New upper estimate for positive solutions to a second order boundary value problem with a parameter
-
Liancheng Wang
lwang5@kennesaw.edu
-
Bo Yang
byang@kennesaw.edu
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2501.121Abstract
We consider a second order boundary value problem with a parameter. A new upper bound for positive solutions and Green’s function of the problem is obtained.
Keywords
Mathematics Subject Classification:
Z. Bai, “Positive solutions of some nonlocal fourth-order boundary value problem”, Appl. Math. Comput., vol. 215, no. 12, pp. 4191–4197, 2010.
G. Chai, “Existence of positive solutions for second-order boundary value problem with one parameter”, J. Math. Anal. Appl., vol. 330, no. 1, pp. 541–549, 2007.
Y. Cui, “Multiple solutions to fourth-order boundary value problems”, Comput. Math. Appl., vol. 57, no. 4, pp. 643–649, 2009.
X. Dong and Z. Bai, “Positive solutions of fourth-order boundary value problem with variable parameters”, J. Nonlinear Sci. Appl., vol. 1, no. 1, pp. 21–30, 2008.
Y. Li, “Positive solutions of fourth-order boundary value problems with two parameters”, J. Math. Anal. Appl., vol. 281, no. 2, pp. 477–484, 2003.
Y. Li, “Positive solutions of fourth-order periodic boundary value problems”, Nonlinear Anal., vol. 54, no. 6, pp. 1069–1078, 2003.
X. Liu and W. Li, “Positive solutions of the nonlinear fourth-order beam equation with three parameters”, J. Math. Anal. Appl., vol. 303, no. 1, pp. 150–163, 2005.
R. Ma, “Nodal solutions for a fourth-order two-point boundary value problem”, J. Math. Anal. Appl., vol. 314, no. 1, pp. 254–265, 2006.
W. Shen and T. He, “Bifurcation from interval and positive solutions for a class of fourth- order two-point boundary value problem”, Bound. Value Probl., vol. 2013, Paper No. 170, 12 pages, 2013.
J. R. L. Webb and M. Zima, “Multiple positive solutions of resonant and non-resonant non- local fourth-order boundary value problems”, Glasg. Math. J., vol. 54, no. 1, pp. 225–240, 2012.
Z. L. Wei and C. C. Pang, “Positive solutions and multiplicity of fourth-order m-point boundary value problem with two parameters”, Nonlinear Anal., vol. 67, no. 5, pp. 1586–1598, 2007.
J. Xu and Z. Wei, “Positive solutions for multipoint boundary-value problem with parameters”, Electron. J. Differential Equations, vol. 2008, Paper No. 106, 8 pages, 2008.
B. Yang, “Upper and lower estimates for positive solutions of the higher order Lidstone boundary value problem”, J. Math. Anal. Appl., vol. 382, no. 1, pp. 290–302, 2011.
B. Yang, “Maximum principle for a fourth order boundary value problem”, Differ. Equ. Appl., vol. 9, no. 4, pp. 495–504, 2017.
B. Yang, “Positive solutions to a boundary value problem for the beam equation”, Z. Anal. Anwend., vol. 26, no. 2, pp. 221–230, 2007.
B. Yang, “Estimates of positive solutions to a boundary value problem for the beam equation”, Commun. Math. Anal., vol. 2, no. 1, pp. 13–21, 2007.
Similar Articles
- Smaïl Djebali, Ouiza Saifi, Upper and lower solutions for φ−Laplacian third-order BVPs on the half-Line , CUBO, A Mathematical Journal: Vol. 16 No. 1 (2014): CUBO, A Mathematical Journal
- Paul W. Eloe, Jeffrey T. Neugebauer, Maximum, anti-maximum principles and monotone methods for boundary value problems for Riemann-Liouville fractional differential equations in neighborhoods of simple eigenvalues , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- N. S. Gopal, J. M. Jonnalagadda, Positive solutions of nabla fractional boundary value problem , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- Saroj Panigrahi, Sandip Rout, Existence of positive solutions for a nonlinear semipositone boundary value problems on a time scale , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- M.I. Belishev, Dynamical Inverse Problem for the Equation ð’°áµ¼áµ¼ − Δ𒰠− ∇ln𜌠· ∇𒰠= 0 (the BC Method) , CUBO, A Mathematical Journal: Vol. 10 No. 2 (2008): CUBO, A Mathematical Journal
- Saleh S. Almuthaybiri, Jagan Mohan Jonnalagadda, Christopher C. Tisdell, Existence and uniqueness of solutions to discrete, third-order three-point boundary value problems , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
- Yaroslav Kurylev, Matti Lassas, Multidimensional Gel'fand Inverse Boundary Spectral Problem: Uniqueness and Stability , CUBO, A Mathematical Journal: Vol. 8 No. 1 (2006): CUBO, A Mathematical Journal
- S. Albeverio, Ya. Belopolskaya, Generalized solutions of the Cauchy problem for the Navier-Stokes system and diffusion processes , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Masaru Ikehata, Inverse Crack Problem and Probe Method , CUBO, A Mathematical Journal: Vol. 8 No. 1 (2006): CUBO, A Mathematical Journal
- A. Zerki, K. Bachouche, K. Ait-Mahiout, Existence of solutions for higher order \(\phi-\)Laplacian BVPs on the half-line using a one-sided Nagumo condition with nonordered upper and lower solutions , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 L. Wang et. al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.