Squares in Euler triples from Fibonacci and Lucas numbers
-
Zvonko Cerin
cerin@math.hr
Downloads
Abstract
In this paper we shall continue to study from [4], for k = −1 and k = 5, the infinite sequences of triples A = (F2n+1, F2n+3, F2n+5), B = (F2n+1, 5F2n+3, F2n+5), C = (L2n+1, L2n+3, L2n+5), D = (L2n+1, 5L2n+3, L2n+5) with the property that the product of any two different components of them increased by k are squares. The sequences A and B are built from the Fibonacci numbers Fn while the sequences C and D from the Lucas numbers Ln. We show some interesting properties of these sequences that give various methods how to get squares from them.
Keywords
Similar Articles
- Nafaa Chbili, Sym´etries en Dimension Trois: Une Approche Quantique , CUBO, A Mathematical Journal: Vol. 6 No. 4 (2004): CUBO, A Mathematical Journal
- L. K. Kikina, I.P. Stavroulakis, A Survey on the Oscillation of Solutions of First Order Delay Difference Equations , CUBO, A Mathematical Journal: Vol. 7 No. 2 (2005): CUBO, A Mathematical Journal
- Dongsheng Liu, A note on discrete monotonic dynamical systems , CUBO, A Mathematical Journal: Vol. 7 No. 2 (2005): CUBO, A Mathematical Journal
- Takahiro Sudo, Continuous or Discontinuous Deformations of C*-Algebras , CUBO, A Mathematical Journal: Vol. 10 No. 1 (2008): CUBO, A Mathematical Journal
- Fred Brackx, Hennie De Schepper, Frank Sommen, Liesbet Van de Voorde, Discrete Clifford analysis: an overview , CUBO, A Mathematical Journal: Vol. 11 No. 1 (2009): CUBO, A Mathematical Journal
You may also start an advanced similarity search for this article.











