Existence of solutions for higher order \(\phi-\)Laplacian BVPs on the half-line using a one-sided Nagumo condition with nonordered upper and lower solutions
- A. Zerki a.zerki@ensh.dz
- K. Bachouche k.bachouche@univ-alger.dz
- K. Ait-Mahiout karima.aitmahiout@g.ens-kouba.dz
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2502.173Abstract
In this paper, we consider the following \((n+1)\)st order bvp on the half line with a \(\phi-\)Laplacian operator \[ \begin{cases} (\phi(u^{(n)}))'(t) = f(t,u(t),\ldots,u^{(n)}(t)), & \text{a.e.},\, t\in [0,+\infty), \\ n \in \mathbb{N}\setminus\{0\}, \\ \\ u^{(i)}(0) = A_{i}, \, i=0,\ldots,n-2, \\ u^{(n-1)}(0) + au^{(n)}(0) = B, \\ u^{(n)}(+\infty) = C. \end{cases} \]
The existence of solutions is obtained by applying Schaefer's fixed point theorem under a one-sided Nagumo condition with nonordered lower and upper solutions method where \(f\) is a \(L^{1}\)-Carathéodory function.
Keywords
Mathematics Subject Classification:
R. P. Agarwal and D. O’Regan, Infinite Interval Problems for Differential, Difference and Integral Equations. Glasgow, Scotland: Kluwer Academic Publisher, 2001.
S. E. Ariaku, E. C. Mbah, C. C. Asogwa and P. U. Nwokoro, “Lower and upper solutions of first order non-linear ordinary differential equations”, IJSES, vol. 3, no. 11, pp. 59–61, 2019.
C. Bai and C. Li, “Unbounded upper and lower solution method for third order boundary value problems on the half line”, Electron. J. Differential Equations, vol. 2009, no. 119, pp. 1–12, 2009.
A. Cabada, J. A. Cid, and L. Sánchez, “Positivity and lower and upper solutions for fourth order boundary value problems”, Nonlinear Anal., vol. 67, no. 5, pp. 1599–1612, 2007.
A. Cabada and N. Dimitrov, “Existence of solutions of nth-order nonlinear difference equations with general boundary conditions”, Acta Math. Sci. Ser. B (Engl. Ed.), vol. 40, no. 1, pp. 226– 236, 2020.
A. Cabada and L. Saavedra, “Existence of solutions for nth-order nonlinear differential boundary value problems by means of fixed point theorems”, Nonlinear Anal. Real World Appl., vol. 42, pp. 180–206, 2018.
H. Carrasco and F. Minhós, ”Existence of solutions to infinite elastic beam equations with unbounded nonlinearities”, Electron. J. Differential Equations, vol. 2017, no. 192, pp. 1–11, 2017.
J. R. Graef, L. Kong and F. Minhós, “Higher order boundary value problems with φ−Laplacian and functional boundary conditions”, Comput. Math. Appl., vol. 61, no. 2, pp. 236–249, 2011.
M. R. Grossinho, F. Minhós and A. I. Santos, “A note on a class of problems for a higher-order fully nonlinear equation under one-sided Nagumo-type condition”, Nonlinear Anal., vol. 70, no. 11, pp. 4027–4038, 2009.
R. Koplatadze, G. Kvinikadze and I. P. Stavroulakis, “Properties A and B of nth order linear differential equations with deviating argument”, Georgian Math. J., vol. 6, no. 6, pp. 553–566, 1999.
H. Lian and J. Zhao, “Existence of unbounded solutions for a third-order boundary value problem on infinite intervals”, Discrete Dyn. Nat. Soc., vol. 2012, 2012.
F. Minhós and H. Carrasco, “Solvability of higher-order BVPs in the half-line with unbounded nonlinearities”, Discrete Contin. Dyn. Syst., vol. 2015, pp. 841–850, 2015.
D. R. Smart; Fixed point theorems. London-New York, England-USA: Cambridge University Press, 1974.
A. Zerki, K. Bachouche and K. Ait-Mahiout, “Existence solutions for third order φ−Laplacian bvps on the half-line”, Mediterr. J. Math., vol. 19, no. 6, Art. ID 261, 2022.
Q. Zhang, D. Jiang, S. Weng and H. Gao, “Upper and lower solutions for a second-order three-point singular boundary-value problem”, Electron. J. Differential Equations, vol. 2009, Art. ID 115, 2009.
X. Zhang and L. Liu, “Positive solutions of fourth-order four-point boundary value problems with p-Laplacian operator”, J. Math. Anal. Appl., vol. 336, no. 2, pp. 1414–1423, 2007.
Similar Articles
- Paul W. Eloe, Jeffrey T. Neugebauer, Maximum, anti-maximum principles and monotone methods for boundary value problems for Riemann-Liouville fractional differential equations in neighborhoods of simple eigenvalues , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Liancheng Wang, Bo Yang, New upper estimate for positive solutions to a second order boundary value problem with a parameter , CUBO, A Mathematical Journal: Vol. 25 No. 1 (2023)
- Smaïl Djebali, Ouiza Saifi, Upper and lower solutions for φ−Laplacian third-order BVPs on the half-Line , CUBO, A Mathematical Journal: Vol. 16 No. 1 (2014): CUBO, A Mathematical Journal
- N. S. Gopal, J. M. Jonnalagadda, Positive solutions of nabla fractional boundary value problem , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- Fang Li, Zuodong Yang, Existence of blow-up solutions for quasilinear elliptic equation with nonlinear gradient term. , CUBO, A Mathematical Journal: Vol. 16 No. 2 (2014): CUBO, A Mathematical Journal
- Yaroslav Kurylev, Matti Lassas, Multidimensional Gel'fand Inverse Boundary Spectral Problem: Uniqueness and Stability , CUBO, A Mathematical Journal: Vol. 8 No. 1 (2006): CUBO, A Mathematical Journal
- Saleh S. Almuthaybiri, Jagan Mohan Jonnalagadda, Christopher C. Tisdell, Existence and uniqueness of solutions to discrete, third-order three-point boundary value problems , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
- Saroj Panigrahi, Sandip Rout, Existence of positive solutions for a nonlinear semipositone boundary value problems on a time scale , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- Stanislas Ouaro, Noufou Sawadogo, Nonlinear elliptic \(p(u)-\) Laplacian problem with Fourier boundary condition , CUBO, A Mathematical Journal: Vol. 22 No. 1 (2020)
- J. Henderson, S.K. Ntouyas, I.K. Purnaras, Positive Solutions for Systems of Three-point Nonlinear Boundary Value Problems with Deviating Arguments , CUBO, A Mathematical Journal: Vol. 11 No. 3 (2009): CUBO, A Mathematical Journal
1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 A. Zerki et al.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.