Laeng-Morpurgo-type uncertainty inequalities for the Weinstein transform
- Fethi Soltani fethi.soltani@fst.utm.tn
- Slim Ben Rejeb slimbenrejeb15@gmail.com
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2502.321Abstract
In this work, by combining Carlson-type and Nash-type inequalities for the Weinstein transform \(\mathscr{F}_W\) on \(\mathbb{K}=\mathbb{R}^{d-1}\times[0,\infty)\), we show Laeng-Morpurgo-type uncertainty inequalities. We establish also local-type uncertainty inequalities for the Weinstein transform \(\mathscr{F}_W\), and we deduce a Heisenberg-Pauli-Weyl-type inequality for this transform.
Keywords
Mathematics Subject Classification:
N. Ben Salem, “Inequalities related to spherical harmonics associated with the Weinstein operator”, Integral Transforms Spec. Funct., vol. 34, no. 1, pp. 41–64, 2023. doi: 10.1080/10652469.2022.2087063
N. Ben Salem, “Shannon, Sobolev and uncertainty inequalities for the Weinstein transform”, Integral Transforms Spec. Funct., vol. 34, no. 8, pp. 589–613, 2023. doi: 10.1080/10652469.2022.2164277
N. Ben Salem and A. R. Nasr, “Heisenberg-type inequalities for the Weinstein operator”, Integral Transforms Spec. Funct., vol. 26, no. 9, pp. 700–718, 2015. doi: 10.1080/10652469.2015.1038531
E. Laeng and C. Morpurgo, “An uncertainty inequality involving L1-norms”, Proc. Amer. Math. Soc., vol. 127, no. 12, pp. 3565–3572, 1999. doi: 10.1090/S0002-9939-99-05022-4
K. Mehrez, “Paley-Wiener theorem for the Weinstein transform and applications”, Integral Transforms Spec. Funct., vol. 28, no. 8, pp. 616–628, 2017. doi: 10.1080/10652469.2017.1334652
H. Mejjaoli and M. Salhi, “Uncertainty principles for the Weinstein transform”, Czechoslovak Math. J., vol. 61, no. 4, pp. 941–974, 2011. doi: 10.1007/s10587-011-0061-7
C. Morpurgo, “Extremals of some uncertainty inequalities”, Bull. London Math. Soc., vol. 33, no. 1, pp. 52–58, 2001. doi: 10.1112/blms/33.1.52
A. R. Naji and A. H. Halbbub, “Variations on uncertainty principle inequalities for Weinstein operator”, University of Aden Journal of Natural and Applied Sciences, vol. 23, no. 2, pp. 479–487, 2019. doi: 10.47372/uajnas.2019.n2.a18
J. F. Price, “Inequalities and local uncertainty principles”, J. Math. Phys., vol. 24, no. 7, pp. 1711–1714, 1983. doi: 10.1063/1.525916
J. F. Price, “Sharp local uncertainty inequalities”, Studia Math., vol. 85, no. 1, pp. 37–45, 1987. doi: 10.4064/sm-85-1-37-45
A. Saoudi, “A variation of Lp uncertainty principles in Weinstein setting”, Indian J. Pure Appl. Math., vol. 51, no. 4, pp. 1697–1712, 2020. doi: 10.1007/s13226-020-0490-9
F. Soltani, “Heisenberg-Pauli-Weyl uncertainty inequality for the Dunkl transform on Rd”, Bull. Aust. Math. Soc., vol. 82, no. 2, pp. 316–325, 2013. doi: 10.1017/S0004972712000780
F. Soltani, “A variety of uncertainty principles for the Dunkl transform on Rd”, Asian-Eur. J. Math., vol. 14, no. 5, Art. ID 2150077, 2021. doi: 10.1142/S1793557121500777
Most read articles by the same author(s)
- Fethi Soltani, Reproducing inversion formulas for the Dunkl-Wigner transforms , CUBO, A Mathematical Journal: Vol. 17 No. 2 (2015): CUBO, A Mathematical Journal
- Fethi Soltani, Extremal functions and best approximate formulas for the Hankel-type Fock space , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
- Fethi Soltani, \(L^p\) local uncertainty inequality for the Sturm-Liouville transform , CUBO, A Mathematical Journal: Vol. 16 No. 1 (2014): CUBO, A Mathematical Journal
Similar Articles
- Razvan A. Mezei, Applications and Lipschitz results of approximation by smooth Picard and Gauss-Weierstrass type singular integrals , CUBO, A Mathematical Journal: Vol. 13 No. 3 (2011): CUBO, A Mathematical Journal
- S. S. Dragomir, Some integral inequalities related to Wirtinger's result for \(p\)-norms , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
- George A. Anastassiou, ð˜²âˆ’ fractional inequalities , CUBO, A Mathematical Journal: Vol. 13 No. 1 (2011): CUBO, A Mathematical Journal
- Fethi Soltani, \(L^p\) local uncertainty inequality for the Sturm-Liouville transform , CUBO, A Mathematical Journal: Vol. 16 No. 1 (2014): CUBO, A Mathematical Journal
- George A. Anastassiou, Multiple general sigmoids based Banach space valued neural network multivariate approximation , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
- M. W. Wong, Erhling's Inequality and Pseudo-Differential Operators on ð¿áµ–(IRá´º) , CUBO, A Mathematical Journal: Vol. 8 No. 1 (2006): CUBO, A Mathematical Journal
- George A. Anastassiou, Approximation by Shift Invariant Univariate Sublinear-Shilkret Operators , CUBO, A Mathematical Journal: Vol. 20 No. 1 (2018)
- Jürgen Tolksdorf, Dirac Type Gauge Theories – Motivations and Perspectives , CUBO, A Mathematical Journal: Vol. 11 No. 1 (2009): CUBO, A Mathematical Journal
- Naoyuki Koike, Examples of a complex hyperpolar action without singular orbit , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Rafael Galeano, Pedro Ortega, John Cantillo, Stationary Boltzmann equation and the nonlinear alternative of Leray-Schauder type , CUBO, A Mathematical Journal: Vol. 16 No. 1 (2014): CUBO, A Mathematical Journal
1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 F. Soltani et al.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.