Approximation and inequalities for the factorial function related to the Burnside’s formula
-
Xu You
youxu@bipt.edu.cn
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2602.317Abstract
In this paper, we present a continued fraction approximation and some inequalities of the factorial function based on the Burnside's formula. This approximation is fast in comparison with the recently discovered asymptotic series. Finally, some numerical computations are provided for demonstrating the superiority of our approximation over the Burnside's formula and the classical Stirling's series.
Keywords
Mathematics Subject Classification:
M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables. Dover Publications, Inc., New York, USA, 1972.
N. Batir, “Sharp inequalities for factorial n,” Proyecciones, vol. 27, no. 1, pp. 97–102, 2008, doi: 10.4067/S0716-09172008000100006.
W. Burnside, “A rapidly convergent series for log N!,” Messenger Math., vol. 46, pp. 157–159, 1917.
X. Cao, “Multiple-correction and continued fraction approximation,” J. Math. Anal. Appl., vol. 424, no. 2, pp. 1425–1446, 2015, doi: 10.1016/j.jmaa.2014.12.014.
X. Cao, H. Xu, and X. You, “Multiple-correction and faster approximation,” J. Number Theory, vol. 149, pp. 327–350, 2015, doi: 10.1016/j.jnt.2014.10.016.
X. Cao and X. You, “Multiple-correction and continued fraction approximation (II),” Appl. Math. Comput., vol. 261, pp. 192–205, 2015, doi: 10.1016/j.amc.2015.03.106.
R. W. Gosper, Jr., “Decision procedure for indefinite hypergeometric summation,” Proc. Nat. Acad. Sci. U.S.A., vol. 75, no. 1, pp. 40–42, 1978, doi: 10.1073/pnas.75.1.40.
C. Mortici, “An ultimate extremely accurate formula for approximation of the factorial function,” Arch. Math. (Basel), vol. 93, no. 1, pp. 37–45, 2009, doi: 10.1007/s00013-009-0008-5.
C. Mortici, “On the generalized Stirling formula,” Creat. Math. Inform., vol. 19, no. 1, pp. 53–56, 2010.
C. Mortici, “Product approximations via asymptotic integration,” Amer. Math. Monthly, vol. 117, no. 5, pp. 434–441, 2010, doi: 10.4169/000298910X485950.
C. Mortici and F. Qi, “Asymptotic formulas and inequalities for the gamma function in terms of the tri-gamma function,” Results Math., vol. 67, no. 3-4, pp. 395–402, 2015, doi: 10.1007/s00025-015-0439-1.
G. Nemes, “New asymptotic expansion for the Gamma function,” Arch. Math. (Basel), vol. 95, no. 2, pp. 161–169, 2010, doi: 10.1007/s00013-010-0146-9.
S. Ramanujan, The lost notebook and other unpublished papers. Springer-Verlag, Berlin; Narosa Publishing House, New Delhi, 1988.
W. Schuster, “Improving Stirling’s formula,” Arch. Math. (Basel), vol. 77, no. 2, pp. 170–176, 2001, doi: 10.1007/PL00000477.
- Science and Technology Plan of Beijing Municipal Education Commission (KM201910017002)
Most read articles by the same author(s)
- Xu You, Rational approximation of the finite sum of some sequences , CUBO, A Mathematical Journal: Vol. 27 No. 1 (2025)
Similar Articles
- Ahmed Ali Atash, Maisoon Ahmed Kulib, Extension of exton's hypergeometric function \(K_{16}\) , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
- George A. Anastassiou, Multiple general sigmoids based Banach space valued neural network multivariate approximation , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
- George A. Anastassiou, A New Expansion Formula , CUBO, A Mathematical Journal: Vol. 5 No. 1 (2003): CUBO, Matemática Educacional
- Fred Brackx, Hennie De Schepper, Frank Sommen, Liesbet Van de Voorde, Discrete Clifford analysis: an overview , CUBO, A Mathematical Journal: Vol. 11 No. 1 (2009): CUBO, A Mathematical Journal
- George A. Anastassiou, Right general fractional monotone approximation , CUBO, A Mathematical Journal: Vol. 17 No. 3 (2015): CUBO, A Mathematical Journal
- Mouez Dimassi, Maher Zerzeri, Spectral shift function for slowly varying perturbation of periodic Schrödinger operators , CUBO, A Mathematical Journal: Vol. 14 No. 1 (2012): CUBO, A Mathematical Journal
- Vito Lampret, Double asymptotic inequalities for the generalized Wallis ratio , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- George A. Anastassiou, Quantitative Approximation by a Kantorovich-Shilkret quasi-interpolation neural network operator , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
- Rubén A. Hidalgo, The structure of extended function groups , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
- Xu You, Rational approximation of the finite sum of some sequences , CUBO, A Mathematical Journal: Vol. 27 No. 1 (2025)
1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 X. You

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.











