Fixed points of set-valued mappings satisfying a Banach orbital condition
-
Raúl Fierro
raul.fierro@uv.cl
-
Sergio Pizarro
sergio.pizarro@alumnos.uv.cl
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2501.151Abstract
In this note, we prove a fixed point existence theorem for set-valued functions by extending the usual Banach orbital condition concept for single valued mappings. As we show, this result applies to various types of set-valued contractions existing in the literature.
Keywords
Mathematics Subject Classification:
V. Berinde, “On the approximation of fixed points of weak contractive mappings”, Carpathian J. Math., vol. 19, no. 1, pp. 7–22, 2003.
V. Berinde and M. Berinde, “On a general class of multi-valued weakly Picard mappings”, J. Math. Anal. Appl., vol. 326, no. 2, pp. 772–782, 2007.
V. Berinde and M. Păcurar, “Fixed points and continuity of almost contractions”, Fixed Point Theory, vol. 9, no. 1, pp. 23–34, 2008.
S. Cho, “A fixed point theorem for a Ćirić-Berinde type mapping in orbitally complete metric spaces”, Carpathian J. Math., vol. 30, no. 1, pp. 63–70, 2014.
Lj. B. Ćirić, “A generalization of Banach’s contraction principle”, Proc. Amer. Math. Soc., vol. 45, pp. 267–273, 1974.
H. Covitz and S. B. Nadler, “Multi-valued contraction mappings in generalized metric spaces”, Israel J. Math., vol. 8, pp. 5–11, 1970.
B. Damjanović and D. Dorić, Multivalued generalizations of the Kannan fixed point theorem, Filomat, vol. 25, no. 1, pp. 125–131, 2011.
T. L. Hicks and B. E. Rhoades, “A Banach type fixed-point theorem”, Math. Japon., vol. 24, no. 3, pp. 327–330, 1979/80.
S. Kasahara, “On some generalizations of the Banach contraction theorem”, Publ. Res. Inst. Math. Sci., vol. 12, no. 2, pp. 427–437, 1976/77.
W. A. Kirk and N. Shahzad, “Normal structure and orbital fixed point conditions”, J. Math. Anal. Appl., vol. 463, no. 2, pp. 461–476, 2018.
S. B. Nadler, “Multivalued contraction mappings”, Pacific J. Math., vol. 30, no. 2, pp. 475– 488, 1969.
S. Reich, “Kannan’s fixed point theorem”, Boll. Un. Mat. Ital. (4), vol. 4, pp. 1–11, 1971.
S. Shukla, “Set-valued Preˇsić-Chatterjea type contractions”, Gazi University Journal of Science, vol. 29, no. 2, pp. 535–540, 2016.
- Chilean Council for Scientific and Technological Research
- FONDECYT 1200525
Similar Articles
- N. Seshagiri Rao, K. Kalyani, Fixed point results of \((\phi,\psi)\)-weak contractions in ordered \(b\)-metric spaces , CUBO, A Mathematical Journal: Vol. 24 No. 2 (2022)
- Bapurao C. Dhage, Some Generalizations of Mulit-Valued Version of Schauder‘s Fixed Point Theorem with Applications , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
- Binayak S. Choudhury, Nikhilesh Metiya, Sunirmal Kundu, Existence, well-posedness of coupled fixed points and application to nonlinear integral equations , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- Shrabani Banerjee, Binayak S. Choudhury, Weak and strong convergence theorems of a multistep iteration to a common fixed point of a family of nonself asymptotically nonexpansive mappings in banach spaces , CUBO, A Mathematical Journal: Vol. 14 No. 3 (2012): CUBO, A Mathematical Journal
- Hiroko Manaka, Wataru Takahashi, Weak convergence theorems for maximal monotone operators with nonspreading mappings in a Hilbert space , CUBO, A Mathematical Journal: Vol. 13 No. 1 (2011): CUBO, A Mathematical Journal
- Mehdi Dehghanian, Choonkil Park, Yamin Sayyari, Stability of ternary antiderivation in ternary Banach algebras via fixed point theorem , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Ajay Kumar, Ekta Tamrakar, Inertial algorithm for solving split inclusion problem in Banach spaces , CUBO, A Mathematical Journal: Vol. 25 No. 1 (2023)
- Nadjet Abada, Mouffak Benchohra, Hadda Hammouche, Existence Results for Semilinear Differential Evolution Equations with Impulses and Delay , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- A. Zerki, K. Bachouche, K. Ait-Mahiout, Existence of solutions for higher order \(\phi-\)Laplacian BVPs on the half-line using a one-sided Nagumo condition with nonordered upper and lower solutions , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Adrian Petrus¸el, Ioan A. Rus, Marcel Adrian S¸erban, Fixed Points for Operators on Generalized Metric Spaces , CUBO, A Mathematical Journal: Vol. 10 No. 4 (2008): CUBO, A Mathematical Journal
1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 R. Fierro et. al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.











