ hence U

and V are two open subsets such that U ∩ V = ∅. By construction Mult(A, ‖ . ‖) = U ∪ V . Con-

sequently, U and V are two open subsets making a partition of Mult(A, ‖ . ‖), which by Theorem

1.1, ends the proof.

Remark 2.14. The proof of Theorem 1.3 consists of injecting the Krasner-Tae algebra [8]

H(Γ(a, r, s)) into A.

Acknowledgement: I am grateful to the Referee for useful remarks.
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ABSTRACT

We investigate a fixed point problem for coupled Geraghty type con-

traction in a metric space with a binary relation. The role of the binary

relation is to restrict the scope of the contraction to smaller number of

ordered pairs. Such possibilities have been explored for different types

of contractions in recent times which has led to the emergence of re-

lational fixed point theory. Geraghty type contractions arose in the

literatures as a part of research seeking the replacement contraction

constants by appropriate functions. Also coupled fixed point problems

have evoked much interest in recent times. Combining the above trends

we formulate and solve the fixed point problem mentioned above. Fur-

ther we show that with some additional conditions such solution is

unique. Well-posedness of the problem is investigated. An illustrative

example is discussed. The consequences of the results are discussed

considering α-dominated mappings and graphs on the metric space.

Finally we apply our result to show the existence of solution of some

system of nonlinear integral equations.

RESUMEN

Investigamos un problema de punto fijo para contracciones acopladas

de tipo Geraghty en un espacio métrico con una relación binaria. El

rol de la relación binaria es restringir el alcance de la contracción a un

número menor de pares ordenados. Tales posibilidades han sido ex-

ploradas para diferentes tipos de contracciones recientemente, lo que

ha conllevado el nacimiento de la teoŕıa de punto fijo relacional. Las

contracciones de tipo Geraghty aparecen en la literatura como parte de

la investigación buscando reemplazar las constantes de contracción por

funciones apropiadas. También problemas de puntos fijos acoplados

han sido de mucho interés recientemente. Combinando las ideas ante-

riores, formulamos y resolvemos el problema de punto fijo mencionado

anteriormente. Más aún, mostramos que bajo condiciones adicionales

tal solución es única. Se investiga la bien-definición del problema. Se

discute un ejemplo ilustrativo. Las consecuencias de los resultados se

discuten considerando aplicaciones α-dominadas y grafos en espacios

métricos. Finalmente aplicamos nuestros resultados para mostrar la

existencia de soluciones de algunos sistemas de ecuaciones integrales no

lineales.
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1 Introduction

Coupled fixed point results constitute a domain in metric fixed point theory which has experienced

rapid development in recent times. The concept of coupled fixed point was introduced some time

back in 1987 by Guo et al [17]. But only after the publication of the work of Bhaskar et al [15] a

large number of papers have been written on this topic and on topics related to it [7, 9, 18, 21].

Our consideration in this paper is a study related to fixed points of some coupled operators on

metric spaces equipped with an appropriate binary relation. A contraction condition of Geraghty

type [20, 26, 32] is supposed to be satisfied by the coupled operator for those points which are

related by the binary relation. As a consequence of it the assumption here is weaker than the

usual case in metric fixed point theory where it is assumed that the inequality condition holds for

arbitrarily chosen pairs from the space. Such weakening of conditions have substantially occupied

recent interests in fixed point theory. Works of this category have come to be known as relation-

theoretic fixed point results. Some instances of these works are in [1, 3, 23, 30].

We use Geraghty’s approach [16] to define a coupled contraction condition. It is a part of

research where the constants of the contractions are replaced by suitable control functions in order

to make the contraction inequality more general. Such works occupy important positions in metric

fixed point theory. Some instances of these works are [5, 9, 13, 14, 22].

In this paper we combine the above trends in fixed point theory to define a new problem and

then investigate its several aspects and show one application of the result.

Firstly, we show that such problem has a solution, that is, a coupled fixed point of the

concerned operator exists. The uniqueness of the coupled fixed point is established under some

additional conditions.

Well-posedness has been considered for many fixed point problems in recent times [24, 25, 27,

28]. In the present paper we deal with the well-posedness of the problem mentioned above.

Next we discuss some consequences of our main result. Precisely we obtain some results for

α-dominated mappings and results in metric spaces having a graph defined on it. The main result

is supported with an example. In the last section we include an application of the main theorem

to a problem of nonlinear integral equations.

2 Mathematical background

In the following we discuss the necessary mathematics for the discussion on the topics in the

following sections. Let X and Y be two nonempty sets and R be a relation from X to Y , that is,

R ⊆ X×Y . We write (x, y) ∈ R or xRy to mean x is R related to y. The set P = {x ∈ X : (x, y) ∈
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R for some y ∈ Y } is called the domain of R and the set Q = {y ∈ Y : (x, y) ∈ R for some x ∈ X}
is called the range of R. By R−1 we mean the set {(y, x) : (x, y) ∈ R} which is called the inverse

of R.

A relation R from X to X is called a relation on X. Let R be a relation on X. The relation R

is said to be directed if for given x, y ∈ X, there exists z ∈ X such that (x, z) ∈ R and (y, z) ∈ R.

The relation R is said to be a partial order relation on X if it is reflexive, anti-symmetric and

transitive.

Let X be a nonempty set. An element (x, y) ∈ X × X is called a coupled fixed point of a

function F : X ×X → X if x = F (x, y) and y = F (y, x).

Problem (P): Let (X, d) be a metric space and F : X ×X → X be a mapping. We consider

the problem of finding a coupled fixed point of F , that is, the problem of finding (x, y) ∈ X ×X
such that

x = F (x, y) and y = F (y, x). (2.1)

Definition 2.1 ([6]). The problem (P) is called well-posed if (i) F has a unique coupled fixed

point (x∗, y∗), (ii) xn → x∗ and yn → y∗ as n → ∞, whenever {(xn, yn)} is any sequence in

X × X for which lim supn→∞[d(xn, x
∗) + d(yn, y

∗)] is finite and limn→∞ d(xn, F (xn, yn)) =

limn→∞ d(yn, F (yn, xn)) = 0.

