Approximation and inequalities for the factorial function related to the Burnside’s formula
-
Xu You
youxu@bipt.edu.cn
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2602.317Abstract
In this paper, we present a continued fraction approximation and some inequalities of the factorial function based on the Burnside's formula. This approximation is fast in comparison with the recently discovered asymptotic series. Finally, some numerical computations are provided for demonstrating the superiority of our approximation over the Burnside's formula and the classical Stirling's series.
Keywords
Mathematics Subject Classification:
M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables. Dover Publications, Inc., New York, USA, 1972.
N. Batir, “Sharp inequalities for factorial n,” Proyecciones, vol. 27, no. 1, pp. 97–102, 2008, doi: 10.4067/S0716-09172008000100006.
W. Burnside, “A rapidly convergent series for log N!,” Messenger Math., vol. 46, pp. 157–159, 1917.
X. Cao, “Multiple-correction and continued fraction approximation,” J. Math. Anal. Appl., vol. 424, no. 2, pp. 1425–1446, 2015, doi: 10.1016/j.jmaa.2014.12.014.
X. Cao, H. Xu, and X. You, “Multiple-correction and faster approximation,” J. Number Theory, vol. 149, pp. 327–350, 2015, doi: 10.1016/j.jnt.2014.10.016.
X. Cao and X. You, “Multiple-correction and continued fraction approximation (II),” Appl. Math. Comput., vol. 261, pp. 192–205, 2015, doi: 10.1016/j.amc.2015.03.106.
R. W. Gosper, Jr., “Decision procedure for indefinite hypergeometric summation,” Proc. Nat. Acad. Sci. U.S.A., vol. 75, no. 1, pp. 40–42, 1978, doi: 10.1073/pnas.75.1.40.
C. Mortici, “An ultimate extremely accurate formula for approximation of the factorial function,” Arch. Math. (Basel), vol. 93, no. 1, pp. 37–45, 2009, doi: 10.1007/s00013-009-0008-5.
C. Mortici, “On the generalized Stirling formula,” Creat. Math. Inform., vol. 19, no. 1, pp. 53–56, 2010.
C. Mortici, “Product approximations via asymptotic integration,” Amer. Math. Monthly, vol. 117, no. 5, pp. 434–441, 2010, doi: 10.4169/000298910X485950.
C. Mortici and F. Qi, “Asymptotic formulas and inequalities for the gamma function in terms of the tri-gamma function,” Results Math., vol. 67, no. 3-4, pp. 395–402, 2015, doi: 10.1007/s00025-015-0439-1.
G. Nemes, “New asymptotic expansion for the Gamma function,” Arch. Math. (Basel), vol. 95, no. 2, pp. 161–169, 2010, doi: 10.1007/s00013-010-0146-9.
S. Ramanujan, The lost notebook and other unpublished papers. Springer-Verlag, Berlin; Narosa Publishing House, New Delhi, 1988.
W. Schuster, “Improving Stirling’s formula,” Arch. Math. (Basel), vol. 77, no. 2, pp. 170–176, 2001, doi: 10.1007/PL00000477.
- Science and Technology Plan of Beijing Municipal Education Commission (KM201910017002)
Most read articles by the same author(s)
- Xu You, Rational approximation of the finite sum of some sequences , CUBO, A Mathematical Journal: Vol. 27 No. 1 (2025)
Similar Articles
- Kuldip Raj, Sunil K. Sharma, Some generalized difference double sequence spaces defined by a sequence of Orlicz-functions , CUBO, A Mathematical Journal: Vol. 14 No. 3 (2012): CUBO, A Mathematical Journal
- Takahiro Sudo, Computing the inverse Laplace transform for rational functions vanishing at infinity , CUBO, A Mathematical Journal: Vol. 16 No. 3 (2014): CUBO, A Mathematical Journal
- Joachim Toft, Pseudo-differential operators with smooth symbols on modulation spaces , CUBO, A Mathematical Journal: Vol. 11 No. 4 (2009): CUBO, A Mathematical Journal
- Ferenc Szidarovszky, Jijun Zhao, The Dynamic Evolution of Industrial Clusters , CUBO, A Mathematical Journal: Vol. 11 No. 2 (2009): CUBO, A Mathematical Journal
- Carl Chiarella, Ferenc Szidarovszky, A Multiobjective Model of Oligopolies under Uncertainty , CUBO, A Mathematical Journal: Vol. 11 No. 2 (2009): CUBO, A Mathematical Journal
- Ghislain R. Franssens, On the impossibility of the convolution of distributions , CUBO, A Mathematical Journal: Vol. 15 No. 2 (2013): CUBO, A Mathematical Journal
- S.V. Ludkovsky, Wrap groups of fiber bundles and their structure , CUBO, A Mathematical Journal: Vol. 11 No. 1 (2009): CUBO, A Mathematical Journal
- George A. Anastassiou, Poincar´e Type Inequalities for Linear Differential Operators , CUBO, A Mathematical Journal: Vol. 10 No. 3 (2008): CUBO, A Mathematical Journal
- Ravi P. Agarwal, Michael E. Filippakis, Donal O‘Regan, Nikolaos S. Papageorgiou, Multiple Solutions for Doubly Resonant Elliptic Problems Using Critical Groups , CUBO, A Mathematical Journal: Vol. 10 No. 3 (2008): CUBO, A Mathematical Journal
- M.I. Belishev, Dynamical Inverse Problem for the Equation ð’°áµ¼áµ¼ − Δ𒰠− ∇ln𜌠· ∇𒰠= 0 (the BC Method) , CUBO, A Mathematical Journal: Vol. 10 No. 2 (2008): CUBO, A Mathematical Journal
<< < 3 4 5 6 7 8 9 10 11 12 13 14 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 X. You

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.











