Hausdorff operators associated with the linear canonical Sturm-Liouville transform

Downloads

DOI:

https://doi.org/10.56754/0719-0646.2801.179

Abstract

In the present paper, we introduce the canonical Sturm-Liouville operator \(L^M:=\frac{{\rm d}^2}{{\rm d}x^2}+\left(\frac{A'(x)}{A(x)}-2i\frac{a}{b}x\right)\frac{{\rm d}}{{\rm d}x} -\left(\frac{a^2}{b^2}x^2+i\frac{a}{b}x\frac{A'(x)}{A(x)}+i\frac{a}{b}\right)\),
where \(A\) is a nonnegative function satisfying certain conditions. We prove the boundedness of the canonical Sturm-Liouville Hausdorff operators on the space \(L^p(\mathbb{R}_+,A(x)\,{\rm d}x)\), \(p\in [1,\infty)\). We investigate canonical Sturm-Liouville wavelet transform, and obtain some useful results. The relation between the canonical Sturm-Liouville wavelet transform and canonical Sturm-Liouville Hausdorff operator is also established. The properties of the adjoint canonical Sturm-Liouville Hausdorff operators are further discussed. The harmonic analysis associated with the operator \(L^M\) plays an important role in establishing the results of this paper.

Keywords

Canonical Sturm-Liouville transform , canonical Sturm-Liouville convolution , canonical Sturm-Liouville Hausdorff operators , canonical Sturm-Liouville wavelet transform

Mathematics Subject Classification:

44A05 , 44A20 , 47G10
  • Pages: 179–204
  • Date Published: 2026-01-27
  • Vol. 28 No. 1 (2026)

B. Behera, “Hardy and Hardy-Littlewood-Pólya operators and their commutators on local fields,” Period. Math. Hungar., vol. 89, no. 2, pp. 318–334, 2024, doi: 10.1007/s10998-024-00589-y.

W. R. Bloom and Z. Xu, “Fourier multipliers for Lp on Chébli-Trimèche hypergroups,” Proc. London Math. Soc. (3), vol. 80, no. 3, pp. 643–664, 2000, doi: 10.1112/S0024611500012326.

G. Brown and F. Móricz, “Multivariate Hausdorff operators on the spaces Lp(Rn),” J. Math. Anal. Appl., vol. 271, no. 2, pp. 443–454, 2002, doi: 10.1016/S0022-247X(02)00128-2.

H. Chebli, “Théorème de Paley-Wiener associé à un opérateur différentiel singulier sur (0, ∞),” J. Math. Pures Appl. (9), vol. 58, no. 1, pp. 1–19, 1979.

J. Chen and X. Zhu, “Boundedness of multidimensional Hausdorff operators on H1(Rn),” J. Math. Anal. Appl., vol. 409, no. 1, pp. 428–434, 2014, doi: 10.1016/j.jmaa.2013.07.042.

M. Christ and L. Grafakos, “Best constants for two nonconvolution inequalities,” Proc. Amer. Math. Soc., vol. 123, no. 6, pp. 1687–1693, 1995, doi: 10.2307/2160978.

R. Daher and F. Saadi, “The Dunkl-Hausdorff operator is bounded on the real Hardy space H1 α(R),” Integral Transforms Spec. Funct., vol. 30, no. 11, pp. 882–892, 2019, doi: 10.1080/10652469.2019.1636236.

R. Daher and F. Saadi, “The Dunkl-Hausdorff operators and the Dunkl continuous wavelets transform,” J. Pseudo-Differ. Oper. Appl., vol. 11, no. 4, pp. 1821–1831, 2020, doi: 10.1007/s11868-020-00351-1.

L. Dhaouadi, J. Sahbani, and A. Fitouhi, “Harmonic analysis associated to the canonical Fourier Bessel transform,” Integral Transforms Spec. Funct., vol. 32, no. 4, pp. 290–315, 2021, doi: 10.1080/10652469.2020.1823977.

C. Georgakis, “The Hausdorff mean of a Fourier-Stieltjes transform,” Proc. Amer. Math. Soc., vol. 116, no. 2, pp. 465–471, 1992, doi: 10.2307/2159753.

S. Ghazouani and J. Sahbani, “Canonical Fourier-Bessel transform and their applications,” J. Pseudo-Differ. Oper. Appl., vol. 14, no. 1, 2023, Art. ID 3, doi: 10.1007/s11868-022-00500-8.

S. Ghazouani and J. Sahbani, “The heat semigroups and uncertainty principles related to canonical Fourier-Bessel transform,” J. Pseudo-Differ. Oper. Appl., vol. 15, no. 2, 2024, Art. ID 36, doi: 10.1007/s11868-024-00608-z.

N. B. Hamadi and S. Omri, “Uncertainty principles for the continuous wavelet transform in the Hankel setting,” Appl. Anal., vol. 97, no. 4, pp. 513–527, 2018, doi: 10.1080/00036811.2016.1276169.

Y. Kanjin, “The Hausdorff operators on the real Hardy spaces Hp(R),” Studia Math., vol. 148, no. 1, pp. 37–45, 2001, doi: 10.4064/sm148-1-4.

A. Kufner and L.-E. Persson, Weighted inequalities of Hardy type. Co., Inc., River Edge, NJ, 2003, doi: 10.1142/5129. World Scientific Publishing

A. K. Lerner and E. Liflyand, “Multidimensional Hausdorff operators on the real Hardy space,” J. Aust. Math. Soc., vol. 83, no. 1, pp. 79–86, 2007, doi: 10.1017/S1446788700036399.

E. Liflyand, “Boundedness of multidimensional Hausdorff operators on H1(Rn),” Acta Sci. Math. (Szeged), vol. 74, no. 3-4, pp. 845–851, 2008.

