Quaternionic analysis and Maxwell‘s equations
-
Wolfgang Spr¨ossig
sproessig@math.tu-freiberg.de
Downloads
Abstract
Methods of quaternionic analysis are used to obtain solutions of Maxwell‘ s equations. By the help of time-discretisation Maxwell‘s equations are reduced to an equation of Yukawa type. Initial value and boundary value conditions are realized by a representation formula in each time step. Approximation and stability is proved.
Keywords
Similar Articles
- M. H. Saleh, S. M. Amer, M. H. Ahmed, The method of Kantorovich majorants to nonlinear singular integral equations with Hilbert Kernel , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- George A. Anastassiou, Quantitative Approximation by a Kantorovich-Shilkret quasi-interpolation neural network operator , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
- Filippo Cammaroto, Infinitely many solutions for a nonlinear Navier problem involving the \(p\)-biharmonic operator , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- Moussa Barro, Sado Traoré, Level sets regularization with application to optimization problems , CUBO, A Mathematical Journal: Vol. 22 No. 1 (2020)
- Irena Kosi-Ulbl, Joso Vukman, An identity related to derivations of standard operator algebras and semisimple H∗ -algebras , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Khalida Aissani, Mouffak Benchohra, Nadia Benkhettou, On Fractional Integro-differential Equations with State-Dependent Delay and Non-Instantaneous Impulses , CUBO, A Mathematical Journal: Vol. 21 No. 1 (2019)
- Tingxiu Wang, Some General Theorems on Uniform Boundedness for Functional Differential Equations , CUBO, A Mathematical Journal: Vol. 11 No. 3 (2009): CUBO, A Mathematical Journal
- David Békollè, Khalil Ezzinbi, Samir Fatajou, Duplex Elvis Houpa Danga, Fritz Mbounja Béssémè, Convolutions in \((\mu,\nu)\)-pseudo-almost periodic and \((\mu,\nu)\)-pseudo-almost automorphic function spaces and applications to solve integral equations , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- Nakao Hayashi, Pavel l. Naumkin, Existence of asymptotically free solutions for quadratic nonlinear Schrödinger equations in 3d , CUBO, A Mathematical Journal: Vol. 9 No. 1 (2007): CUBO, A Mathematical Journal
- George A. Anastassiou, Multiple general sigmoids based Banach space valued neural network multivariate approximation , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
<< < 4 5 6 7 8 9 10 11 12 13 14 15 > >>
You may also start an advanced similarity search for this article.











