Spectral shift function for slowly varying perturbation of periodic Schrödinger operators
-
Mouez Dimassi
dimassi@math.univ-paris13.fr
-
Maher Zerzeri
zerzeri@math.univ-paris13.fr
Downloads
DOI:
https://doi.org/10.4067/S0719-06462012000100004Abstract
In this paper we study the asymptotic expansion of the spectral shift function for the slowly varying perturbations of periodic Schr¨odinger operators. We give a weak and pointwise asymptotic expansions in powers of ℎ of the derivative of the spectral shift function corresponding to the pair (P(ℎ) = P0 + ðœ‘(ℎð‘¥), P0 = −∆ + V(ð‘¥)), where ðœ‘(ð‘¥) ∈ âˆâˆž(â„n, â„) is a decreasing function, O(|ð‘¥|−δ ) for some δ > n and ℎ is a small positive parameter. Here the potential V is real, smooth and periodic with respect to a lattice Γ in â„n. To prove the pointwise asymptotic expansion of the spectral shift function, we establish a limiting absorption Theorem for P(ℎ).
Keywords
Similar Articles
- Liancheng Wang, Bo Yang, New upper estimate for positive solutions to a second order boundary value problem with a parameter , CUBO, A Mathematical Journal: Vol. 25 No. 1 (2023)
- Raúl Fierro, Sergio Pizarro, Fixed points of set-valued mappings satisfying a Banach orbital condition , CUBO, A Mathematical Journal: Vol. 25 No. 1 (2023)
- Sahar M. A. Maqbol, R. S. Jain, B. S. Reddy, On stability of nonlocal neutral stochastic integro differential equations with random impulses and Poisson jumps , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Mehdi Dehghanian, Choonkil Park, Yamin Sayyari, Stability of ternary antiderivation in ternary Banach algebras via fixed point theorem , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Branko Malešević, Dimitrije Jovanović, Frame’s Types of Inequalities and Stratification , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- Gábor Czédli, Minimum-sized generating sets of the direct powers of free distributive lattices , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
- Satyam Narayan Srivastava, Smita Pati, John R. Graef, Alexander Domoshnitsky, Seshadev Padhi, Lyapunov-type inequalities for higher-order Caputo fractional differential equations with general two-point boundary conditions , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
- Baharak Moosavi, Mohsen Shah Hosseini, Some norm inequalities for accretive Hilbert space operators , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
- Elhoussain Arhrrabi, Hamza El-Houari, Fractional Sobolev space: Study of Kirchhoff-Schrödinger systems with singular nonlinearity , CUBO, A Mathematical Journal: Vol. 26 No. 3 (2024)
- Chandresh Prasad, P. K. Parida, Steffensen-like method in Riemannian manifolds , CUBO, A Mathematical Journal: Vol. 26 No. 3 (2024)
<< < 24 25 26 27 28 29 30 31 32 > >>
You may also start an advanced similarity search for this article.