We define here the R-dominated mapping.

Definition 2.2. Let X be a nonempty set with a binary relation R on it. A mapping F : X×X →
X is said to be R-dominated if (x, F (x, y)) ∈ R and (F (y, x), y) ∈ R, for any (x, y) ∈ X ×X.

Example 2.3. Let X = [0, 1] be equipped with usual metric. Let F : X ×X → X be defined as

F (x, y) = x+y
16+x+y , for x, y ∈ X. Let a binary relation R on X be defined as R = {(x, y) : 0 ≤

x ≤ 1; 0 ≤ y ≤ 1
8 or 0 ≤ x ≤ 1

8 ; 0 ≤ y ≤ 1}. Then F (x, y) = F (y, x) ∈ [0, 1
8 ], for x, y ∈ [0, 1].

It follows that (x, F (x, y)) ∈ R and (F (y, x), y) ∈ R, for any (x, y) ∈ X ×X. Therefore, F is a

R-dominated mapping.

We introduce R-regularity condition in metric spaces.

Definition 2.4. Let (X, d) be a metric space with a binary relation R on it. Then X is said to

have regular property with respect to R (or R-regular property) if for every sequence {xn} in X

converging to x ∈ X, (xn, xn+1) ∈ R, for all n implies (xn, x) ∈ R, for all n [or (xn+1, xn) ∈
R, for all n implies (x, xn) ∈ R, for all n].

The following class of functions has appeared in several recent works related to fixed point

theory.
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Let γ : [0, ∞) → [0, 1) be such that for any sequence {tn} in [0, ∞), limn→∞ γ(tn) = 1

implies limn→∞ tn = 0. We denote the collection all such functions γ by B. Such functions have

appeared in several papers as for instances in [20, 32, 33].

In our theorems, we use following class of functions:

Let β : [0, ∞)→ [0, 1) be such that for any sequence {tn} in [0, ∞), lim supn→∞ β(tn) = 1

implies limn→∞ tn = 0. We denote the collection all such functions β by B∗.

We have the following observation about the class B∗. Our class B∗ is more generalized than

B. From the definition of B and B∗ it is clear that our class B∗ contains B and this containment

is proper. The following example makes the fact clear:

Example 2.5. Now consider the function β : [0, ∞)→ [0, 1) defined by

β(t) =


∣∣ sin t

t

∣∣ , if t is irrational,

1
2 , if t is rational.

Clearly β ∈ B∗ but β /∈ B.

3 Main results

In this section we establish a coupled fixed point result. We discuss its uniqueness under some

additional conditions. We illustrate it with an example.

Theorem 3.1. Let (X, d) be a complete metric space with a transitive relation R on it such that X

has R-regular property. Suppose that F : X ×X → X is a R-dominated mapping and there exists

β ∈ B∗ such that for (x, y), (u, v) ∈ X ×X with [(x, u) ∈ R and (v, y) ∈ R] or [(u, x) ∈ R and

(y, v) ∈ R],

d(F (x, y), F (u, v)) ≤ β(M(x, y, u, v)) M(x, y, u, v), (3.1)

where

M(x, y, u, v) = max

{
d(x, u) + d(y, v)

2
,
d(x, F (x, y)) + d(y, F (y, x))

2
,

d(u, F (u, v)) + d(v, F (v, u))

2
,
d(u, F (x, y)) + d(v, F (y, x))

2

}
.

Then F has a coupled fixed point.

Proof. Let (x0, y0) ∈ X ×X be arbitrary. We construct two sequences {xn} and {yn} in X such

that

xn+1 = F (xn, yn) and yn+1 = F (yn, xn), for all n ≥ 0. (3.2)
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As F is R-dominated, we have

(xn, F (xn, yn)) = (xn, xn+1) ∈ R and (F (yn, xn), yn) = (yn+1, yn) ∈ R, for all n ≥ 0. (3.3)

Let

rn = d(xn, xn+1) + d(yn, yn+1), for all n ≥ 0. (3.4)

By (3.1), (3.2), (3.3) and (3.4), we have

d(xn+1, xn+2) = d(F (xn, yn), F (xn+1, yn+1))

≤ β(M(xn, yn, xn+1, yn+1)) M(xn, yn, xn+1, yn+1) (3.5)

where

M(xn, yn, xn+1, yn+1) = max
{d(xn, xn+1) + d(yn, yn+1)

2
,
d(xn, F (xn, yn)) + d(yn, F (yn, xn))

2
,

d(xn+1, F (xn+1, yn+1)) + d(yn+1, F (yn+1, xn+1))

2
,

d(xn+1, F (xn, yn)) + d(yn+1, F (yn, xn))

2

}
= max

{d(xn, xn+1) + d(yn, yn+1)

2
,
d(xn, xn+1) + d(yn, yn+1)

2
,

d(xn+1, xn+2) + d(yn+1, yn+2)

2
,
d(xn+1, xn+1) + d(yn+1, yn+1)

2

}
= max

{d(xn, xn+1) + d(yn, yn+1)

2
,
d(xn, xn+1) + d(yn, yn+1)

2
,

d(xn+1, xn+2) + d(yn+1, yn+2)

2
, 0
}

= max
{rn

2
,
rn
2

rn+1

2
, 0
}

= max
{rn

2
,
rn+1

2

}
. (3.6)

Therefore, from (3.5) and (3.6), we have

d(xn+1, xn+2) ≤ β
(

max
{rn

2
,
rn+1

2

})
max

{rn
2
,
rn+1

2

}
. (3.7)

Similarly, we can show that

d(yn+1, yn+2) ≤ β
(

max
{rn

2
,
rn+1

2

})
max

{rn
2
,
rn+1

2

}
. (3.8)

