Quaternionic analysis and Maxwell‘s equations
-
Wolfgang Spr¨ossig
sproessig@math.tu-freiberg.de
Downloads
Abstract
Methods of quaternionic analysis are used to obtain solutions of Maxwell‘ s equations. By the help of time-discretisation Maxwell‘s equations are reduced to an equation of Yukawa type. Initial value and boundary value conditions are realized by a representation formula in each time step. Approximation and stability is proved.
Keywords
Similar Articles
- Fujisaki Masatoshi, Nonlinear semigroup associated with maximizing operator and large deviation , CUBO, A Mathematical Journal: Vol. 8 No. 1 (2006): CUBO, A Mathematical Journal
- George A. Anastassiou, Foundations of generalized Prabhakar-Hilfer fractional calculus with applications , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
- René Schott, G. Stacey Staples, Operator homology and cohomology in Clifford algebras , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Marko Kostić, Degenerate k-regularized (C1, C2)-existence and uniqueness families , CUBO, A Mathematical Journal: Vol. 17 No. 3 (2015): CUBO, A Mathematical Journal
- Bashir Ahmad, Amjad F. Albideewi, Sotiris K. Ntouyas, Ahmed Alsaedi, Existence results for a multipoint boundary value problem of nonlinear sequential Hadamard fractional differential equations , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
- Mohsen Razzaghi, Hamid-Reza Marzban, Hybrid Functions in the Calculus of Variations , CUBO, A Mathematical Journal: Vol. 4 No. 1 (2002): CUBO, Matemática Educacional
- Ganga Ram Gautam, Sandra Pinelas, Manoj Kumar, Namrata Arya, Jaimala Bishnoi, On the solution of \(\mathcal{T}-\)controllable abstract fractional differential equations with impulsive effects , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
- Muhammad N. Islam, Youssef N. Raffoul, Bounded Solutions and Periodic Solutions of Almost Linear Volterra Equations , CUBO, A Mathematical Journal: Vol. 11 No. 3 (2009): CUBO, A Mathematical Journal
- M.I. Belishev, Dynamical Inverse Problem for the Equation ð’°áµ¼áµ¼ − Δ𒰠− ∇ln𜌠· ∇𒰠= 0 (the BC Method) , CUBO, A Mathematical Journal: Vol. 10 No. 2 (2008): CUBO, A Mathematical Journal
- Volodymyr Sushch, Discrete model of Yang-Mills equations in Minkowski space , CUBO, A Mathematical Journal: Vol. 6 No. 2 (2004): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.











