Laeng-Morpurgo-type uncertainty inequalities for the Weinstein transform
-
Fethi Soltani
fethi.soltani@fst.utm.tn
-
Slim Ben Rejeb
slimbenrejeb15@gmail.com
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2502.321Abstract
In this work, by combining Carlson-type and Nash-type inequalities for the Weinstein transform \(\mathscr{F}_W\) on \(\mathbb{K}=\mathbb{R}^{d-1}\times[0,\infty)\), we show Laeng-Morpurgo-type uncertainty inequalities. We establish also local-type uncertainty inequalities for the Weinstein transform \(\mathscr{F}_W\), and we deduce a Heisenberg-Pauli-Weyl-type inequality for this transform.
Keywords
Mathematics Subject Classification:
N. Ben Salem, “Inequalities related to spherical harmonics associated with the Weinstein operator”, Integral Transforms Spec. Funct., vol. 34, no. 1, pp. 41–64, 2023. doi: 10.1080/10652469.2022.2087063
N. Ben Salem, “Shannon, Sobolev and uncertainty inequalities for the Weinstein transform”, Integral Transforms Spec. Funct., vol. 34, no. 8, pp. 589–613, 2023. doi: 10.1080/10652469.2022.2164277
N. Ben Salem and A. R. Nasr, “Heisenberg-type inequalities for the Weinstein operator”, Integral Transforms Spec. Funct., vol. 26, no. 9, pp. 700–718, 2015. doi: 10.1080/10652469.2015.1038531
E. Laeng and C. Morpurgo, “An uncertainty inequality involving L1-norms”, Proc. Amer. Math. Soc., vol. 127, no. 12, pp. 3565–3572, 1999. doi: 10.1090/S0002-9939-99-05022-4
K. Mehrez, “Paley-Wiener theorem for the Weinstein transform and applications”, Integral Transforms Spec. Funct., vol. 28, no. 8, pp. 616–628, 2017. doi: 10.1080/10652469.2017.1334652
H. Mejjaoli and M. Salhi, “Uncertainty principles for the Weinstein transform”, Czechoslovak Math. J., vol. 61, no. 4, pp. 941–974, 2011. doi: 10.1007/s10587-011-0061-7
C. Morpurgo, “Extremals of some uncertainty inequalities”, Bull. London Math. Soc., vol. 33, no. 1, pp. 52–58, 2001. doi: 10.1112/blms/33.1.52
A. R. Naji and A. H. Halbbub, “Variations on uncertainty principle inequalities for Weinstein operator”, University of Aden Journal of Natural and Applied Sciences, vol. 23, no. 2, pp. 479–487, 2019. doi: 10.47372/uajnas.2019.n2.a18
J. F. Price, “Inequalities and local uncertainty principles”, J. Math. Phys., vol. 24, no. 7, pp. 1711–1714, 1983. doi: 10.1063/1.525916
J. F. Price, “Sharp local uncertainty inequalities”, Studia Math., vol. 85, no. 1, pp. 37–45, 1987. doi: 10.4064/sm-85-1-37-45
A. Saoudi, “A variation of Lp uncertainty principles in Weinstein setting”, Indian J. Pure Appl. Math., vol. 51, no. 4, pp. 1697–1712, 2020. doi: 10.1007/s13226-020-0490-9
F. Soltani, “Heisenberg-Pauli-Weyl uncertainty inequality for the Dunkl transform on Rd”, Bull. Aust. Math. Soc., vol. 82, no. 2, pp. 316–325, 2013. doi: 10.1017/S0004972712000780
F. Soltani, “A variety of uncertainty principles for the Dunkl transform on Rd”, Asian-Eur. J. Math., vol. 14, no. 5, Art. ID 2150077, 2021. doi: 10.1142/S1793557121500777
Most read articles by the same author(s)
- Fethi Soltani, Extremal functions and best approximate formulas for the Hankel-type Fock space , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
- Fethi Soltani, Reproducing inversion formulas for the Dunkl-Wigner transforms , CUBO, A Mathematical Journal: Vol. 17 No. 2 (2015): CUBO, A Mathematical Journal
- Fethi Soltani, \(L^p\) local uncertainty inequality for the Sturm-Liouville transform , CUBO, A Mathematical Journal: Vol. 16 No. 1 (2014): CUBO, A Mathematical Journal
Similar Articles
- Yavar Kian, Local energy decay for the wave equation with a time-periodic non-trapping metric and moving obstacle , CUBO, A Mathematical Journal: Vol. 14 No. 2 (2012): CUBO, A Mathematical Journal
- Minking Eie, Yao Lin Ong, A new approach to congruences of Kummer type for Bernoulli numbers , CUBO, A Mathematical Journal: Vol. 5 No. 2 (2003): CUBO, Matemática Educacional
- Seyed Mostafa Sajjadi, Ghasem Alizadeh Afrouzi, On a class of fractional \(p(x,y)-\)Kirchhoff type problems with indefinite weight , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- Mohd Danish Siddiqi, Aliya Naaz Siddiqui, Ali H. Hakami, M. Hasan, Estimation of sharp geometric inequality in \(D_{\alpha}\)-homothetically deformed Kenmotsu manifolds , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
- Raúl Cordovil, David Forge, Gr¨obner and diagonal bases in Orlik-Solomon type algebras , CUBO, A Mathematical Journal: Vol. 7 No. 2 (2005): CUBO, A Mathematical Journal
- George Anastassiou, Voronovskaya type asymptotic expansions for multivariate quasi-interpolation neural network operators , CUBO, A Mathematical Journal: Vol. 16 No. 2 (2014): CUBO, A Mathematical Journal
- S.S. Dragomir, Refinements of the generalized trapezoid inequality in terms of the cumulative variation and applications , CUBO, A Mathematical Journal: Vol. 17 No. 2 (2015): CUBO, A Mathematical Journal
- Chirine Chettaoui, An other uncertainty principle for the Hankel transform , CUBO, A Mathematical Journal: Vol. 17 No. 2 (2015): CUBO, A Mathematical Journal
- Leigh C. Becker, T. A. Burton, Jensen's Inequality and Liapunov's Direct Method , CUBO, A Mathematical Journal: Vol. 6 No. 3 (2004): CUBO, A Mathematical Journal
- Koji Aoyama, Yasunori Kimura, Viscosity approximation methods with a sequence of contractions , CUBO, A Mathematical Journal: Vol. 16 No. 1 (2014): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 F. Soltani et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.