Combining (3.7) and (3.8), we have

rn+1 = d(xn+1, xn+2) + d(yn+1, yn+2)

≤ 2 β
(

max
{rn

2
,
rn+1

2

})
max

{rn
2
,
rn+1

2

}
= β

(
max

{rn
2
,
rn+1

2

})
max {rn, rn+1}. (3.9)
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Suppose that 0 ≤ rn < rn+1. From (3.9), we have

rn+1 ≤ β
(rn+1

2

)
rn+1 < rn+1

which is a contradiction. Therefore, rn+1 ≤ rn, for all n ≥ 0, that is, {rn} is a decreasing sequence

of nonnegative real numbers. Hence there exists r ≥ 0 such that rn → r as n→∞. By (3.9), we

have

rn+1 ≤ β
(rn

2

)
rn, for all n ≥ 0. (3.10)

If possible, suppose that r > 0. Taking limit supremum in (3.10), we have

r ≤ lim sup
n→∞

β
(rn

2

)
r,

which implies that 1 ≤ lim supn→∞ β( rn
2 ) ≤ 1, that is, lim supn→∞ β( rn

2 ) = 1. Then it follows

by the property of β that limn→∞
rn
2 = r

2 = 0, that is, r = 0 which contradicts our assumption.

Hence r = 0. Then we have

lim
n→∞

[d(xn, xn+1) + d(yn, yn+1)] = lim
n→∞

d(xn, xn+1) = lim
n→∞

d(yn, yn+1) = 0. (3.11)

Now we prove that both {xn} and {yn} are Cauchy sequences. If possible, assume that either {xn}
or {yn} fails to be a Cauchy sequence. Then

either lim
m, n→∞

d(xm, xn) 6= 0 or lim
m, n→∞

d(ym, yn) 6= 0.

Hence,

lim
m, n→∞

[d(xm, xn) + d(ym, yn)] 6= 0,

that is, there exists ε > 0 for which we can find subsequences {m(k)} and {n(k)} of positive

integers with n(k) > m(k) > k such that

d(xm(k), xn(k)) + d(ym(k), yn(k)) ≥ ε and d(xm(k), xn(k)−1) + d(ym(k), yn(k)−1) < ε. (3.12)

Now,

ε ≤ d(xn(k), xm(k)) + d(yn(k), ym(k))

≤ [d(xn(k), xn(k)−1) + d(yn(k), yn(k)−1)] + [d(xn(k)−1, xm(k)) + d(yn(k)−1, ym(k))]

< d(xn(k), xn(k)−1) + d(yn(k), yn(k)−1) + ε.

Taking limit as k →∞ in the above inequality and using (3.11), we have

lim
k→∞

[d(xm(k), xn(k)) + d(ym(k), yn(k))] = ε. (3.13)

Again,

d(xn(k)−1, xm(k)−1) + d(yn(k)−1, ym(k)−1)

≤ [d(xn(k)−1, xm(k)) + d(yn(k)−1, ym(k))] + [d(xm(k), xm(k)−1) + d(ym(k), ym(k)−1)]

< ε+ [d(xm(k), xm(k)−1) + d(ym(k), ym(k)−1)].
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Again,

d(xn(k), xm(k)) + d(yn(k), ym(k)) ≤ [d(xn(k), xn(k)−1) + d(yn(k), yn(k)−1)]+

[d(xn(k)−1, xm(k)−1) + d(yn(k)−1, ym(k)−1)] + [d(xm(k)−1, xm(k)) + d(ym(k)−1, ym(k))],

that is,

d(xn(k)−1, xm(k)−1) + d(yn(k)−1, ym(k)−1) ≥ d(xn(k), xm(k)) + d(yn(k), ym(k))

− d(xn(k), xn(k)−1)− d(yn(k), yn(k)−1)− d(xm(k)−1, xm(k))− d(ym(k)−1, ym(k)).

From the above inequalities we have that

d(xn(k), xm(k)) + d(yn(k), ym(k))− d(xn(k), xn(k)−1)− d(yn(k), yn(k)−1)− d(xm(k)−1, xm(k))

− d(ym(k)−1, ym(k)) ≤ d(xn(k)−1, xm(k)−1) + d(yn(k)−1, ym(k)−1)

< ε+ [d(xm(k), xm(k)−1) + d(ym(k), ym(k)−1)].

Taking limit as k →∞ in the above inequality and using (3.11) and (3.13), we have

lim
k→∞

[d(xm(k)−1, xn(k)−1) + d(ym(k)−1, yn(k)−1)] = ε. (3.14)

Now,

d(xn(k), xm(k)) + d(yn(k), ym(k))

≤ [d(xn(k), xn(k)−1) + d(yn(k), yn(k)−1)] + [d(xn(k)−1, xm(k)) + d(yn(k)−1, ym(k))]

≤ [d(xn(k), xn(k)−1) + d(yn(k), yn(k)−1)] + [d(xn(k)−1, xm(k)−1) + d(yn(k)−1, ym(k)−1)]

+ [d(xm(k)−1, xm(k)) + d(ym(k)−1, ym(k))].

Taking limit as k →∞ in the above inequality and using (3.11), (3.13) and (3.14), we get

lim
k→∞

[d(xn(k)−1, xm(k)) + d(yn(k)−1, ym(k))] = ε. (3.15)

Using (3.3) and the transitivity assumption of R, we have

(xm(k)−1, xn(k)−1) ∈ R and (yn(k)−1, ym(k)−1) ∈ R.

