Una nota sobre cocientes finito-dimensionales y el problema de continuidad automática para álgebras de convolución torcida
A note on finite-dimensional quotients and the problem of automatic continuity for twisted convolution algebras
-
Felipe I. Flores
hmy3tf@virginia.edu
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2702.329Abstract
In this note, we will show that the twisted convolution algebra \(L^{1}_{\alpha,\omega}(\mathbb{G},\mathcal{A})\) associated with a twisted action of a locally compact group \(\mathbb{G}\) on a \(C^{*}\)-algebra \(\mathcal{A}\) has the following property: Every quotient by a closed two-sided ideal of finite codimension produces a semisimple algebra. Afterward, we use this property, together with results by H. Dales and G. Willis, to extend previous results by the author and to produce large classes of examples of algebras with automatic continuity properties.
ResumenEn esta nota probaremos que el álgebra de convolución torcida \(L^{1}_{\alpha,\omega}(\mathbb{G},\mathcal{A})\) asociada a una acción torcida de un grupo localmente compacto \(\mathbb{G}\) en una \(C^{*}\)-algebra \(\mathcal{A}\) tiene la siguiente propiedad: Todo cociente por un ideal cerrado, bilátero y de codimensión finita produce un álgebra semisimple. Luego utilizamos esta propiedad, junto con resultados de H. Dales y G. Willis, para extender resultados previos del autor y producir grandes clases de ejemplos de álgebras con propiedades de continuidad automática.
Keywords
Mathematics Subject Classification:
F. F. Bonsall y J. Duncan, Complete normed algebras, ser. Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer-Verlag, New York-Heidelberg, 1973, vol. 80.
H. G. Dales, “Automatic continuity: a survey,” Bull. London Math. Soc., vol. 10, no. 2, pp. 129–183, 1978, doi: 10.1112/blms/10.2.129.
H. G. Dales, Banach algebras and automatic continuity, ser. London Mathematical Society Monographs. New Series. The Clarendon Press, Oxford University Press, New York, 2000, vol. 24, Oxford Science Publications.
H. G. Dales y G. A. Willis, “Cofinite ideals in Banach algebras, and finite-dimensional representations of group algebras,” in Radical Banach algebras and automatic continuity (Long Beach, Calif., 1981), ser. Lecture Notes in Math. Springer, Berlin-New York, 1983, vol. 975, pp. 397–407.
F. I. Flores, “On the continuity of intertwining operators over generalized convolution algebras,” J. Math. Anal. Appl., vol. 542, no. 1, 2025, Art. ID 128753, doi: 10.1016/j.jmaa.2024.128753.
A. Y. Helemskii, The homology of Banach and topological algebras, ser. Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht, 1989, vol. 41, doi: 10.1007/978-94-009-2354-6.
K. K. Jensen, “Foundations of an equivariant cohomology theory for Banach algebras. II,” Adv. Math., vol. 147, no. 2, pp. 173–259, 1999, doi: 10.1006/aima.1999.1838.
N. P. Jewell, “Continuity of module and higher derivations,” Pacific J. Math., vol. 68, no. 1, pp. 91–98, 1977.
G. Pisier, “Are unitarizable groups amenable?” in Infinite groups: geometric, combinatorial and dynamical aspects, ser. Progr. Math. Birkhäuser, Basel, 2005, vol. 248, pp. 323–362, doi: 10.1007/3-7643-7447-0_8.
V. Runde, “Homomorphisms from L1(G) for G∈[FIA]−∪[Moore],” J. Funct. Anal., vol. 122, no. 1, pp. 25–51, 1994, doi: 10.1006/jfan.1994.1060.
V. Runde, “Intertwining operators over L1(G) for G∈[PG] ∩[SIN],” Math. Z., vol. 221, no. 3, pp. 495–506, 1996, doi: 10.1007/PL00004255.
G. A. Willis, “Derivations from group algebras, factorization in cofinite ideals and topologies on B(X),” Ph.D. dissertation, Newcastle upon Tyne, 1980.
G. Willis, “The continuity of derivations from group algebras: factorizable and connected groups,” J. Austral. Math. Soc. Ser. A, vol. 52, no. 2, pp. 185–204, 1992.
- DMS-2144739 (NSF)
Similar Articles
- H. Peter Gumm, State based systems are coalgebras , CUBO, A Mathematical Journal: Vol. 5 No. 2 (2003): CUBO, Matemática Educacional
- Takahiro Sudo, The Flip Crossed Products of the ð¶*-Algebras by Almost Commuting Isometries , CUBO, A Mathematical Journal: Vol. 10 No. 3 (2008): CUBO, A Mathematical Journal
- Patrick Eberlein, Left invariant geometry of Lie groups , CUBO, A Mathematical Journal: Vol. 6 No. 1 (2004): CUBO, A Mathematical Journal
- Jacqueline Rojas, Ramon Mendoza, Eben da Silva, Projective Squares in â„™² and Bott‘s Localization Formula , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- A.P. Farajzadeh, A. Amini-Harandi, D. O‘Regan, R.P. Agarwal, Strong vector equilibrium problems in topological vector spaces via KKM maps , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- M.K. Gupta, Rupen Pratap Singh, Connectedness in Fuzzy bitopological Spaces , CUBO, A Mathematical Journal: Vol. 9 No. 1 (2007): CUBO, A Mathematical Journal
- R. Baeza V., R. Benavides G., Formas Bilineales Asociativas en una Algebra Bárica , CUBO, A Mathematical Journal: No. 8 (1992): CUBO, Revista de Matemática
- Martin Moskowitz, Symmetric Spaces of Noncompact type , CUBO, A Mathematical Journal: Vol. 7 No. 2 (2005): CUBO, A Mathematical Journal
- Fred Brackx, Hennie De Schepper, Frank Sommen, Liesbet Van de Voorde, Discrete Clifford analysis: an overview , CUBO, A Mathematical Journal: Vol. 11 No. 1 (2009): CUBO, A Mathematical Journal
- Syouji Yano, On the Index of Clifford Algebras of Quadratic Forms , CUBO, A Mathematical Journal: Vol. 10 No. 1 (2008): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 F. I. Flores

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.