Función maximal, un subespacio de Orlicz-Lorentz, y el operador multiplicación
The maximal function, an Orlicz-Lorentz subspace, and the multiplication operator
-
René Erlin Castillo
recastillo@unal.edu.co
-
Héctor Camilo Chaparro
hchaparrog@unicartagena.edu.co
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2702.233Abstract
The Orlicz-Lorentz space is defined in terms of Young functions applied to the decreasing rearrangement of a function. In this article, we define a subspace of this space, using the maximal function, and study its structure as a Banach space. Additionally, we define a multiplication operator on these subspaces and characterize its most relevant properties.
ResumenEl espacio de Orlicz-Lorentz se define en términos de funciones de Young aplicadas al reordenamiento decreciente de una función. En este artículo, definimos un subespacio de este espacio, usando la función maximal, y estudiamos su estructura como espacio de Banach. Además, definimos un operador de multiplicación en estos subespacios y caracterizamos sus propiedades más relevantes.
Keywords
Mathematics Subject Classification:
M. B. Abrahamse, Multiplication operators, ser. Lecture notes in Math. Springer Verlag, 1978.
Y. A. Abramovich and C. D. Aliprantis, An invitation to operator theory, ser. Grad. Stud. Math. Providence, RI: American Mathematical Society (AMS), 2002, vol. 50.
S. C. Arora, G. Datt, and S. Verma, “Multiplication operators on Lorentz spaces,” Indian J. Math., vol. 48, no. 3, pp. 317–329, 2006.
S. Axler, “Multiplication operators on bergman spaces,” J. Reine Angew. Math., vol. 336, pp. 26–44, 1982, doi: 10.1515/crll.1982.336.26.
C. Bennett and R. Sharpley, Interpolation of operators, ser. Pure Appl. Math., Academic Press. Boston, MA etc.: Academic Press, Inc., 1988, vol. 129.
R. E. Castillo and H. C. Chaparro, Classical and multidimensional Lorentz spaces. Gruyter, 2021, doi: 10.1515/9783110750355. Berlin: De
R. E. Castillo, H. C. Chaparro, and J. C. Ramos-Fernández, “Orlicz-Lorentz spaces and their multiplication operators,” Hacet. J. Math. Stat., vol. 44, no. 5, pp. 991–1009, 2015, doi: 10.15672/HJMS.2015449663.
R. E. Castillo, R. León, and E. Trousselot, “Multiplication operator on L(p,q) spaces,” Panam. Math. J., vol. 19, no. 1, pp. 37–44, 2009.
P. Foralewski and J. Kończak, “Orlicz-Lorentz function spaces equipped with the Orlicz norm,” Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM, vol. 117, no. 3, p. 23, 2023, Art. ID 120, doi: 10.1007/s13398-023-01449-z.
L. Grafakos, Classical Fourier analysis, 2nd ed., ser. Grad. Texts Math. Springer, 2008, vol. 249, doi: 10.1007/978-0-387-09432-8.
New York, NY:
H. Hudzik, A. Kamińska, and M. Mastyło, “On geometric properties of Orlicz-Lorentz spaces,” Can. Math. Bull., vol. 40, no. 3, pp. 316–329, 1997, doi: 10.4153/CMB-1997-038-6.
H. Hudzik, A. Kaminska, and M. Mastylo, “On the dual of Orlicz-Lorentz space,” Proc. Am. Math. Soc., vol. 130, no. 6, pp. 1645–1654, 2002, doi: 10.1090/S0002-9939-02-05997-X.
B. S. Komal and S. Gupta, “Multiplication operators between Orlicz spaces,” Integral Equations Oper. Theory, vol. 41, no. 3, pp. 324–330, 2001, doi: 10.1007/BF01203174.
S. J. Montgomery-Smith, “Orlicz-Lorentz spaces,” in Proceedings of the Orlicz memorial conference, held in Oxford, MS, USA, March 21-23, 1991. Oxford, MS: The University of Mississippi, Department of Mathematics, 1991.
E. T. Oklander, Interpolation, Lorentz spaces and the theorem of Marcinkiewicz. (Interpolacion, espacios de Lorentz y teorema de Marcinkiewicz), ser. Cursos Semin. Math. Buenos Aires: Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento
de Matemática, 1965, vol. 20.
M. M. Rao and Z. D. Ren, Theory of Orlicz spaces, ser. Pure Appl. Math., Marcel Dekker. York etc.: Marcel Dekker, Inc., 1991, vol. 146. New
R. K. Singh and A. Kumar, “Multiplication operators and composition operators with closed ranges,” Bull. Aust. Math. Soc., vol. 16, pp. 247–252, 1977, doi: 10.1017/S0004972700023261.
H. Takagi, “Fredholm weighted composition operators,” Integral Equations Oper. Theory, vol. 16, no. 2, pp. 267–276, 1993, doi: 10.1007/BF01358956.
A. Torchinsky, “Interpolation of operations and Orlicz classes,” Stud. Math., vol. 59, pp. 177–207, 1976, doi: 10.4064/sm-59-2-177-207.
Most read articles by the same author(s)
- René Erlín Castillo, Babar Sultan, A derivative-type operator and its application to the solvability of a nonlinear three point boundary value problem , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- René Erlín Castillo, Héctor Camilo Chaparro, Julio César Ramos-Fernández, \(L_p\)-boundedness of the Laplace transform , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
Similar Articles
- M.I. Belishev, Dynamical Inverse Problem for the Equation ð’°áµ¼áµ¼ − Δ𒰠− ∇ln𜌠· ∇𒰠= 0 (the BC Method) , CUBO, A Mathematical Journal: Vol. 10 No. 2 (2008): CUBO, A Mathematical Journal
- Violeta Petkova, Spectral results for operators commuting with translations on Banach spaces of sequences on Zᴷ and Z⺠, CUBO, A Mathematical Journal: Vol. 14 No. 3 (2012): CUBO, A Mathematical Journal
- Ahmed Ali Atash, Maisoon Ahmed Kulib, Extension of exton's hypergeometric function \(K_{16}\) , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
- Elke Wolf, Differences of weighted composition operators between weighted Banach spaces of holomorphic functions and weighted Bloch type spaces , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Fatima Fennour, Soumia Saïdi, On a class of evolution problems driven by maximal monotone operators with integral perturbation , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- Alessandro Perotti, Regular quaternionic functions and conformal mappings , CUBO, A Mathematical Journal: Vol. 11 No. 1 (2009): CUBO, A Mathematical Journal
- Elke Wolf, Isometric weighted composition operators on weighted Banach spaces of holomorphic functions defined on the unit ball of a complex Banach space , CUBO, A Mathematical Journal: Vol. 15 No. 2 (2013): CUBO, A Mathematical Journal
- Volodymyr Sushch, Green Function for a Two-Dimensional Discrete Laplace-Beltrami Operator , CUBO, A Mathematical Journal: Vol. 10 No. 2 (2008): CUBO, A Mathematical Journal
- L.T. Rachdi, A. Rouz, Homogeneous Besov spaces associated with the spherical mean operator , CUBO, A Mathematical Journal: Vol. 13 No. 2 (2011): CUBO, A Mathematical Journal
- René Schott, G. Stacey Staples, Operator homology and cohomology in Clifford algebras , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 R. E. Castillo

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.