Applying (3.1), we have

d(xm(k), xn(k)) = d(F (xm(k)−1, ym(k)−1), F (xn(k)−1, yn(k)−1))

≤ β(M(xm(k)−1, ym(k)−1, xn(k)−1, yn(k)−1))

M(xm(k)−1, ym(k)−1, xn(k)−1, yn(k)−1) (3.16)
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where

M(xm(k)−1, ym(k)−1, xn(k)−1, yn(k)−1)

= max

{
d(xm(k)−1, xn(k)−1) + d(ym(k)−1, yn(k)−1)

2
,

d(xm(k)−1, F (xm(k)−1, ym(k)−1)) + d(ym(k)−1, F (ym(k)−1, xm(k)−1))

2
,

d(xn(k)−1, F (xn(k)−1, yn(k)−1)) + d(yn(k)−1, F (yn(k)−1, xn(k)−1))

2
,

d(xn(k)−1, F (xm(k)−1, ym(k)−1)) + d(yn(k)−1, F (ym(k)−1, xm(k)−1))

2

}
= max

{
d(xm(k)−1, xn(k)−1) + d(ym(k)−1, yn(k)−1)

2
,
d(xm(k)−1, xm(k)) + d(ym(k)−1, ym(k))

2
,

d(xn(k)−1, xn(k)) + d(yn(k)−1, yn(k))

2
,
d(xn(k)−1, xm(k)) + d(yn(k)−1, ym(k))

2

}
. (3.17)

Similarly, we show that

d(ym(k), yn(k)) = d(F (ym(k)−1, xm(k)−1), F (yn(k)−1, xn(k)−1))

≤ β(M(ym(k)−1, xm(k)−1, yn(k)−1, xn(k)−1))

M(ym(k)−1, xm(k)−1, yn(k)−1, xn(k)−1)

= β(M(xm(k)−1, ym(k)−1, xn(k)−1, yn(k)−1))

M(xm(k)−1, ym(k)−1, xn(k)−1, yn(k)−1). (3.18)

Combining (3.16) and (3.18), we have

d(xm(k), xn(k)) + d(ym(k), yn(k)) ≤ 2 β(M(xm(k)−1, ym(k)−1, xn(k)−1, yn(k)−1))

M(xm(k)−1, ym(k)−1, xn(k)−1, yn(k)−1). (3.19)

Taking limit as k →∞ in (3.17) and using (3.11), (3.14) and (3.15), we have

lim
k→∞

M(xm(k)−1, ym(k)−1, xn(k)−1, yn(k)−1) = max
{ ε

2
, 0, 0,

ε

2

}
=
ε

2
. (3.20)

Taking limit supremum in (3.19) and using (3.13), (3.20), we have

ε ≤ 2 lim sup
k→∞

β(M(xm(k)−1, ym(k)−1, xn(k)−1, yn(k)−1))
ε

2

= ε lim sup
k→∞

β(M(xm(k)−1, ym(k)−1, xn(k)−1, yn(k)−1)). (3.21)

Using (3.21) and the property of β, we have

1 ≤ lim sup
k→∞

β(M(xm(k)−1, ym(k)−1, xn(k)−1, yn(k)−1)) ≤ 1,

that is, lim supk→∞ β(M(xm(k)−1, ym(k)−1, xn(k)−1, yn(k)−1)) = 1. Then it follows by the property

of β that limk→∞M(xm(k)−1, ym(k)−1, xn(k)−1, yn(k)−1) =
ε

2
= 0, that is, ε = 0 which is a contra-

diction. Therefore, {xn} and {yn} are both Cauchy sequences in X. As X is complete, there exist
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x, y ∈ X such that

lim
n→∞

xn = x and lim
n→∞

yn = y. (3.22)

Now we show that (x, y) is a coupled fixed point of F . If possible let (x, y) be not a coupled

fixed point of F . Then either x 6= F (x, y) or y 6= F (y, x), that is, either, d(x, F (x, y)) 6= 0 or

d(y, F (y, x)) 6= 0, that is, d(x, F (x, y)) + d(y, F (y, x)) > 0. Using (3.3), (3.22) and R-regularity

property of the space, we have

(xn, x) ∈ R and (y, yn) ∈ R. (3.23)

By (3.1) and (3.23), we have

d(xn+1, F (x, y)) = d(F (xn, yn), F (x, y))

≤ β(M(xn, yn, x, y)) M(xn, yn, x, y) (3.24)

where

M(xn, yn, x, y) = max

{
d(xn, x) + d(yn, y)

2
,
d(xn, F (xn, yn)) + d(yn, F (yn, xn))

2
,

d(x, F (x, y)) + d(y, F (y, x))

2
,
d(x, F (xn, yn)) + d(y, F (yn, xn))

2

}
= max

{
d(xn, x) + d(yn, y)

2
,
d(xn, xn+1) + d(yn, yn+1)

2
,

d(x, F (x, y)) + d(y, F (y, x))

2
,
d(x, xn+1) + d(y, yn+1)

2

}
. (3.25)

Similarly, we show that

d(yn+1, F (y, x)) = d(F (yn, xn), F (y, x)) ≤ β(M(yn, xn, y, x)) M(yn, xn, y, x))

= β(M(xn, yn, x, y)) M(xn, yn, x, y). (3.26)

Combining (3.24) and (3.26), we have

d(xn+1, F (x, y)) + d(yn+1, F (y, x)) ≤ 2 β(M(xn, yn, x, y)) M(xn, yn, x, y). (3.27)

Taking limit as n→∞ in (3.25), we have

lim
n→∞

M(xn, yn, x, y) = max
{

0, 0,
d(x, F (x, y)) + d(y, F (y, x))

2
, 0
}

=
d(x, F (x, y)) + d(y, F (y, x))

2
. (3.28)

Taking limit supremum in (3.27) and using (3.22) and (3.28), we have

d(x, F (x, y) + d(y, F (y, x)) ≤ [d(x, F (x, y) + d(y, F (y, x))] lim sup
n→∞

β(M(xn, yn, x, y)). (3.29)

As explained earlier, we have from (3.29) that

1 ≤ lim sup
n→∞

β(M(xn, yn, x, y)) ≤ 1,
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that is, lim supn→∞ β(M(xn, yn, x, y)) = 1. By a property of β we have that

lim
n→∞

M(xn, yn, x, y) =
d(x, F (x, y)) + d(y, F (y, x))

2
= 0,

that is, d(x, F (x, y)) + d(y, F (y, x)) = 0, which contradicts our assumption. Therefore,

d(x, F (x, y)) = d(y, F (y, x)) = 0, that is, x = F (x, y) and y = F (y, x), that is, (x, y) is a coupled

fixed point of F .

