Fixed Points for Operators on Generalized Metric Spaces
-
Adrian Petrus¸el
petrusel@math.ubbcluj.ro
-
Ioan A. Rus
iarus@math.ubbcluj.ro
-
Marcel Adrian S¸erban
mserban@math.ubbcluj.ro
Downloads
Abstract
The purpose of this paper is to present the fixed point theory for operators (single valued and multivalued) on generalized metric spaces in the sense of Luxemburg.
Keywords
Similar Articles
- Binayak S. Choudhury, Nikhilesh Metiya, Sunirmal Kundu, Existence, well-posedness of coupled fixed points and application to nonlinear integral equations , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- N. Seshagiri Rao, K. Kalyani, Fixed point results of \((\phi,\psi)\)-weak contractions in ordered \(b\)-metric spaces , CUBO, A Mathematical Journal: Vol. 24 No. 2 (2022)
- Valeriu Popa, Weakly Picard pairs of multifunctions , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Zead Mustafa, Hamed Obiedat, A fixed point theorem of Reich in \(G\)-Metric spaces , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- K. Kalyani, N. Seshagiri Rao, Coincidence point results of nonlinear contractive mappings in partially ordered metric spaces , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
- Nadjet Abada, Mouffak Benchohra, Hadda Hammouche, Existence Results for Semilinear Differential Evolution Equations with Impulses and Delay , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- G. S. Saluja, Convergence theorems for generalized asymptotically quasi-nonexpansive mappings in cone metric spaces , CUBO, A Mathematical Journal: Vol. 15 No. 3 (2013): CUBO, A Mathematical Journal
- Jan Andres, Karel Pastor, Pavla Snyrychov´a, Simple Fixed Point Theorems on Linear Continua , CUBO, A Mathematical Journal: Vol. 10 No. 4 (2008): CUBO, A Mathematical Journal
- Ilker Sahin, Mustafa Telci, A Common Fixed Point Theorem for Pairs of Mappings in Cone Metric Spaces , CUBO, A Mathematical Journal: Vol. 16 No. 1 (2014): CUBO, A Mathematical Journal
- Ram U. Verma, Linear convergence analysis for general proximal point algorithms involving (H, η) − monotonicity frameworks , CUBO, A Mathematical Journal: Vol. 13 No. 3 (2011): CUBO, A Mathematical Journal
1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Download data is not yet available.
Published
2008-12-01
How to Cite
[1]
A. Petrus¸el, I. A. Rus, and M. A. S¸erban, “Fixed Points for Operators on Generalized Metric Spaces”, CUBO, vol. 10, no. 4, pp. 45–66, Dec. 2008.
Issue
Section
Articles