Spectral shift function for slowly varying perturbation of periodic Schrödinger operators
-
Mouez Dimassi
dimassi@math.univ-paris13.fr
-
Maher Zerzeri
zerzeri@math.univ-paris13.fr
Downloads
DOI:
https://doi.org/10.4067/S0719-06462012000100004Abstract
In this paper we study the asymptotic expansion of the spectral shift function for the slowly varying perturbations of periodic Schr¨odinger operators. We give a weak and pointwise asymptotic expansions in powers of ℎ of the derivative of the spectral shift function corresponding to the pair (P(ℎ) = P0 + ðœ‘(ℎð‘¥), P0 = −∆ + V(ð‘¥)), where ðœ‘(ð‘¥) ∈ âˆâˆž(â„n, â„) is a decreasing function, O(|ð‘¥|−δ ) for some δ > n and ℎ is a small positive parameter. Here the potential V is real, smooth and periodic with respect to a lattice Γ in â„n. To prove the pointwise asymptotic expansion of the spectral shift function, we establish a limiting absorption Theorem for P(ℎ).
Keywords
Similar Articles
- Asa Ashley, Ferhan M. Atıcı, Samuel Chang, A note on constructing sine and cosine functions in discrete fractional calculus , CUBO, A Mathematical Journal: Vol. 27 No. 3 (2025)
- Terje Hill, David A. Robbins, Vector-valued algebras and variants of amenability , CUBO, A Mathematical Journal: Vol. 27 No. 3 (2025)
- Mohammad Farhan, Edy Tri Baskoro, Further results on the metric dimension and spectrum of graphs , CUBO, A Mathematical Journal: Vol. 28 No. 1 (2026)
You may also start an advanced similarity search for this article.