Remark 3.2. Our result is a generalization of the result of Bhaskar and Lakshmikantam (in [15])

and of the result of Choudhury and Kundu (in [8]).

If R is taken to be a partial ordered relation, then we have the following corollary:

Corollary 3.3. Let (X, d) be a complete metric space with a partial order � on it such that X

has regular property [that is, if {xn} is a monotone convergent sequence with limit x, then xn � x
or x � xn, according as the sequence is increasing or decreasing]. Suppose that F : X ×X → X is

a dominated map [that is, x � F (x, y) and F (y, x) � y, for any (x, y) ∈ X ×X] and there exists

β ∈ B∗ such that (3.1) of Theorem 3.1 is satisfied for all (x, y), (u, v) ∈ X ×X with [x � u and

v � y] or [u � x and y � v]. Then F has a coupled fixed point.

If R is taken to be the universal relation, that is, R = X×X, we have the following corollary:

Corollary 3.4. Let (X, d) be a complete metric space and F : X ×X → X. Suppose there exists

β ∈ B∗ such that (3.1) of Theorem 3.1 is satisfied for all (x, y), (u, v) ∈ X ×X. Then F has a

coupled fixed point.

Theorem 3.5. In addition to the hypothesis of Theorem 3.1, suppose that both R and R−1 are

directed. Then F has a unique coupled fixed point.

Proof. By Theorem 3.1, the set of coupled fixed points of F is nonempty. If possible, let (x, y)

and (x∗, y∗) be two coupled fixed points of F . Then x = F (x, y); y = F (y, x) and x∗ =

F (x∗, y∗); y∗ = F (y∗, x∗). Our aim is to show that x = x∗ and y = y∗. By the directed

property of R and R−1, there exist u ∈ X and v ∈ X such that (x, u) ∈ R; (x∗, u) ∈ R and

(y, v) ∈ R−1; (y∗, v) ∈ R−1, that is (x, u) ∈ R; (x∗, u) ∈ R and (v, y) ∈ R; (v, y∗) ∈ R. Put

u0 = u and v0 = v. Then (x, u0) ∈ R and (v0, y) ∈ R. Let u1 = F (u0, v0) and v1 = F (v0, u0).

Similarly, as in the proof of Theorem 3.1, we inductively define two sequences {un} and {vn} such

that

un+1 = F (un, vn) and vn+1 = F (vn, un), for all n ≥ 0. (3.30)

As F is R-dominated, we have

(un, un+1) ∈ R and (vn+1, vn) ∈ R, for all n ≥ 0. (3.31)
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Arguing similarly as in proof of Theorem 3.1, we prove that {un} and {vn} are two Cauchy

sequences in X and there exists p and q ∈ X such that

lim
n→∞

un = p and lim
n→∞

vn = q. (3.32)

Now we show that x = p and y = q, that is, d(x, p) + d(y, q) = 0.

If possible, suppose that d(x, p) + d(y, q) 6= 0. We claim that

(x, un) ∈ R and (vn, y) ∈ R, for all n ≥ 0. (3.33)

As (x, u0) ∈ R, (u0, u1) ∈ R and (v1, v0) ∈ R, (v0, y) ∈ R, by the transitivity property of R, we

have (x, u1) ∈ R and (v1, y) ∈ R. Therefore, our claim is true for n = 1. Assume that (3.33)

is true for some m > 1, that is, (x, um) ∈ R and (vm, y) ∈ R. By (3.31), (um, um+1) ∈ R and

(vm+1, um) ∈ R. The transitivity property of R guarantees that (x, um+1) ∈ R and (vm+1, y) ∈ R
and this proves our claim. Using (3.1) and (3.33), we have for all n ≥ 0 that

d(x, un+1) = d(F (x, y), F (un, vn))

≤ β(M(x, y, un, vn)) M(x, y, un, vn), (3.34)

where

M(x, y, un, vn) = max

{
d(x, un) + d(y, vn)

2
,
d(x, F (x, y)) + d(y, F (y, x))

2
,

d(un, F (un, vn)) + d(vn, F (vn, un))

2
,
d(un, F (x, y)) + d(vn, F (y, x))

2

}
= max

{
d(x, un) + d(y, vn)

2
, 0,

d(un, un+1) + d(vn, vn+1)

2
,

d(un, x) + d(vn, y)

2

}
. (3.35)

Similarly, we show that

d(y, vn+1) = d(F (y, x), F (vn, un)) ≤ β(M(y, x, vn, un)) M(y, x, vn, un)

= β(M(x, y, un, vn)) M(x, y, un, vn). (3.36)

Combining (3.34) and (3.36), we have

d(x, un+1) + d(y, vn+1) ≤ 2 β(M(x, y, un, vn)) M(x, y, un, vn). (3.37)

Taking limit in (3.35) as n→∞ and using (3.32), we have

lim
n→∞

M(x, y, un, vn) =
d(x, p) + d(y, q)

2
. (3.38)

Taking limit supremum as n→∞ in (3.37) and using (3.32), (3.38), we have

d(x, p) + d(y, q) ≤ [d(x, p) + d(y, q)] lim sup
n→∞

β(M(x, y, un, vn)) (3.39)
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which implies that

1 ≤ lim sup
n→∞

β(M(x, y, un, vn)) ≤ 1, (3.40)

that is, lim sup
n→∞

β(M(x, y, un, vn)) = 1. By a property of β we have that

lim
n→∞

M(x, y, un, vn) =
d(x, p) + d(y, q)

2
= 0,

that is, d(x, p)+d(y, q) = 0, which contradicts our assumption that d(x, p)+d(y, q) 6= 0. Therefore,

d(x, p) + d(y, q) = 0, that is, d(x, p) = d(y, q) = 0, that is,

x = p and y = q. (3.41)

Similarly, we can show that

x∗ = p and y∗ = q. (3.42)

From (3.41) and (3.42), we have x = x∗ and y = y∗. Therefore, the coupled fixed point of F is

unique.

