On algebraic and uniqueness properties of harmonic quaternion fields on 3d manifolds

Downloads

DOI:

https://doi.org/10.4067/S0719-06462019000100001

Abstract

Let Ω be a smooth compact oriented 3-dimensional Riemannian manifold with boundary. A quaternion field is a pair q = {α, u} of a function α and a vector field u on Ω. A field q is harmonic if α, u are continuous in Ω and ∇α = rot u, div u = 0 holds into Ω. The space ð’ž(Ω) of harmonic fields is a subspace of the Banach algebra ð’¬ (Ω) of continuous quaternion fields with the point-wise multiplication qq”² = {αα”² − u · u ”² , αu”² + α ”²u + u ∧ u ”² }. We prove a Stone-Weierstrass type theorem: the subalgebra ∨ð’ž(Ω) generated by harmonic fields is dense in ð’¬ (Ω). Some results on 2-jets of harmonic functions and the uniqueness sets of harmonic fields are provided. Comprehensive study of harmonic fields is motivated by possible applications to inverse problems of mathematical physics.

Keywords

3d quaternion harmonic fields, real uniform Banach algebras , Stone- Weierstrass type theorem on density , uniqueness theorems
  • M.I. Belishev Saint-Petersburg Department of the Steklov Mathematical Institute, St-Petersburg State University, Russia.
  • A.F. Vakulenko Saint-Petersburg Department of the Steklov Mathematical Institute, St-Petersburg State University, Russia.
  • Pages: 01–19
  • Date Published: 2019-04-01
  • Vol. 21 No. 1 (2019)
[1] M.Abel and K.Jarosz. Noncommutative uniform algebras. Studia Mathematica, 162 (3) (2004), 213–218.
[2] M.I.Belishev. The Calderon problem for two-dimensional manifolds by the BC-method. SIAM J.Math.Anal., 35 (1): 172–182, 2003.
[3] M.I.Belishev. Some remarks on impedance tomography problem for 3d–manifolds. CUBO A Mathematical Journal, 7, no 1: 43–53, 2005.
[4] M.I. Belishev. Boundary Control Method and Inverse Problems of Wave Propagation. En- cyclopedia of Mathematical Physics, v.1, 340–345. eds. J.-P.Francoise, G.L.Naber and Tsou S.T., Oxford: Elsevier, (ISBN 978-0-1251-2666-3), 2006.
[5] M.I.Belishev. Geometrization of Rings as a Method for Solving Inverse Problems. Sobolev Spaces in Mathematics III. Applications in Mathematical Physics, Ed. V.Isakov., Springer, 2008, 5–24.
[6] M.I.Belishev. Algebras in reconstruction of manifolds. Spectral Theory and Partial Differential Equations, G.Eskin, L.Friedlander, J.Garnett Eds. Contemporary Mathematics, AMS, 640 (2015), 1–12. http://dx.doi.org/10.1090/conm/640 . ISSN: 0271-4132.
[7] M.I.Belishev. Boundary Control Method. Encyclopedia of Applied and Computational Math- ematics, Volume no: 1, Pages: 142–146. DOI: 10.1007/978-3-540-70529-1. ISBN 978-3-540- 70528-4
[8] M.I.Belishev. On algebras of three-dimensional quaternionic harmonic fields. Zapiski Nauch. Semin. POMI, 451 (2016), 14–28 (in Russian). English translation: M.I.Belishev. On algebras of three-dimensional quaternion harmonic fields. Journal of Mathematical Sciences, 226(6):701n ̃710, 2017.
[9] M.I.Belishev. Boundary control and tomography of Riemannian manifolds (BC-method). Russian Mathematical Surveys, 2017, 72:4, 581–644. https://doi.org/10.4213/rm 9768
[10] M.I.Belishev, V.A.Sharafutdinov. Dirichlet to Neumann operator on differential forms. Bul- letin de Sciences Math ́ematiques, 132 (2008), No 2, 128–145.
[11] M.I.Belishev, A.F.Vakulenko. On algebras of harmonic quaternion fields in R3. Algebra i Analiz, 31 (2019), No 1, 1–17 (in Russian). English translation: arXiv:1710.00577v3 [math.FA] 11 Oct 2017.
[12] L.Bers, F.John, M.Schechter. Partial Differential Equations. New Ypork-Landon-Sydney, 1964.
[13] K.Jarosz. Function representation of a noncommutative uniform algebra. Proceedings of the AMS, 136 (2) (2007), 605–611.
[14] J. Holladay. A note on the Stone-Weierstrass theorem for quaternions. Proc. Amer. Math. Soc., 8 (1957), 656n ̃657. MR0087047 (19:293d).
[15] S.H.Kulkarni and B.V.Limaye. Real Function Algebras, Monographs and Textbooks in Pure and Applied Math., 168, Marcel Dekker, Inc., New York, 1992. MR1197884 (93m:46059
[16] R.Leis. Initial boundary value problems in mathematical physics. Teubner, Stuttgart, 1972.
[17] C.Miranda. Equazioni alle derivate parziali di tipo ellittico. Springer-Verlag, Berlin, Goettingen, Heidelberg, 1955.
[18] M.Mitrea, M.Taylor. Boundary Layer Methods for Lipschitz Domains in Riemannian Manifolds. Journal of Functional Analysis, 163 (1999), 181–251.
[19] M.A.Naimark. Normed Rings. WN Publishing, Gronnongen, The Netherlands, 1970.
[20] R.Narasimhan. Analysis on real and complex manifolds. Masson and Cie, editier - Paris North-Holland Publishing Company, Amsterdam, 1968.
[21] G.Schwarz. Hodge decomposition - a method for solving boundary value problems. Lecture notes in Math., 1607. Springer–Verlag, Berlin, 1995.

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.

Downloads

Download data is not yet available.

Published

2019-04-01

How to Cite

[1]
M.I. Belishev and A.F. Vakulenko, “On algebraic and uniqueness properties of harmonic quaternion fields on 3d manifolds”, CUBO, vol. 21, no. 1, pp. 01–19, Apr. 2019.

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.