On a type of Volterra integral equation in the space of continuous functions with bounded variation valued in Banach spaces

Downloads

DOI:

https://doi.org/10.4067/S0719-06462015000200004

Abstract

In this paper we prove existence and uniqueness of the solutions for a kind of Volterra equation, with an initial condition, in the space of the continuous functions with bounded variation which take values in an arbitrary Banach space. Then we give a parameters variation formula for the solutions of certain kind of linear integral equation. Finally, we prove exact controllability of a particular integral equation using that formula. Moreover, under certain condition, we find a formula for a control steering of a type of system which is studied in the current work, from an initial state to a final one in a prescribed time.

Keywords

Existence and uniqueness of solutions of integral equations in Banach spaces , continuous functions , bounded variation norm , parameters variation formula , controllability
  • Hugo Leiva Dpto. de Matemáticas, Universidad de Los Andes, La Hechicera. Mérida 5101. Venezuela.
  • Jesús Matute Dpto. de Matemáticas, Universidad de Los Andes, La Hechicera. Mérida 5101. Venezuela.
  • Nelson Merentes Escuela de Matemáticas, Universidad Central de Venezuela, Caracas. Venezuela.
  • José Sánchez Escuela de Matemáticas, Universidad Central de Venezuela, Caracas. Venezuela.
  • Pages: 49-71
  • Date Published: 2015-06-01
  • Vol. 17 No. 2 (2015): CUBO, A Mathematical Journal

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.

Downloads

Download data is not yet available.

Published

2015-06-01

How to Cite

[1]
H. Leiva, J. Matute, N. Merentes, and J. Sánchez, “On a type of Volterra integral equation in the space of continuous functions with bounded variation valued in Banach spaces”, CUBO, vol. 17, no. 2, pp. 49–71, Jun. 2015.

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.