We present the following illustrative example in support of Theorems 3.1.

Example 3.6. Take the metric space X = [0, 1] with usual metric d. Let β : [0, ∞) → [0, 1)

be defined as β(t) =
ln(1 + t)

t
, if t > 0 and β(t) = 0, if t = 0. Define F : X × X → X by

F (x, y) = ln
(

1 +
x+ y

2

)
, for all (x, y) ∈ X ×X and binary relation R by R = {(x, y) : 0 ≤ x ≤

1; 0 ≤ y ≤ ln 2 or 0 ≤ x ≤ ln 2; 0 ≤ y ≤ 1}.

Then we see that X is regular with respect to R and T is R-dominated. Let (x, y), (u, v) ∈
X × X with (x, u) ∈ R and (v, y) ∈ R. Then

[
x ∈ [0, 1] or x ∈ [0, ln 2]

]
;
[
u ∈ [0, 1] or

u ∈ [0, ln 2]
]
;
[
y ∈ [0, 1] or y ∈ [0, ln 2]

]
and

[
v ∈ [0, 1] or v ∈ [0, ln 2]

]
. Now for those values of

x, y, y, u and v, we obtain

d(F (x, y), F (u, v)) = d

(
ln

(
1 +

x+ y

2

)
, ln

(
1 +

u+ v

2

) )

=

∣∣∣∣ ln

(
1 +

x+ y

2

)
− ln

(
1 +

u+ v

2

) ∣∣∣∣ =

∣∣∣∣∣∣∣ ln

1 +
x+ y

2

1 +
u+ v

2


∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣ ln

1 +

x+ y

2
− u+ v

2

1 +
u+ v

2


∣∣∣∣∣∣∣ ≤

∣∣∣∣∣∣∣∣ ln

1 +

∣∣∣∣ x+ y

2
− u+ v

2

∣∣∣∣
1 +

u+ v

2


∣∣∣∣∣∣∣∣

≤
∣∣∣∣ ln

(
1 +

∣∣∣∣ x+ y

2
− u+ v

2

∣∣∣∣) ∣∣∣∣ ≤ ∣∣∣∣ ln

(
1 +
| u− x | + | v − y |

2

) ∣∣∣∣
= ln

(
1 +
| u− x | + | v − y |

2

)
≤ ln

(
1 +M(x, y, u, v)

)
=

ln
(

1 +M(x, y, u, v)
)

M(x, y, u, v)
M(x, y, u, v) = β

(
M(x, y, u, v)

)
M(x, y, u, v).
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It follows that the inequality in Theorem 3.1 is satisfied for all (x, y), (u, v) ∈ X × X with

(x, u) ∈ R and (v, y) ∈ R. Here all the conditions of Theorem 3.1 are satisfied and (0, 0) is a

coupled fixed point of F .

4 Well-Posedness

We use the following assumption to assure the well-posedness via R-dominated mapping.

(A) If (x∗, y∗) is any solution of the problem (P), that is, of (2.1) and {(xn, yn)} is any

sequence in X × X for which limn→∞ d(xn, F (xn, yn)) = limn→∞ d(yn, F (yn, xn)) = 0, then

(x∗, xn) ∈ R and (yn, y
∗) ∈ R, for all n.

Theorem 4.1. In addition to the hypothesis of Theorem 3.5, suppose that the assumption (A)

holds. Then the coupled fixed point problem (P) is well-posed.

Proof. By Theorem 3.5, F has a unique coupled fixed point (x∗, y∗) (say). Then (x∗, y∗) is a

solution of (2.1), that is, x∗ = F (x∗, y∗) and y∗ = F (y∗, x∗). Let {(xn, yn)} be any sequence in

X × X for which lim supn→∞[d(xn, x
∗) + d(yn, y

∗)] is finite and limn→∞ d(xn, F (xn, yn)) =

limn→∞ d(yn, F (yn, xn)) = 0. Then there exists a nonnegative real number M such that

lim supn→∞[d(x∗, xn)+d(y∗, yn)] = M and also by the assumption (A), (x∗, xn) ∈ R and (yn, y
∗) ∈

R, for all n. Using (3.1), we have

d(xn, x
∗) = d(xn, F (x∗, y∗)) ≤ d(xn, F (xn, yn) + d(F (x∗, y∗), F (xn, yn))

≤ β(M(x∗, y∗, xn, yn)) M(x∗, y∗, xn, yn) + d(xn, F (xn, yn)) (4.1)

where

M(x∗, y∗, xn, yn) = max

{
d(x∗, xn) + d(y∗, yn)

2
,
d(x∗, F (x∗, y∗)) + d(y∗, F (y∗, x∗))

2
,

d(xn, F (xn, yn)) + d(yn, F (yn, xn))

2
,
d(xn, F (x∗, y∗)) + d(yn, F (y∗, x∗))

2

}
= max

{
d(x∗, xn) + d(y∗, yn)

2
, 0,

d(xn, F (xn, yn)) + d(yn, F (yn, xn))

2
,

d(xn, x
∗) + d(yn, y

∗)

2

}
. (4.2)

Similarly, we can show that

d(yn, y
∗) ≤ β(M(y∗, x∗, yn, xn)) M(y∗, x∗, yn, xn) + d(yn, F (yn, xn))

≤ β(M(x∗, y∗, xn, yn)) M(x∗, y∗, xn, yn) + d(yn, F (yn, xn)). (4.3)

Combining (4.1) and (4.3), we have

d(xn, x
∗) + d(yn, y

∗) ≤ 2 β(M(x∗, y∗, xn, yn)) M(x∗, y∗, xn, yn)

+ d(xn, F (xn, yn)) + d(yn, F (yn, xn)). (4.4)
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Taking limit supremum as n→∞ in (4.2), we have

lim sup
n→∞

M(x∗, y∗, xn, yn) =
M

2
. (4.5)

If possible, suppose that lim supn→∞[d(x∗, xn) + d(y∗, yn)] = M 6= 0. Then M > 0. Taking

limit supremum as n→∞ in (4.4) and using (4.5), we have

M ≤M lim sup
n→∞

β(M(x∗, y∗, xn, yn)), that is, 1 ≤ lim sup
n→∞

β(M(x∗, y∗, xn, yn)) ≤ 1.

