Approximation and inequalities for the factorial function related to the Burnside’s formula
-
Xu You
youxu@bipt.edu.cn
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2602.317Abstract
In this paper, we present a continued fraction approximation and some inequalities of the factorial function based on the Burnside's formula. This approximation is fast in comparison with the recently discovered asymptotic series. Finally, some numerical computations are provided for demonstrating the superiority of our approximation over the Burnside's formula and the classical Stirling's series.
Keywords
Mathematics Subject Classification:
M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables. Dover Publications, Inc., New York, USA, 1972.
N. Batir, “Sharp inequalities for factorial n,” Proyecciones, vol. 27, no. 1, pp. 97–102, 2008, doi: 10.4067/S0716-09172008000100006.
W. Burnside, “A rapidly convergent series for log N!,” Messenger Math., vol. 46, pp. 157–159, 1917.
X. Cao, “Multiple-correction and continued fraction approximation,” J. Math. Anal. Appl., vol. 424, no. 2, pp. 1425–1446, 2015, doi: 10.1016/j.jmaa.2014.12.014.
X. Cao, H. Xu, and X. You, “Multiple-correction and faster approximation,” J. Number Theory, vol. 149, pp. 327–350, 2015, doi: 10.1016/j.jnt.2014.10.016.
X. Cao and X. You, “Multiple-correction and continued fraction approximation (II),” Appl. Math. Comput., vol. 261, pp. 192–205, 2015, doi: 10.1016/j.amc.2015.03.106.
R. W. Gosper, Jr., “Decision procedure for indefinite hypergeometric summation,” Proc. Nat. Acad. Sci. U.S.A., vol. 75, no. 1, pp. 40–42, 1978, doi: 10.1073/pnas.75.1.40.
C. Mortici, “An ultimate extremely accurate formula for approximation of the factorial function,” Arch. Math. (Basel), vol. 93, no. 1, pp. 37–45, 2009, doi: 10.1007/s00013-009-0008-5.
C. Mortici, “On the generalized Stirling formula,” Creat. Math. Inform., vol. 19, no. 1, pp. 53–56, 2010.
C. Mortici, “Product approximations via asymptotic integration,” Amer. Math. Monthly, vol. 117, no. 5, pp. 434–441, 2010, doi: 10.4169/000298910X485950.
C. Mortici and F. Qi, “Asymptotic formulas and inequalities for the gamma function in terms of the tri-gamma function,” Results Math., vol. 67, no. 3-4, pp. 395–402, 2015, doi: 10.1007/s00025-015-0439-1.
G. Nemes, “New asymptotic expansion for the Gamma function,” Arch. Math. (Basel), vol. 95, no. 2, pp. 161–169, 2010, doi: 10.1007/s00013-010-0146-9.
S. Ramanujan, The lost notebook and other unpublished papers. Springer-Verlag, Berlin; Narosa Publishing House, New Delhi, 1988.
W. Schuster, “Improving Stirling’s formula,” Arch. Math. (Basel), vol. 77, no. 2, pp. 170–176, 2001, doi: 10.1007/PL00000477.
- Science and Technology Plan of Beijing Municipal Education Commission (KM201910017002)
Most read articles by the same author(s)
- Xu You, Rational approximation of the finite sum of some sequences , CUBO, A Mathematical Journal: Vol. 27 No. 1 (2025)
Similar Articles
- Wenchang Chu, Chenying Wang, Wenlong Zhang, Partial fractions and ð˜²-binomial determinant identities , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
- Wolfgang Spr¨ossig, Quaternionic analysis and Maxwell‘s equations , CUBO, A Mathematical Journal: Vol. 7 No. 2 (2005): CUBO, A Mathematical Journal
- Vito Lampret, The perimeter of a flattened ellipse can be estimated accurately even from Maclaurin‘s series , CUBO, A Mathematical Journal: Vol. 21 No. 2 (2019)
- George A. Anastassiou, Fractional Voronovskaya type asymptotic expansions for quasi-interpolation neural network operators , CUBO, A Mathematical Journal: Vol. 14 No. 3 (2012): CUBO, A Mathematical Journal
- S. S. Dragomir, M. V. Boldea, M. Megan, Inequalities for Chebyshev functional in Banach algebras , CUBO, A Mathematical Journal: Vol. 19 No. 1 (2017): CUBO, A Mathematical Journal
- David Békollè, Khalil Ezzinbi, Samir Fatajou, Duplex Elvis Houpa Danga, Fritz Mbounja Béssémè, Convolutions in \((\mu,\nu)\)-pseudo-almost periodic and \((\mu,\nu)\)-pseudo-almost automorphic function spaces and applications to solve integral equations , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- George Anastassiou, Voronovskaya type asymptotic expansions for multivariate quasi-interpolation neural network operators , CUBO, A Mathematical Journal: Vol. 16 No. 2 (2014): CUBO, A Mathematical Journal
- Bo Zhang, Boundedness and Global Attractivity of Solutions for a System of Nonlinear Integral Equations , CUBO, A Mathematical Journal: Vol. 11 No. 3 (2009): CUBO, A Mathematical Journal
- George A. Anastassiou, Ostrowski-Sugeno fuzzy inequalities , CUBO, A Mathematical Journal: Vol. 21 No. 3 (2019)
- Abdi Oli, Kelelaw Tilahun, G. V. Reddy, The Multivariable Aleph-function involving the Generalized Mellin-Barnes Contour Integrals , CUBO, A Mathematical Journal: Vol. 22 No. 3 (2020)
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 X. You

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.











