Generalized solutions of the Cauchy problem for the Navier-Stokes system and diffusion processes
-
S. Albeverio
albeverio@uni-bonn.de
-
Ya. Belopolskaya
yana@yb1569.spb.edu
Downloads
DOI:
https://doi.org/10.4067/S0719-06462010000200006Abstract
We reduce the construction of a weak solution of the Cauchy problem for the Navier-Stokes system to the construction of a stochastic problem solution. Under suitable conditions we solve the stochastic problem and prove that simultaneously we obtain a weak (generalized) solution to the Cauchy problem for the Navier-Stokes system.
Keywords
Similar Articles
- Fatima Fennour, Soumia Saïdi, On a class of evolution problems driven by maximal monotone operators with integral perturbation , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- Fabrice Jaillet, Xavier Vidaux, A note on Buell’s Theorem on length four Büchi sequences , CUBO, A Mathematical Journal: Vol. 27 No. 1 (2025)
- Adrián Esparza-Amador, Parámetros especiales y deformaciones lineales de la familia \( (\wp(z))^2 + c \) , CUBO, A Mathematical Journal: Vol. 27 No. 2 (2025): Spanish Edition (40th Anniversary)
- Felipe I. Flores, Una nota sobre cocientes finito-dimensionales y el problema de continuidad automática para álgebras de convolución torcida , CUBO, A Mathematical Journal: Vol. 27 No. 2 (2025): Spanish Edition (40th Anniversary)
You may also start an advanced similarity search for this article.
Downloads
Download data is not yet available.
Published
2010-06-01
How to Cite
[1]
S. Albeverio and Y. Belopolskaya, “Generalized solutions of the Cauchy problem for the Navier-Stokes system and diffusion processes”, CUBO, vol. 12, no. 2, pp. 77–96, Jun. 2010.
Issue
Section
Articles










