On algebraic and uniqueness properties of harmonic quaternion fields on 3d manifolds
- M.I. Belishev belishev@pdmi.ras.ru
- A.F. Vakulenko vak@pdmi.ras.ru
Downloads
DOI:
https://doi.org/10.4067/S0719-06462019000100001Abstract
Let Ω be a smooth compact oriented 3-dimensional Riemannian manifold with boundary. A quaternion field is a pair q = {α, u} of a function α and a vector field u on Ω. A field q is harmonic if α, u are continuous in Ω and ∇α = rot u, div u = 0 holds into Ω. The space ð’ž(Ω) of harmonic fields is a subspace of the Banach algebra ð’¬ (Ω) of continuous quaternion fields with the point-wise multiplication qq”² = {αα”² − u · u ”² , αu”² + α ”²u + u ∧ u ”² }. We prove a Stone-Weierstrass type theorem: the subalgebra ∨ð’ž(Ω) generated by harmonic fields is dense in ð’¬ (Ω). Some results on 2-jets of harmonic functions and the uniqueness sets of harmonic fields are provided. Comprehensive study of harmonic fields is motivated by possible applications to inverse problems of mathematical physics.
Keywords
[2] M.I.Belishev. The Calderon problem for two-dimensional manifolds by the BC-method. SIAM J.Math.Anal., 35 (1): 172–182, 2003.
[3] M.I.Belishev. Some remarks on impedance tomography problem for 3d–manifolds. CUBO A Mathematical Journal, 7, no 1: 43–53, 2005.
[4] M.I. Belishev. Boundary Control Method and Inverse Problems of Wave Propagation. En- cyclopedia of Mathematical Physics, v.1, 340–345. eds. J.-P.Francoise, G.L.Naber and Tsou S.T., Oxford: Elsevier, (ISBN 978-0-1251-2666-3), 2006.
[5] M.I.Belishev. Geometrization of Rings as a Method for Solving Inverse Problems. Sobolev Spaces in Mathematics III. Applications in Mathematical Physics, Ed. V.Isakov., Springer, 2008, 5–24.
[6] M.I.Belishev. Algebras in reconstruction of manifolds. Spectral Theory and Partial Differential Equations, G.Eskin, L.Friedlander, J.Garnett Eds. Contemporary Mathematics, AMS, 640 (2015), 1–12. http://dx.doi.org/10.1090/conm/640 . ISSN: 0271-4132.
[7] M.I.Belishev. Boundary Control Method. Encyclopedia of Applied and Computational Math- ematics, Volume no: 1, Pages: 142–146. DOI: 10.1007/978-3-540-70529-1. ISBN 978-3-540- 70528-4
[8] M.I.Belishev. On algebras of three-dimensional quaternionic harmonic fields. Zapiski Nauch. Semin. POMI, 451 (2016), 14–28 (in Russian). English translation: M.I.Belishev. On algebras of three-dimensional quaternion harmonic fields. Journal of Mathematical Sciences, 226(6):701n ̃710, 2017.
[9] M.I.Belishev. Boundary control and tomography of Riemannian manifolds (BC-method). Russian Mathematical Surveys, 2017, 72:4, 581–644. https://doi.org/10.4213/rm 9768
[10] M.I.Belishev, V.A.Sharafutdinov. Dirichlet to Neumann operator on differential forms. Bul- letin de Sciences Math Ìematiques, 132 (2008), No 2, 128–145.
[11] M.I.Belishev, A.F.Vakulenko. On algebras of harmonic quaternion fields in R3. Algebra i Analiz, 31 (2019), No 1, 1–17 (in Russian). English translation: arXiv:1710.00577v3 [math.FA] 11 Oct 2017.
[12] L.Bers, F.John, M.Schechter. Partial Differential Equations. New Ypork-Landon-Sydney, 1964.
[13] K.Jarosz. Function representation of a noncommutative uniform algebra. Proceedings of the AMS, 136 (2) (2007), 605–611.
[14] J. Holladay. A note on the Stone-Weierstrass theorem for quaternions. Proc. Amer. Math. Soc., 8 (1957), 656n ̃657. MR0087047 (19:293d).
[15] S.H.Kulkarni and B.V.Limaye. Real Function Algebras, Monographs and Textbooks in Pure and Applied Math., 168, Marcel Dekker, Inc., New York, 1992. MR1197884 (93m:46059
[16] R.Leis. Initial boundary value problems in mathematical physics. Teubner, Stuttgart, 1972.
[17] C.Miranda. Equazioni alle derivate parziali di tipo ellittico. Springer-Verlag, Berlin, Goettingen, Heidelberg, 1955.
[18] M.Mitrea, M.Taylor. Boundary Layer Methods for Lipschitz Domains in Riemannian Manifolds. Journal of Functional Analysis, 163 (1999), 181–251.
[19] M.A.Naimark. Normed Rings. WN Publishing, Gronnongen, The Netherlands, 1970.
[20] R.Narasimhan. Analysis on real and complex manifolds. Masson and Cie, editier - Paris North-Holland Publishing Company, Amsterdam, 1968.
[21] G.Schwarz. Hodge decomposition - a method for solving boundary value problems. Lecture notes in Math., 1607. Springer–Verlag, Berlin, 1995.
Similar Articles
- George A. Anastassiou, Multiple general sigmoids based Banach space valued neural network multivariate approximation , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
- Irena Kosi-Ulbl, Joso Vukman, An identity related to derivations of standard operator algebras and semisimple H∗ -algebras , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Raúl Cordovil, David Forge, Gr¨obner and diagonal bases in Orlik-Solomon type algebras , CUBO, A Mathematical Journal: Vol. 7 No. 2 (2005): CUBO, A Mathematical Journal
- Tingxiu Wang, Some General Theorems on Uniform Boundedness for Functional Differential Equations , CUBO, A Mathematical Journal: Vol. 11 No. 3 (2009): CUBO, A Mathematical Journal
- Mehdi Dehghanian, Choonkil Park, Yamin Sayyari, Stability of ternary antiderivation in ternary Banach algebras via fixed point theorem , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Jairo Bochi, The basic ergodic theorems, yet again , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
- S. S. Dragomir, M. V. Boldea, M. Megan, Inequalities for Chebyshev functional in Banach algebras , CUBO, A Mathematical Journal: Vol. 19 No. 1 (2017): CUBO, A Mathematical Journal
- Razvan A. Mezei, Applications and Lipschitz results of approximation by smooth Picard and Gauss-Weierstrass type singular integrals , CUBO, A Mathematical Journal: Vol. 13 No. 3 (2011): CUBO, A Mathematical Journal
- Abhijit Banerjee, Arpita Kundu, On uniqueness of \(L\)-functions in terms of zeros of strong uniqueness polynomial , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
- Hugo Leiva, Jesús Matute, Nelson Merentes, José Sánchez, On a type of Volterra integral equation in the space of continuous functions with bounded variation valued in Banach spaces , CUBO, A Mathematical Journal: Vol. 17 No. 2 (2015): CUBO, A Mathematical Journal
1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.