Una nota sobre cocientes finito-dimensionales y el problema de continuidad automática para álgebras de convolución torcida
A note on finite-dimensional quotients and the problem of automatic continuity for twisted convolution algebras
-
Felipe I. Flores
hmy3tf@virginia.edu
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2702.329Abstract
In this note, we will show that the twisted convolution algebra \(L^{1}_{\alpha,\omega}(\mathbb{G},\mathcal{A})\) associated with a twisted action of a locally compact group \(\mathbb{G}\) on a \(C^{*}\)-algebra \(\mathcal{A}\) has the following property: Every quotient by a closed two-sided ideal of finite codimension produces a semisimple algebra. Afterward, we use this property, together with results by H. Dales and G. Willis, to extend previous results by the author and to produce large classes of examples of algebras with automatic continuity properties.
ResumenEn esta nota probaremos que el álgebra de convolución torcida \(L^{1}_{\alpha,\omega}(\mathbb{G},\mathcal{A})\) asociada a una acción torcida de un grupo localmente compacto \(\mathbb{G}\) en una \(C^{*}\)-algebra \(\mathcal{A}\) tiene la siguiente propiedad: Todo cociente por un ideal cerrado, bilátero y de codimensión finita produce un álgebra semisimple. Luego utilizamos esta propiedad, junto con resultados de H. Dales y G. Willis, para extender resultados previos del autor y producir grandes clases de ejemplos de álgebras con propiedades de continuidad automática.
Keywords
Mathematics Subject Classification:
F. F. Bonsall y J. Duncan, Complete normed algebras, ser. Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer-Verlag, New York-Heidelberg, 1973, vol. 80.
H. G. Dales, “Automatic continuity: a survey,” Bull. London Math. Soc., vol. 10, no. 2, pp. 129–183, 1978, doi: 10.1112/blms/10.2.129.
H. G. Dales, Banach algebras and automatic continuity, ser. London Mathematical Society Monographs. New Series. The Clarendon Press, Oxford University Press, New York, 2000, vol. 24, Oxford Science Publications.
H. G. Dales y G. A. Willis, “Cofinite ideals in Banach algebras, and finite-dimensional representations of group algebras,” in Radical Banach algebras and automatic continuity (Long Beach, Calif., 1981), ser. Lecture Notes in Math. Springer, Berlin-New York, 1983, vol. 975, pp. 397–407.
F. I. Flores, “On the continuity of intertwining operators over generalized convolution algebras,” J. Math. Anal. Appl., vol. 542, no. 1, 2025, Art. ID 128753, doi: 10.1016/j.jmaa.2024.128753.
A. Y. Helemskii, The homology of Banach and topological algebras, ser. Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht, 1989, vol. 41, doi: 10.1007/978-94-009-2354-6.
K. K. Jensen, “Foundations of an equivariant cohomology theory for Banach algebras. II,” Adv. Math., vol. 147, no. 2, pp. 173–259, 1999, doi: 10.1006/aima.1999.1838.
N. P. Jewell, “Continuity of module and higher derivations,” Pacific J. Math., vol. 68, no. 1, pp. 91–98, 1977.
G. Pisier, “Are unitarizable groups amenable?” in Infinite groups: geometric, combinatorial and dynamical aspects, ser. Progr. Math. Birkhäuser, Basel, 2005, vol. 248, pp. 323–362, doi: 10.1007/3-7643-7447-0_8.
V. Runde, “Homomorphisms from L1(G) for G∈[FIA]−∪[Moore],” J. Funct. Anal., vol. 122, no. 1, pp. 25–51, 1994, doi: 10.1006/jfan.1994.1060.
V. Runde, “Intertwining operators over L1(G) for G∈[PG] ∩[SIN],” Math. Z., vol. 221, no. 3, pp. 495–506, 1996, doi: 10.1007/PL00004255.
G. A. Willis, “Derivations from group algebras, factorization in cofinite ideals and topologies on B(X),” Ph.D. dissertation, Newcastle upon Tyne, 1980.
G. Willis, “The continuity of derivations from group algebras: factorizable and connected groups,” J. Austral. Math. Soc. Ser. A, vol. 52, no. 2, pp. 185–204, 1992.
- DMS-2144739 (NSF)
Similar Articles
- Irena Kosi-Ulbl, Joso Vukman, An identity related to derivations of standard operator algebras and semisimple H∗ -algebras , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Raúl Cordovil, David Forge, Gr¨obner and diagonal bases in Orlik-Solomon type algebras , CUBO, A Mathematical Journal: Vol. 7 No. 2 (2005): CUBO, A Mathematical Journal
- Ghislain R. Franssens, On the impossibility of the convolution of distributions , CUBO, A Mathematical Journal: Vol. 15 No. 2 (2013): CUBO, A Mathematical Journal
- Mohadeseh Rostamani, Shirin Hejazian, Maps preserving Fredholm or semi-Fredholm elements relative to some ideal , CUBO, A Mathematical Journal: Vol. 17 No. 1 (2015): CUBO, A Mathematical Journal
- Rodolfo Baeza, On nuclear Bernstein algebras , CUBO, A Mathematical Journal: No. 6 (1990): CUBO, Revista de Matemática
- Ìnsal Tekir, Suat Koç, Rashid Abu-Dawwas, Eda Yıldız, Graded weakly 1-absorbing prime ideals , CUBO, A Mathematical Journal: Vol. 24 No. 2 (2022)
- Naoyuki Koike, Examples of a complex hyperpolar action without singular orbit , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Fernando Levstein, Carolina Maldonado, Generalized quadrangles and subconstituent algebra , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- José Sanabria, Ennis Rosas, Neelamegarajan Rajesh, Carlos Carpintero, Amalia Gómez, S-paracompactness modulo an ideal , CUBO, A Mathematical Journal: Vol. 18 No. 1 (2016): CUBO, A Mathematical Journal
- M. Sabet, R. G. Sanati, Topological algebras with subadditive boundedness radius , CUBO, A Mathematical Journal: Vol. 22 No. 3 (2020)
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 F. I. Flores

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.