Then lim supn→∞ β(M(x∗, y∗, xn, yn)) = 1. By a property of β, limn→∞M(x∗, y∗, xn, yn) = 0,

that is, limn→∞[d(xn, x
∗) + d(yn, y

∗)] = 0 which is a contradiction. Hence we have

lim supn→∞[d(x∗, xn) + d(y∗, yn)] = 0. Then we have 0 ≤ lim infn→∞[d(x∗, xn) + d(y∗, yn)] ≤
lim supn→∞[d(x∗, xn) + d(y∗, yn)] = 0 which implies that limn→∞[d(x∗, xn) + d(y∗, yn)] = 0. It

follows that limn→∞ d(xn, x
∗) = limn→∞ d(yn, y

∗) = 0, that is, xn → x∗ and yn → y∗ as n → ∞.

Hence the coupled fixed point problem (P) is well-posed.

5 Some results for α−dominated mapping

Coupled α-dominated mappings are defined here and are conceptual extensions of mappings with

admissibility conditions. Various types of admissibility conditions have been used in fixed point

theory in works like [10, 11, 19, 29, 31].

Definition 5.1. Let X be a nonempty set and α : X × X → R be a mapping. A mapping

F : X × X → X is said to be α-dominated if α(x, F (x, y)) ≥ 1 and α(y, F (y, x)) ≥ 1, for

(x, y) ∈ X ×X.

Definition 5.2. Let X be a nonempty set and α : X ×X → R be a mapping. Then α is said to

have triangular property if for x, y, z ∈ X, α(x, y) ≥ 1 and α(y, z) ≥ 1 imply α(x, z) ≥ 1.

Definition 5.3. Let (X, d) be a metric space and α : X×X → R be a mapping. Then X is said to

have α-regular property if for every convergent sequence {xn} with limit x ∈ X, α(xn, xn+1) ≥ 1,

for all n implies α(xn, x) ≥ 1, for all n.

Theorem 5.4. Let (X, d) be a complete metric space and α : X × X → R be a mapping such

that X has α-regular property and α has triangular property. Suppose that F : X ×X → X be a

α-dominated mapping and there exists β ∈ B∗ such that (3.1) of Theorem 3.1 is satisfied for all

(x, y), (u, v) ∈ X ×X with α(x, u) ≥ 1 and α(y, v) ≥ 1. Then F has a coupled fixed point.

Proof. Define a binary relation R on X as (x, y) ∈ R if and only if α(x, y) ≥ 1 or α(y, x) ≥ 1.

Then (i) α(x, u) ≥ 1 and α(y, v) ≥ 1 imply (x, u) ∈ R and (v, y) ∈ R, (ii) α(x, F (x, y)) ≥ 1

and α(y, F (y, x)) ≥ 1 imply (x, F (x, y)) ∈ R and (F (y, x), y) ∈ R, for (x, y) ∈ X × X,
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(iii) α(xn, xn+1) ≥ 1, α(xn, x) ≥ 1 imply (xn, xn+1) ∈ R, (xn, x) ∈ R, whenever {xn} is a

convergent sequence with xn → x and α(xn, xn+1) ≥ 1. Therefore, all the assumptions reduce to

the assumptions of Theorem 3.1. Then by an application of Theorem 3.1, we conclude that F has

a coupled fixed point in X ×X.

6 Some results on graphic contraction

Our present section is on graphic contraction. Fixed point problem on the structures of metric

spaces with a graph have appeared in works like [2, 4, 12].

Let X be a nonempty set and ∆ := {(x, x) : x ∈ X}. Let G be a directed graph such that its

vertex set V (G) coincides with X, that is, V (G) = X and the edge set E(G) contains all loops,

that is, ∆ ⊆ E(G). Assume that G has no parallel edges. By G−1 we denote the conversion of

a graph G, that is, the graph obtained from G by reversing the directions of the edges. Thus we

have V (G−1) = V (G) and E(G−1) = {(x, y) ∈ X ×X : (y, x) ∈ E(G)}. A nonempty set X is

said to be endowed with a directed graph G(V,E) if V (G) = X and ∆ ⊆ E(G).

Definition 6.1. Let X be a nonempty set endowed with a graph G(V,E). A mapping F : X×X →
X is said to be G-dominated if (x, F (x, y)) ∈ E and (F (y, x), y) ∈ E, for (x, y) ∈ X ×X.

Definition 6.2. Let X be a nonempty set endowed with a graph G(V,E). Then G is said to have

transitive property if for x, y, z ∈ X, (x, y) ∈ E and (y, z) ∈ E imply (x, z) ∈ E.

Definition 6.3. Let (X, d) be a metric space endowed with a directed graph G(V,E). Then

X is said to have G-regular property if for every convergent sequence {xn} with limit x ∈ X,

(xn, xn+1) ∈ E, for all n implies (xn, x) ∈ E, for all n [or (xn+1, xn) ∈ E, for all n implies

(x, xn) ∈ E, for all n].

