Measure of noncompactness and nondensely defined semilinear functional differential equations with fractional order

Downloads

DOI:

https://doi.org/10.4067/S0719-06462010000300003

Abstract

This paper is devoted to study the existence of integral solutions for a nondensely defined semilinear functional differential equations involving the Riemann-Liouville derivative in a Banach space. The arguments are based upon Mönch‘s fixed point theorem and the technique of measures of noncompactness.

Keywords

Partial differential equations , fractional derivative , fractional integral , fixed point , semigroups , integral solutions , finite delay , measure of noncompactness , Banach space
  • Mouffak Benchohra Laboratoire de Mathématiques, Université de Sidi Bel-Abbès, B.P. 89, 22000, Sidi Bel-Abbès, Algérie.
  • Gaston M. N‘Guérékata Department of Mathematics, Morgan State University, 1700 E. Cold Spring Lane, Baltimore M.D. 21252, USA.
  • Djamila Seba Département de Mathématiques, Université de Boumerdès, Avenue de l‘indépendance, 35000 Boumerdès, Algérie.
  • Pages: 35–48
  • Date Published: 2010-10-01
  • Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.

Downloads

Download data is not yet available.

Published

2010-10-01

How to Cite

[1]
M. Benchohra, G. M. N‘Guérékata, and D. Seba, “Measure of noncompactness and nondensely defined semilinear functional differential equations with fractional order”, CUBO, vol. 12, no. 3, pp. 35–48, Oct. 2010.

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.