E. Liflyand and F. Móricz, “The Hausdorff operator is bounded on the real Hardy space H1(R),” Proc. Amer. Math. Soc., vol. 128, no. 5, pp. 1391–1396, 2000, doi: 10.1090/S0002-9939-99-05159-X.

E. Liflyand and F. Móricz, “The Hausdorff operator is bounded on the real Hardy space H1(R),” Proc. Amer. Math. Soc., vol. 128, no. 5, pp. 1391–1396, 2000, doi: 10.1090/S0002-9939-99-05159-X.

R. Ma, “Heisenberg uncertainty principle on Chébli-Trimèche hypergroups,” Pacific J. Math., vol. 235, no. 2, pp. 289–296, 2008, doi: 10.2140/pjm.2008.235.289.

H. B. Mohamed and A. Saoudi, “Linear canonical Fourier-Bessel wavelet transform: properties and inequalities,” Integral Transforms Spec. Funct., vol. 35, no. 4, pp. 270–290, 2024, doi: 10.1080/10652469.2024.2317724.

S. S. Mondal and A. Poria, “Hausdorff operators associated with the Opdam-Cherednik transform in Lebesgue spaces,” J. Pseudo-Differ. Oper. Appl., vol. 13, no. 3, 2022, Art. ID 31.

M. A. Mourou and K. Trimèche, “Calderón’s formula associated with a differential operator on (0,∞) and inversion of the generalized Abel transform,” J. Fourier Anal. Appl., vol. 4, no. 2, pp. 229–245, 1998, doi: 10.1007/BF02475991.

S. Omri, “Logarithmic uncertainty principle for the Hankel transform,” Integral Transforms Spec. Funct., vol. 22, no. 9, pp. 655–670, 2011, doi: 10.1080/10652469.2010.537266.

X. Qin and N. T. An, “Smoothing algorithms for computing the projection onto a Minkowski sum of convex sets,” Comput. Optim. Appl., vol. 74, no. 3, pp. 821–850, 2019, doi: 10.1007/s10589-019-00124-7.

J. Sahbani, “Quantitative uncertainty principles for the canonical Fourier-Bessel transform,” Acta Math. Sin. (Engl. Ser.), vol. 38, no. 2, pp. 331–346, 2022, doi: 10.1007/s10114-022-1008-7.

F. Soltani, “Extremal functions on Sturm-Liouville hypergroups,” Complex Anal. Oper. Theory, vol. 8, no. 1, pp. 311–325, 2014, doi: 10.1007/s11785-013-0303-9.

F. Soltani, “Parseval-Goldstein type theorems for the Sturm-Liouville transform,” Integral Transforms Spec. Funct., vol. 36, no. 8, pp. 634–646, 2025, doi: 10.1080/10652469.2024.2443949.

F. Soltani and M. Aloui, “Lipschitz and Dini-Lipschitz functions for the Sturm-Liouville transform,” Integral Transforms Spec. Funct., vol. 35, no. 11, pp. 612–625, 2024, doi: 10.1080/10652469.2024.2364790.

F. Soltani and Y. Zarrougui, “Localization operators and Shapiro’s inequality for the Sturm-Liouville-Stockwell transform,” J. Math. Sci. (N.Y.), vol. 289, no. 1, pp. 45–58, 2025.

F. Soltani and Y. Zarrougui, “Reconstruction and best approximate inversion formulas for the Sturm-Liouville-Stockwell transform,” Appl. Math. E-Notes, vol. 25, pp. 57–72, 2025.

F. Soltani and Y. Zarrougui, “Toeplitz operators and spectrogram associated with the Sturm-Liouville-Stockwell transform,” Filomat, vol. 39, no. 18, pp. 6295–6310, 2025.

K. Trimèche, “Transformation intégrale de Weyl et théorème de Paley-Wiener associés à un opérateur différentiel singulier sur (0,∞),” J. Math. Pures Appl. (9), vol. 60, no. 1, pp. 51–98, 1981.

K. Trimèche, “Inversion of the Lions transmutation operators using generalized wavelets,” Appl. Comput. Harmon. Anal., vol. 4, no. 1, pp. 97–112, 1997.

O. Tyr, “On the boundedness of q-Hausdorff operators on q-Hardy spaces,” Kragujevac J. Math., vol. 50, no. 8, pp. 1261–1278, 2026.

S. K. Upadhyay, R. S. Pandey, and R. N. Mohapatra, “Hp-boundedness of Hankel Hausdorff operator involving Hankel transformation,” Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., vol. 21, no. 2, pp. 243–258, 2014.

S. K. Upadhyay, R. N. Yadav, and L. Debnath, “Properties of the Hankel-Hausdorff operator on Hardy space H1(0,∞),” Analysis (Munich), vol. 32, no. 3, pp. 221–230, 2012, doi: 10.1524/anly.2012.1164.

F. Weisz, “The boundedness of the Hausdorff operator on multi-dimensional Hardy spaces,” Analysis (Munich), vol. 24, no. 2, pp. 183–195, 2004, doi: 10.1524/anly.2004.24.14.183.

H. Zeuner, “The central limit theorem for Chébli-Trimèche hypergroups,” J. Theoret. Probab., vol. 2, no. 1, pp. 51–63, 1989, doi: 10.1007/BF01048268.

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.

Downloads

Download data is not yet available.

Published

2026-01-27

How to Cite

[1]
F. Soltani and M. Aloui, “Hausdorff operators associated with the linear canonical Sturm-Liouville transform”, CUBO, vol. 28, no. 1, pp. 179–204, Jan. 2026.

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.