Una nota sobre cocientes finito-dimensionales y el problema de continuidad automática para álgebras de convolución torcida
A note on finite-dimensional quotients and the problem of automatic continuity for twisted convolution algebras
-
Felipe I. Flores
hmy3tf@virginia.edu
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2702.329Abstract
In this note, we will show that the twisted convolution algebra \(L^{1}_{\alpha,\omega}(\mathbb{G},\mathcal{A})\) associated with a twisted action of a locally compact group \(\mathbb{G}\) on a \(C^{*}\)-algebra \(\mathcal{A}\) has the following property: Every quotient by a closed two-sided ideal of finite codimension produces a semisimple algebra. Afterward, we use this property, together with results by H. Dales and G. Willis, to extend previous results by the author and to produce large classes of examples of algebras with automatic continuity properties.
ResumenEn esta nota probaremos que el álgebra de convolución torcida \(L^{1}_{\alpha,\omega}(\mathbb{G},\mathcal{A})\) asociada a una acción torcida de un grupo localmente compacto \(\mathbb{G}\) en una \(C^{*}\)-algebra \(\mathcal{A}\) tiene la siguiente propiedad: Todo cociente por un ideal cerrado, bilátero y de codimensión finita produce un álgebra semisimple. Luego utilizamos esta propiedad, junto con resultados de H. Dales y G. Willis, para extender resultados previos del autor y producir grandes clases de ejemplos de álgebras con propiedades de continuidad automática.
Keywords
Mathematics Subject Classification:
F. F. Bonsall y J. Duncan, Complete normed algebras, ser. Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer-Verlag, New York-Heidelberg, 1973, vol. 80.
H. G. Dales, “Automatic continuity: a survey,” Bull. London Math. Soc., vol. 10, no. 2, pp. 129–183, 1978, doi: 10.1112/blms/10.2.129.
H. G. Dales, Banach algebras and automatic continuity, ser. London Mathematical Society Monographs. New Series. The Clarendon Press, Oxford University Press, New York, 2000, vol. 24, Oxford Science Publications.
H. G. Dales y G. A. Willis, “Cofinite ideals in Banach algebras, and finite-dimensional representations of group algebras,” in Radical Banach algebras and automatic continuity (Long Beach, Calif., 1981), ser. Lecture Notes in Math. Springer, Berlin-New York, 1983, vol. 975, pp. 397–407.
F. I. Flores, “On the continuity of intertwining operators over generalized convolution algebras,” J. Math. Anal. Appl., vol. 542, no. 1, 2025, Art. ID 128753, doi: 10.1016/j.jmaa.2024.128753.
A. Y. Helemskii, The homology of Banach and topological algebras, ser. Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht, 1989, vol. 41, doi: 10.1007/978-94-009-2354-6.
K. K. Jensen, “Foundations of an equivariant cohomology theory for Banach algebras. II,” Adv. Math., vol. 147, no. 2, pp. 173–259, 1999, doi: 10.1006/aima.1999.1838.
N. P. Jewell, “Continuity of module and higher derivations,” Pacific J. Math., vol. 68, no. 1, pp. 91–98, 1977.
G. Pisier, “Are unitarizable groups amenable?” in Infinite groups: geometric, combinatorial and dynamical aspects, ser. Progr. Math. Birkhäuser, Basel, 2005, vol. 248, pp. 323–362, doi: 10.1007/3-7643-7447-0_8.
V. Runde, “Homomorphisms from L1(G) for G∈[FIA]−∪[Moore],” J. Funct. Anal., vol. 122, no. 1, pp. 25–51, 1994, doi: 10.1006/jfan.1994.1060.
V. Runde, “Intertwining operators over L1(G) for G∈[PG] ∩[SIN],” Math. Z., vol. 221, no. 3, pp. 495–506, 1996, doi: 10.1007/PL00004255.
G. A. Willis, “Derivations from group algebras, factorization in cofinite ideals and topologies on B(X),” Ph.D. dissertation, Newcastle upon Tyne, 1980.
G. Willis, “The continuity of derivations from group algebras: factorizable and connected groups,” J. Austral. Math. Soc. Ser. A, vol. 52, no. 2, pp. 185–204, 1992.
- DMS-2144739 (NSF)
Similar Articles
- M. E. Luna, M. Shapiro, D. C. Struppa, A. Vajiac, Bicomplex Numbers and their Elementary Functions , CUBO, A Mathematical Journal: Vol. 14 No. 2 (2012): CUBO, A Mathematical Journal
- Carlos Lizama, Una Introducción a Teoría Espectral de Operadores , CUBO, A Mathematical Journal: Vol. 4 No. 1 (2002): CUBO, Matemática Educacional
- R. Mendoza, J. Rojas, Função de Correlação e Álgebra Linear , CUBO, A Mathematical Journal: Vol. 3 No. 1 (2001): CUBO, Matemática Educacional
- Peter Danchev, Units in Abelian Group Algebras Over Direct Products of Indecomposable Rings , CUBO, A Mathematical Journal: Vol. 14 No. 1 (2012): CUBO, A Mathematical Journal
- D. Ebrahimi Bagha, M. Amini, Module amenability for Banach modules , CUBO, A Mathematical Journal: Vol. 13 No. 2 (2011): CUBO, A Mathematical Journal
- Takahiro Sudo, Real and stable ranks for certain crossed products of Toeplitz algebras , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Karel Dekimpe, Groups in action: from Euclidean to polynomial crystallographic groups , CUBO, A Mathematical Journal: Vol. 6 No. 1 (2004): CUBO, A Mathematical Journal
- Paul M. Cohn, The Weyl algebra and its field of fractions , CUBO, A Mathematical Journal: Vol. 5 No. 2 (2003): CUBO, Matemática Educacional
- Bruno De Malafosse, Vladimir RakoÄević, Calculations in new sequence spaces and application to statistical convergence , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
- Benjamín Castillo, Algunas extensiones infinitas de \(\mathbb{Q}\) con la propiedad de Bogomolov , CUBO, A Mathematical Journal: In Press
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 F. I. Flores

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.