Theorem 6.4. Let (X, d) be a complete metric space endowed with a directed graph G(V,E)

such that X has G-regular property and G has transitive property. Suppose that F : X ×X → X

is a G-dominated mapping and there exists β ∈ B∗ such that (3.1) of Theorem 3.1 is satisfied for

all (x, y), (u, v) ∈ X ×X with [(x, u) ∈ E and (v, y) ∈ E] or [(u, x) ∈ E and (y, v) ∈ E]. Then

F has a coupled fixed point.

Proof. Let us define a relation R, by xRy holds if (x, y) ∈ E. As (x, y) ∈ E, for (x, y) ∈ X ×X
implies that (x, y) ∈ R, it is easy to verify that all the assumptions of the theorem reduce to the

assumptions of Theorem 3.1. Then by an application of Theorem 3.1, we conclude that F has a

coupled fixed point in X ×X.
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7 Application to the solution of system nonlinear integral

equations

In this section, we present an application of our coupled fixed point results derived in Section 3 to

establish the existence and uniqueness of a solution of a system of integral equations. We consider

a coupled system of two nonlinear integral equations as follows:

x(t) = f(t) +
∫ t

0
K(t, s)h(t, s, x(s), y(s))ds

and

y(t) = f(t) +
∫ t

0
K(t, s)h(t, s, y(s), x(s))ds,

 (7.1)

where T > 0 be any number, t, s ∈ [0, T ], K : [0, T ]× [0, T ]→ R be a function, which is the kernel

of the integral equations, and the unknown functions x(t) and y(t) take real values.

The reason for the choice of this application is that coupled non-linear equations have their

uses in modeling situations of wide variety.

Let X = C([0, T ]) be the space of all real valued continuous functions defined on [0, T ].

Here C([0, T ]) with the metric d(x, y) = maxt∈[0, T ] | x(t) − y(t) | is a complete metric space.

Assume that this metric space is endowed with the universal relation U , that is, (x, y) ∈ U , for all

x, y ∈ X. Define a mapping F : X ×X → X by

F (x, y)(t) = f(t) +

∫ t

0

K(t, s)h(t, s, x(s), y(s))ds, for all t, s ∈ [0, T ]. (7.2)

We designate the following assumptions by A1, A2 and A3:

A1 : f ∈ C([0, T ] and h : [0, T ]× [0, T ]× R× R→ R is a continuous mapping;

A2 : | K(t, s) |≤ q, where q > 0 is a fixed number;

A3 : | h(t, s, x, y)− h(t, s, u, v) |≤ M(t, s, x, y, u, v), for all (x, y), (u, v) ∈ X ×X

and t, s ∈ [0, T ], where M(t, s, x, y, u, v) =
1

qT
ln

(
1 +
| x− u | + | y − v |

2

)
.

Theorem 7.1. Let (X = C([0, T ]), d), F, h, K(t, s) satisfy the assumptions A1, A2 and A3.

Then system of nonlinear integral equation (7.1) has a solution (x, y) ∈ C([0, T ]) × C([0, T ]) and

the solution is unique.

Proof. It is trivial to observe that the mapping F : X ×X → X defined by (7.2) is a U dominated

mapping and X has U regular property, where U is the universal relation. From assumptions

A1, A2 and A3, for all (x, y), (u, v) ∈ C([0, T ])×C([0, T ]), that is, for all x, y, u, v ∈ C([0, T ])

and t, s ∈ [0, T ], we have
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| F (x, y)(t)− F (u, v)(t) |=
∣∣∣∣∫ t

0

K(t, s)[h(t, s, x(s), y(s))− h(t, s, u(s), v(s))]ds

∣∣∣∣
≤

∫ t

0

| K(t, s) || [h(t, s, x(s), y(s))− h(t, s, u(s), v(s))] | ds

≤ q ×
∫ t

0

| [h(t, s, x(s), y(s))− h(t, s, u(s), v(s))] | ds [by A2]

≤ q ×
∫ T

0

| [h(t, s, x(s), y(s))− h(t, s, u(s), v(s))] | ds

≤ q ×
∫ T

0

M(t, s, x, y, u, v) ds = q ×
∫ T

0

1

qT
ln

(
1 +
| x− u | + | y − v |

2

)
ds

=

∫ T

0

1

T
ln

(
1 +
| x− u | + | y − v |

2

)
ds ≤

∫ T

0

1

T
ln

(
1 +

d(x, u) + d(y, v)

2

)
ds

= ln(1 +
d(x, u) + d(y, v)

2
)

∫ T

0

1

T
ds = ln

(
1 +

d(x, u) + d(y, v)

2

)
≤ ln(1 +M(x, y, u, v)) [since ln(1 + t) is nondecreasing for t > 0]

=
ln(1 +M(x, y, u, v))

M(x, y, u, v)
M(x, y, u, v) = β(M(x, y, u, v)) M(x, y, u, v) where

β(t) =
ln(1 + t)

t
, if t > 0 and β(t) = 0, if t = 0

and

M(x, y, u, v) = max

{
d(x, u) + d(y, v)

2
,
d(x, F (x, y)) + d(y, F (y, x))

2
,

d(u, F (u, v)) + d(v, F (v, u))

2
,
d(u, F (x, y)) + d(v, F (y, x))

2

}
.

Hence

d(F (x, y), F (u, v)) ≤ β(M(x, y, u, v)) M(x, y, u, v).

Therefore, all the conditions of Theorems 3.1 and 3.5 are satisfied and hence by Theorem 3.1

there exists a coupled fixed point (x, y) in X ×X which, by virtue of Theorem 3.5, is unique. In

other words, the system of integral equations (7.1) under the conditions stipulated in the theorem

has a solution which is unique.
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[18] J. Harjani, B. López, and K. Sadarangani, “Fixed point theorems for mixed monotone op-

erators and applications to integral equations”, Nonlinear Anal., vol. 74, pp. 1749–1760,

2011.

[19] N. Hussain, E. Karapinar, P. Salimi, and F. Akbar, “α-admissible mappings and related fixed

point theorems”, J. Inequal. Appl., 114(2013), 2013.
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