Laeng-Morpurgo-type uncertainty inequalities for the Weinstein transform

Downloads

DOI:

https://doi.org/10.56754/0719-0646.2502.321

Abstract

In this work, by combining Carlson-type and Nash-type inequalities for the Weinstein transform \(\mathscr{F}_W\) on \(\mathbb{K}=\mathbb{R}^{d-1}\times[0,\infty)\), we show Laeng-Morpurgo-type uncertainty inequalities. We establish also local-type uncertainty inequalities for the Weinstein transform \(\mathscr{F}_W\), and we deduce a Heisenberg-Pauli-Weyl-type inequality for this transform.

Keywords

Laeng-Morpurgo-type inequality , local-type inequality , Heisenberg-Pauli-Weyl-type inequality

Mathematics Subject Classification:

42B10 , 44A20 , 46G12
  • Pages: 321–329
  • Date Published: 2023-08-28
  • Vol. 25 No. 2 (2023)

N. Ben Salem, “Inequalities related to spherical harmonics associated with the Weinstein operator”, Integral Transforms Spec. Funct., vol. 34, no. 1, pp. 41–64, 2023. doi: 10.1080/10652469.2022.2087063

N. Ben Salem, “Shannon, Sobolev and uncertainty inequalities for the Weinstein transform”, Integral Transforms Spec. Funct., vol. 34, no. 8, pp. 589–613, 2023. doi: 10.1080/10652469.2022.2164277

N. Ben Salem and A. R. Nasr, “Heisenberg-type inequalities for the Weinstein operator”, Integral Transforms Spec. Funct., vol. 26, no. 9, pp. 700–718, 2015. doi: 10.1080/10652469.2015.1038531

E. Laeng and C. Morpurgo, “An uncertainty inequality involving L1-norms”, Proc. Amer. Math. Soc., vol. 127, no. 12, pp. 3565–3572, 1999. doi: 10.1090/S0002-9939-99-05022-4

K. Mehrez, “Paley-Wiener theorem for the Weinstein transform and applications”, Integral Transforms Spec. Funct., vol. 28, no. 8, pp. 616–628, 2017. doi: 10.1080/10652469.2017.1334652

H. Mejjaoli and M. Salhi, “Uncertainty principles for the Weinstein transform”, Czechoslovak Math. J., vol. 61, no. 4, pp. 941–974, 2011. doi: 10.1007/s10587-011-0061-7

C. Morpurgo, “Extremals of some uncertainty inequalities”, Bull. London Math. Soc., vol. 33, no. 1, pp. 52–58, 2001. doi: 10.1112/blms/33.1.52

A. R. Naji and A. H. Halbbub, “Variations on uncertainty principle inequalities for Weinstein operator”, University of Aden Journal of Natural and Applied Sciences, vol. 23, no. 2, pp. 479–487, 2019. doi: 10.47372/uajnas.2019.n2.a18

J. F. Price, “Inequalities and local uncertainty principles”, J. Math. Phys., vol. 24, no. 7, pp. 1711–1714, 1983. doi: 10.1063/1.525916

J. F. Price, “Sharp local uncertainty inequalities”, Studia Math., vol. 85, no. 1, pp. 37–45, 1987. doi: 10.4064/sm-85-1-37-45

A. Saoudi, “A variation of Lp uncertainty principles in Weinstein setting”, Indian J. Pure Appl. Math., vol. 51, no. 4, pp. 1697–1712, 2020. doi: 10.1007/s13226-020-0490-9

F. Soltani, “Heisenberg-Pauli-Weyl uncertainty inequality for the Dunkl transform on Rd”, Bull. Aust. Math. Soc., vol. 82, no. 2, pp. 316–325, 2013. doi: 10.1017/S0004972712000780

F. Soltani, “A variety of uncertainty principles for the Dunkl transform on Rd”, Asian-Eur. J. Math., vol. 14, no. 5, Art. ID 2150077, 2021. doi: 10.1142/S1793557121500777

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.

Downloads

Download data is not yet available.

Published

2023-08-28

How to Cite

[1]
F. Soltani and S. Ben Rejeb, “Laeng-Morpurgo-type uncertainty inequalities for the Weinstein transform”, CUBO, pp. 321–329, Aug. 2023.

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.