Existence of solutions for higher order \(\phi-\)Laplacian BVPs on the half-line using a one-sided Nagumo condition with nonordered upper and lower solutions
-
A. Zerki
a.zerki@ensh.dz
-
K. Bachouche
k.bachouche@univ-alger.dz
-
K. Ait-Mahiout
karima.aitmahiout@g.ens-kouba.dz
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2502.173Abstract
In this paper, we consider the following \((n+1)\)st order bvp on the half line with a \(\phi-\)Laplacian operator \[ \begin{cases} (\phi(u^{(n)}))'(t) = f(t,u(t),\ldots,u^{(n)}(t)), & \text{a.e.},\, t\in [0,+\infty), \\ n \in \mathbb{N}\setminus\{0\}, \\ \\ u^{(i)}(0) = A_{i}, \, i=0,\ldots,n-2, \\ u^{(n-1)}(0) + au^{(n)}(0) = B, \\ u^{(n)}(+\infty) = C. \end{cases} \]
The existence of solutions is obtained by applying Schaefer's fixed point theorem under a one-sided Nagumo condition with nonordered lower and upper solutions method where \(f\) is a \(L^{1}\)-Carathéodory function.
Keywords
Mathematics Subject Classification:
R. P. Agarwal and D. O’Regan, Infinite Interval Problems for Differential, Difference and Integral Equations. Glasgow, Scotland: Kluwer Academic Publisher, 2001.
S. E. Ariaku, E. C. Mbah, C. C. Asogwa and P. U. Nwokoro, “Lower and upper solutions of first order non-linear ordinary differential equations”, IJSES, vol. 3, no. 11, pp. 59–61, 2019.
C. Bai and C. Li, “Unbounded upper and lower solution method for third order boundary value problems on the half line”, Electron. J. Differential Equations, vol. 2009, no. 119, pp. 1–12, 2009.
A. Cabada, J. A. Cid, and L. Sánchez, “Positivity and lower and upper solutions for fourth order boundary value problems”, Nonlinear Anal., vol. 67, no. 5, pp. 1599–1612, 2007.
A. Cabada and N. Dimitrov, “Existence of solutions of nth-order nonlinear difference equations with general boundary conditions”, Acta Math. Sci. Ser. B (Engl. Ed.), vol. 40, no. 1, pp. 226– 236, 2020.
A. Cabada and L. Saavedra, “Existence of solutions for nth-order nonlinear differential boundary value problems by means of fixed point theorems”, Nonlinear Anal. Real World Appl., vol. 42, pp. 180–206, 2018.
H. Carrasco and F. Minhós, ”Existence of solutions to infinite elastic beam equations with unbounded nonlinearities”, Electron. J. Differential Equations, vol. 2017, no. 192, pp. 1–11, 2017.
J. R. Graef, L. Kong and F. Minhós, “Higher order boundary value problems with φ−Laplacian and functional boundary conditions”, Comput. Math. Appl., vol. 61, no. 2, pp. 236–249, 2011.
M. R. Grossinho, F. Minhós and A. I. Santos, “A note on a class of problems for a higher-order fully nonlinear equation under one-sided Nagumo-type condition”, Nonlinear Anal., vol. 70, no. 11, pp. 4027–4038, 2009.
R. Koplatadze, G. Kvinikadze and I. P. Stavroulakis, “Properties A and B of nth order linear differential equations with deviating argument”, Georgian Math. J., vol. 6, no. 6, pp. 553–566, 1999.
H. Lian and J. Zhao, “Existence of unbounded solutions for a third-order boundary value problem on infinite intervals”, Discrete Dyn. Nat. Soc., vol. 2012, 2012.
F. Minhós and H. Carrasco, “Solvability of higher-order BVPs in the half-line with unbounded nonlinearities”, Discrete Contin. Dyn. Syst., vol. 2015, pp. 841–850, 2015.
D. R. Smart; Fixed point theorems. London-New York, England-USA: Cambridge University Press, 1974.
A. Zerki, K. Bachouche and K. Ait-Mahiout, “Existence solutions for third order φ−Laplacian bvps on the half-line”, Mediterr. J. Math., vol. 19, no. 6, Art. ID 261, 2022.
Q. Zhang, D. Jiang, S. Weng and H. Gao, “Upper and lower solutions for a second-order three-point singular boundary-value problem”, Electron. J. Differential Equations, vol. 2009, Art. ID 115, 2009.
X. Zhang and L. Liu, “Positive solutions of fourth-order four-point boundary value problems with p-Laplacian operator”, J. Math. Anal. Appl., vol. 336, no. 2, pp. 1414–1423, 2007.
Similar Articles
- M. H. Farag, T. A. Talaat, E. M. Kamal, Existence and uniqueness solution of a class of quasilinear parabolic boundary control problems , CUBO, A Mathematical Journal: Vol. 15 No. 2 (2013): CUBO, A Mathematical Journal
- Théodore K. Boni, Diabaté Nabongo, Quenching for discretizations of a nonlocal parabolic problem with Neumann boundary condition , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Jean M. Tchuenche, A Uniqueness Theorem in an Age-Physiology Dependent Population Dynamics , CUBO, A Mathematical Journal: Vol. 8 No. 2 (2006): CUBO, A Mathematical Journal
- Aurelian Cernea, On the solution set of a fractional integro-differential inclusion involving Caputo-Katugampola derivative , CUBO, A Mathematical Journal: Vol. 19 No. 3 (2017): CUBO, A Mathematical Journal
- Rodrigue Sanou, Idrissa Ibrango, Blaise Koné, Aboudramane Guiro, Weak solutions to Neumann discrete nonlinear system of Kirchhoff type , CUBO, A Mathematical Journal: Vol. 21 No. 3 (2019)
- F. Cardoso, G. Vodev, Semi-Classical Dispersive Estimates for the Wave and Schr¨odinger Equations with a Potential in Dimensions 𓃠≥ 4 , CUBO, A Mathematical Journal: Vol. 10 No. 2 (2008): CUBO, A Mathematical Journal
- Raúl Fierro, Sergio Pizarro, Fixed points of set-valued mappings satisfying a Banach orbital condition , CUBO, A Mathematical Journal: Vol. 25 No. 1 (2023)
- Svetlin G. Georgiev, Khaled Zennir, New approach to prove the existence of classical solutions for a class of nonlinear parabolic equations , CUBO, A Mathematical Journal: Vol. 20 No. 2 (2018)
- Fabrizio Cuccu, Petar Popivanov, Giovanni Porru, Estimates for solutions to nonlinear degenerate elliptic equations , CUBO, A Mathematical Journal: Vol. 11 No. 4 (2009): CUBO, A Mathematical Journal
- K. Rajendra Prasad, Mahammad Khuddush, K. V. Vidyasagar, Infinitely many positive solutions for an iterative system of singular BVP on time scales , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 A. Zerki et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.











