Discrete Clifford analysis: an overview
- Fred Brackx Freddy.Brackx@UGent.be
- Hennie De Schepper Freddy.Brackx@UGent.be
- Frank Sommen Freddy.Brackx@UGent.be
- Liesbet Van de Voorde Freddy.Brackx@UGent.be
Downloads
Abstract
We give an account of our current research results in the development of a higher dimensional discrete function theory in a Clifford algebra context. On the simplest of all graphs, the rectangular ℤm grid, the concept of a discrete monogenic function is introduced. To this end new Clifford bases, involving so–called forward and backward basis vectors and introduced by means of their underlying metric, are controlling the support of the involved operators. As our discrete Dirac operator is seen to square up to a mixed discrete Laplacian, the resulting function theory may be interpreted as a refinement of discrete harmonic analysis. After a proper definition of some topological concepts, function theoretic results amongst which Cauchy‘s theorem and a Cauchy integral formula are obtained. Finally a first attempt is made at creating a general model for the Clifford bases used, involving geometrically interpretable curvature vectors.
Keywords
Most read articles by the same author(s)
- Helmuth R. Malonek, Dixan Peña, Frank Sommen, Fischer decomposition by inframonogenic functions , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
Similar Articles
- F. Brackx, H. De Schepper, The Hilbert Transform on a Smooth Closed Hypersurface , CUBO, A Mathematical Journal: Vol. 10 No. 2 (2008): CUBO, A Mathematical Journal
- Volodymyr Sushch, Green Function for a Two-Dimensional Discrete Laplace-Beltrami Operator , CUBO, A Mathematical Journal: Vol. 10 No. 2 (2008): CUBO, A Mathematical Journal
- Ahmed Ali Atash, Maisoon Ahmed Kulib, Extension of exton's hypergeometric function \(K_{16}\) , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
- D. Constales, R. De Almeida, R.S. Krausshar, A Generalization of Wiman and Valiron‘s theory to the Clifford analysis setting , CUBO, A Mathematical Journal: Vol. 11 No. 1 (2009): CUBO, A Mathematical Journal
- René Schott, G. Stacey Staples, Operator homology and cohomology in Clifford algebras , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- F. Brackx, H. De Schepper, V. Soucek, Differential forms versus multi-vector functions in Hermitean Clifford analysis , CUBO, A Mathematical Journal: Vol. 13 No. 2 (2011): CUBO, A Mathematical Journal
- Xu You, Approximation and inequalities for the factorial function related to the Burnside’s formula , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
- Rubén A. Hidalgo, The structure of extended function groups , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
- Feng Qi, The extended mean values: Definition, Properties, Monotonicities, Comparison, Convexities, Generalizations, and Applications , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
- George A. Anastassiou, A New Expansion Formula , CUBO, A Mathematical Journal: Vol. 5 No. 1 (2003): CUBO, Matemática Educacional
1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.