Una nota sobre cocientes finito-dimensionales y el problema de continuidad automática para álgebras de convolución torcida
A note on finite-dimensional quotients and the problem of automatic continuity for twisted convolution algebras
-
Felipe I. Flores
hmy3tf@virginia.edu
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2702.329Abstract
In this note, we will show that the twisted convolution algebra \(L^{1}_{\alpha,\omega}(\mathbb{G},\mathcal{A})\) associated with a twisted action of a locally compact group \(\mathbb{G}\) on a \(C^{*}\)-algebra \(\mathcal{A}\) has the following property: Every quotient by a closed two-sided ideal of finite codimension produces a semisimple algebra. Afterward, we use this property, together with results by H. Dales and G. Willis, to extend previous results by the author and to produce large classes of examples of algebras with automatic continuity properties.
ResumenEn esta nota probaremos que el álgebra de convolución torcida \(L^{1}_{\alpha,\omega}(\mathbb{G},\mathcal{A})\) asociada a una acción torcida de un grupo localmente compacto \(\mathbb{G}\) en una \(C^{*}\)-algebra \(\mathcal{A}\) tiene la siguiente propiedad: Todo cociente por un ideal cerrado, bilátero y de codimensión finita produce un álgebra semisimple. Luego utilizamos esta propiedad, junto con resultados de H. Dales y G. Willis, para extender resultados previos del autor y producir grandes clases de ejemplos de álgebras con propiedades de continuidad automática.
Keywords
Mathematics Subject Classification:
F. F. Bonsall y J. Duncan, Complete normed algebras, ser. Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer-Verlag, New York-Heidelberg, 1973, vol. 80.
H. G. Dales, “Automatic continuity: a survey,” Bull. London Math. Soc., vol. 10, no. 2, pp. 129–183, 1978, doi: 10.1112/blms/10.2.129.
H. G. Dales, Banach algebras and automatic continuity, ser. London Mathematical Society Monographs. New Series. The Clarendon Press, Oxford University Press, New York, 2000, vol. 24, Oxford Science Publications.
H. G. Dales y G. A. Willis, “Cofinite ideals in Banach algebras, and finite-dimensional representations of group algebras,” in Radical Banach algebras and automatic continuity (Long Beach, Calif., 1981), ser. Lecture Notes in Math. Springer, Berlin-New York, 1983, vol. 975, pp. 397–407.
F. I. Flores, “On the continuity of intertwining operators over generalized convolution algebras,” J. Math. Anal. Appl., vol. 542, no. 1, 2025, Art. ID 128753, doi: 10.1016/j.jmaa.2024.128753.
A. Y. Helemskii, The homology of Banach and topological algebras, ser. Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht, 1989, vol. 41, doi: 10.1007/978-94-009-2354-6.
K. K. Jensen, “Foundations of an equivariant cohomology theory for Banach algebras. II,” Adv. Math., vol. 147, no. 2, pp. 173–259, 1999, doi: 10.1006/aima.1999.1838.
N. P. Jewell, “Continuity of module and higher derivations,” Pacific J. Math., vol. 68, no. 1, pp. 91–98, 1977.
G. Pisier, “Are unitarizable groups amenable?” in Infinite groups: geometric, combinatorial and dynamical aspects, ser. Progr. Math. Birkhäuser, Basel, 2005, vol. 248, pp. 323–362, doi: 10.1007/3-7643-7447-0_8.
V. Runde, “Homomorphisms from L1(G) for G∈[FIA]−∪[Moore],” J. Funct. Anal., vol. 122, no. 1, pp. 25–51, 1994, doi: 10.1006/jfan.1994.1060.
V. Runde, “Intertwining operators over L1(G) for G∈[PG] ∩[SIN],” Math. Z., vol. 221, no. 3, pp. 495–506, 1996, doi: 10.1007/PL00004255.
G. A. Willis, “Derivations from group algebras, factorization in cofinite ideals and topologies on B(X),” Ph.D. dissertation, Newcastle upon Tyne, 1980.
G. Willis, “The continuity of derivations from group algebras: factorizable and connected groups,” J. Austral. Math. Soc. Ser. A, vol. 52, no. 2, pp. 185–204, 1992.
- DMS-2144739 (NSF)
Similar Articles
- George A. Anastassiou, Quantitative Approximation by a Kantorovich-Shilkret quasi-interpolation neural network operator , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
- Naoyuki Koike, Mean curvature flow of certain kind of isoparametric foliations on non-compact symmetric spaces , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
- M.I. Belishev, A.F. Vakulenko, On algebraic and uniqueness properties of harmonic quaternion fields on 3d manifolds , CUBO, A Mathematical Journal: Vol. 21 No. 1 (2019)
- Aymen Ammar, Aref Jeribi, Kamel Mahfoudhi, Generalized trace pseudo-spectrum of matrix pencils , CUBO, A Mathematical Journal: Vol. 21 No. 2 (2019)
- Alain Escassut, Idempotents in an ultrametric Banach algebra , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- George A. Anastassiou, Foundations of generalized Prabhakar-Hilfer fractional calculus with applications , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
- Sepide Hajighasemi, Shirin Hejazian, Surjective maps preserving the reduced minimum modulus of products , CUBO, A Mathematical Journal: Vol. 25 No. 1 (2023)
- Raúl Fierro, Sergio Pizarro, Fixed points of set-valued mappings satisfying a Banach orbital condition , CUBO, A Mathematical Journal: Vol. 25 No. 1 (2023)
- Mehdi Dehghanian, Choonkil Park, Yamin Sayyari, Stability of ternary antiderivation in ternary Banach algebras via fixed point theorem , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Fethi Soltani, Maher Aloui, Hausdorff operators associated with the linear canonical Sturm-Liouville transform , CUBO, A Mathematical Journal: Vol. 28 No. 1 (2026)
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 F. I. Flores

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.










