Existence of solutions for higher order \(\phi-\)Laplacian BVPs on the half-line using a one-sided Nagumo condition with nonordered upper and lower solutions
-
A. Zerki
a.zerki@ensh.dz
-
K. Bachouche
k.bachouche@univ-alger.dz
-
K. Ait-Mahiout
karima.aitmahiout@g.ens-kouba.dz
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2502.173Abstract
In this paper, we consider the following \((n+1)\)st order bvp on the half line with a \(\phi-\)Laplacian operator \[ \begin{cases} (\phi(u^{(n)}))'(t) = f(t,u(t),\ldots,u^{(n)}(t)), & \text{a.e.},\, t\in [0,+\infty), \\ n \in \mathbb{N}\setminus\{0\}, \\ \\ u^{(i)}(0) = A_{i}, \, i=0,\ldots,n-2, \\ u^{(n-1)}(0) + au^{(n)}(0) = B, \\ u^{(n)}(+\infty) = C. \end{cases} \]
The existence of solutions is obtained by applying Schaefer's fixed point theorem under a one-sided Nagumo condition with nonordered lower and upper solutions method where \(f\) is a \(L^{1}\)-Carathéodory function.
Keywords
Mathematics Subject Classification:
R. P. Agarwal and D. O’Regan, Infinite Interval Problems for Differential, Difference and Integral Equations. Glasgow, Scotland: Kluwer Academic Publisher, 2001.
S. E. Ariaku, E. C. Mbah, C. C. Asogwa and P. U. Nwokoro, “Lower and upper solutions of first order non-linear ordinary differential equations”, IJSES, vol. 3, no. 11, pp. 59–61, 2019.
C. Bai and C. Li, “Unbounded upper and lower solution method for third order boundary value problems on the half line”, Electron. J. Differential Equations, vol. 2009, no. 119, pp. 1–12, 2009.
A. Cabada, J. A. Cid, and L. Sánchez, “Positivity and lower and upper solutions for fourth order boundary value problems”, Nonlinear Anal., vol. 67, no. 5, pp. 1599–1612, 2007.
A. Cabada and N. Dimitrov, “Existence of solutions of nth-order nonlinear difference equations with general boundary conditions”, Acta Math. Sci. Ser. B (Engl. Ed.), vol. 40, no. 1, pp. 226– 236, 2020.
A. Cabada and L. Saavedra, “Existence of solutions for nth-order nonlinear differential boundary value problems by means of fixed point theorems”, Nonlinear Anal. Real World Appl., vol. 42, pp. 180–206, 2018.
H. Carrasco and F. Minhós, ”Existence of solutions to infinite elastic beam equations with unbounded nonlinearities”, Electron. J. Differential Equations, vol. 2017, no. 192, pp. 1–11, 2017.
J. R. Graef, L. Kong and F. Minhós, “Higher order boundary value problems with φ−Laplacian and functional boundary conditions”, Comput. Math. Appl., vol. 61, no. 2, pp. 236–249, 2011.
M. R. Grossinho, F. Minhós and A. I. Santos, “A note on a class of problems for a higher-order fully nonlinear equation under one-sided Nagumo-type condition”, Nonlinear Anal., vol. 70, no. 11, pp. 4027–4038, 2009.
R. Koplatadze, G. Kvinikadze and I. P. Stavroulakis, “Properties A and B of nth order linear differential equations with deviating argument”, Georgian Math. J., vol. 6, no. 6, pp. 553–566, 1999.
H. Lian and J. Zhao, “Existence of unbounded solutions for a third-order boundary value problem on infinite intervals”, Discrete Dyn. Nat. Soc., vol. 2012, 2012.
F. Minhós and H. Carrasco, “Solvability of higher-order BVPs in the half-line with unbounded nonlinearities”, Discrete Contin. Dyn. Syst., vol. 2015, pp. 841–850, 2015.
D. R. Smart; Fixed point theorems. London-New York, England-USA: Cambridge University Press, 1974.
A. Zerki, K. Bachouche and K. Ait-Mahiout, “Existence solutions for third order φ−Laplacian bvps on the half-line”, Mediterr. J. Math., vol. 19, no. 6, Art. ID 261, 2022.
Q. Zhang, D. Jiang, S. Weng and H. Gao, “Upper and lower solutions for a second-order three-point singular boundary-value problem”, Electron. J. Differential Equations, vol. 2009, Art. ID 115, 2009.
X. Zhang and L. Liu, “Positive solutions of fourth-order four-point boundary value problems with p-Laplacian operator”, J. Math. Anal. Appl., vol. 336, no. 2, pp. 1414–1423, 2007.
Similar Articles
- Mouffak Benchohra, Fatima-Zohra Mostefai, Weak Solutions of Fractional Order Pettis Integral Inclusions with Multiple Time Delay in Banach Spaces , CUBO, A Mathematical Journal: Vol. 15 No. 1 (2013): CUBO, A Mathematical Journal
- Andrew Craig, Miroslav Haviar, Klarise Marais, Dual digraphs of finite meet-distributive and modular lattices , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
- Gastón E. Hernández, Behavior of multiple solutions for systems of semilinear elliptic equations , CUBO, A Mathematical Journal: No. 11 (1995): CUBO, Revista de Matemática
- Daoyuan Fang, Tailong Li, Global Weak Solutions to the Landau-Lifshitz System in 3D , CUBO, A Mathematical Journal: Vol. 8 No. 2 (2006): CUBO, A Mathematical Journal
- Oscar Rojo J., Ricardo Soto, On the construction of Jacobi matrices from spectral data , CUBO, A Mathematical Journal: No. 4 (1988): CUBO, Revista de Matemática
- Hamza El-Houari, Lalla Saádia Chadli, Hicham Moussa, On a class of fractional Γ(.)-Kirchhoff-Schrödinger system type , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- Michael J. Mezzino, Numerical Solutions of Ordinary Differential Equations , CUBO, A Mathematical Journal: Vol. 6 No. 1 (2004): CUBO, A Mathematical Journal
- Hiroko Manaka, Wataru Takahashi, Weak convergence theorems for maximal monotone operators with nonspreading mappings in a Hilbert space , CUBO, A Mathematical Journal: Vol. 13 No. 1 (2011): CUBO, A Mathematical Journal
- Abdeldjalil Aouane, Smaïl Djebali, Mohamed Aziz Taoudi, Mild solutions of a class of semilinear fractional integro-differential equations subjected to noncompact nonlocal initial conditions , CUBO, A Mathematical Journal: Vol. 22 No. 3 (2020)
- Stanislas Ouaro, Well-Posedness results for anisotropic nonlinear elliptic equations with variable exponent and 𘓹 -data , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
<< < 3 4 5 6 7 8 9 10 11 12 13 14 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 A. Zerki et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.











