Quaternionic analysis and Maxwell‘s equations
- Wolfgang Spr¨ossig sproessig@math.tu-freiberg.de
Downloads
Abstract
Methods of quaternionic analysis are used to obtain solutions of Maxwell‘ s equations. By the help of time-discretisation Maxwell‘s equations are reduced to an equation of Yukawa type. Initial value and boundary value conditions are realized by a representation formula in each time step. Approximation and stability is proved.
Keywords
Similar Articles
- H. M. Srivastava, Fractional calculus and its applications , CUBO, A Mathematical Journal: Vol. 5 No. 1 (2003): CUBO, Matemática Educacional
- Essozimna Kpizim, Bertin Dehigbe, Ramkumar Kasinathan, Ravikumar Kasinathan, Mamadou Abdoul Diop, Approximate controllability of non-instantaneous impulsive stochastic integrodifferential equations driven by Rosenblatt process via resolvent operators , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
- Volodymyr Sushch, Self-Dual and Anti-Self-Dual Solutions of Discrete Yang-Mills Equations on a Double Complex , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
- Fred Brackx, Hennie De Schepper, Frank Sommen, Liesbet Van de Voorde, Discrete Clifford analysis: an overview , CUBO, A Mathematical Journal: Vol. 11 No. 1 (2009): CUBO, A Mathematical Journal
- S. Georgiev, J. Morais, W. Spross, New Aspects on Elementary Functions in the Context of Quaternionic Analysis , CUBO, A Mathematical Journal: Vol. 14 No. 1 (2012): CUBO, A Mathematical Journal
- D. Constales, R. De Almeida, R.S. Krausshar, A Generalization of Wiman and Valiron‘s theory to the Clifford analysis setting , CUBO, A Mathematical Journal: Vol. 11 No. 1 (2009): CUBO, A Mathematical Journal
- Bo Zhang, Boundedness and Global Attractivity of Solutions for a System of Nonlinear Integral Equations , CUBO, A Mathematical Journal: Vol. 11 No. 3 (2009): CUBO, A Mathematical Journal
- S. S. Dragomir, Several inequalities for an integral transform of positive operators in Hilbert spaces with applications , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Paul W. Eloe, Jeffrey T. Neugebauer, Maximum, anti-maximum principles and monotone methods for boundary value problems for Riemann-Liouville fractional differential equations in neighborhoods of simple eigenvalues , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Alessandro Perotti, Regular quaternionic functions and conformal mappings , CUBO, A Mathematical Journal: Vol. 11 No. 1 (2009): CUBO, A Mathematical Journal
1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.