Laeng-Morpurgo-type uncertainty inequalities for the Weinstein transform
-
Fethi Soltani
fethi.soltani@fst.utm.tn
-
Slim Ben Rejeb
slimbenrejeb15@gmail.com
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2502.321Abstract
In this work, by combining Carlson-type and Nash-type inequalities for the Weinstein transform \(\mathscr{F}_W\) on \(\mathbb{K}=\mathbb{R}^{d-1}\times[0,\infty)\), we show Laeng-Morpurgo-type uncertainty inequalities. We establish also local-type uncertainty inequalities for the Weinstein transform \(\mathscr{F}_W\), and we deduce a Heisenberg-Pauli-Weyl-type inequality for this transform.
Keywords
Mathematics Subject Classification:
N. Ben Salem, “Inequalities related to spherical harmonics associated with the Weinstein operator”, Integral Transforms Spec. Funct., vol. 34, no. 1, pp. 41–64, 2023. doi: 10.1080/10652469.2022.2087063
N. Ben Salem, “Shannon, Sobolev and uncertainty inequalities for the Weinstein transform”, Integral Transforms Spec. Funct., vol. 34, no. 8, pp. 589–613, 2023. doi: 10.1080/10652469.2022.2164277
N. Ben Salem and A. R. Nasr, “Heisenberg-type inequalities for the Weinstein operator”, Integral Transforms Spec. Funct., vol. 26, no. 9, pp. 700–718, 2015. doi: 10.1080/10652469.2015.1038531
E. Laeng and C. Morpurgo, “An uncertainty inequality involving L1-norms”, Proc. Amer. Math. Soc., vol. 127, no. 12, pp. 3565–3572, 1999. doi: 10.1090/S0002-9939-99-05022-4
K. Mehrez, “Paley-Wiener theorem for the Weinstein transform and applications”, Integral Transforms Spec. Funct., vol. 28, no. 8, pp. 616–628, 2017. doi: 10.1080/10652469.2017.1334652
H. Mejjaoli and M. Salhi, “Uncertainty principles for the Weinstein transform”, Czechoslovak Math. J., vol. 61, no. 4, pp. 941–974, 2011. doi: 10.1007/s10587-011-0061-7
C. Morpurgo, “Extremals of some uncertainty inequalities”, Bull. London Math. Soc., vol. 33, no. 1, pp. 52–58, 2001. doi: 10.1112/blms/33.1.52
A. R. Naji and A. H. Halbbub, “Variations on uncertainty principle inequalities for Weinstein operator”, University of Aden Journal of Natural and Applied Sciences, vol. 23, no. 2, pp. 479–487, 2019. doi: 10.47372/uajnas.2019.n2.a18
J. F. Price, “Inequalities and local uncertainty principles”, J. Math. Phys., vol. 24, no. 7, pp. 1711–1714, 1983. doi: 10.1063/1.525916
J. F. Price, “Sharp local uncertainty inequalities”, Studia Math., vol. 85, no. 1, pp. 37–45, 1987. doi: 10.4064/sm-85-1-37-45
A. Saoudi, “A variation of Lp uncertainty principles in Weinstein setting”, Indian J. Pure Appl. Math., vol. 51, no. 4, pp. 1697–1712, 2020. doi: 10.1007/s13226-020-0490-9
F. Soltani, “Heisenberg-Pauli-Weyl uncertainty inequality for the Dunkl transform on Rd”, Bull. Aust. Math. Soc., vol. 82, no. 2, pp. 316–325, 2013. doi: 10.1017/S0004972712000780
F. Soltani, “A variety of uncertainty principles for the Dunkl transform on Rd”, Asian-Eur. J. Math., vol. 14, no. 5, Art. ID 2150077, 2021. doi: 10.1142/S1793557121500777
Most read articles by the same author(s)
- Fethi Soltani, Extremal functions and best approximate formulas for the Hankel-type Fock space , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
- Fethi Soltani, Reproducing inversion formulas for the Dunkl-Wigner transforms , CUBO, A Mathematical Journal: Vol. 17 No. 2 (2015): CUBO, A Mathematical Journal
- Fethi Soltani, \(L^p\) local uncertainty inequality for the Sturm-Liouville transform , CUBO, A Mathematical Journal: Vol. 16 No. 1 (2014): CUBO, A Mathematical Journal
Similar Articles
- Ioannis K. Argyros, Santhosh George, Extended domain for fifth convergence order schemes , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- Nemri Akram, Retraction Note: Heisenberg-type uncertainty principle for the second \(q\)-Bargmann transform on the unit disk , CUBO, A Mathematical Journal: Vol. 27 No. 1 (2025)
- Koji Aoyama, Yasunori Kimura, Viscosity approximation methods with a sequence of contractions , CUBO, A Mathematical Journal: Vol. 16 No. 1 (2014): CUBO, A Mathematical Journal
- Mekki Hammi, Mohamed Ali Hammami, Gronwall-Bellman type integral inequalities and applications to global uniform asymptotic stability , CUBO, A Mathematical Journal: Vol. 17 No. 3 (2015): CUBO, A Mathematical Journal
- Naoyuki Koike, Mean curvature flow of certain kind of isoparametric foliations on non-compact symmetric spaces , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
- M.I. Belishev, A.F. Vakulenko, On algebraic and uniqueness properties of harmonic quaternion fields on 3d manifolds , CUBO, A Mathematical Journal: Vol. 21 No. 1 (2019)
- Hugo Leiva, Jesús Matute, Nelson Merentes, José Sánchez, On a type of Volterra integral equation in the space of continuous functions with bounded variation valued in Banach spaces , CUBO, A Mathematical Journal: Vol. 17 No. 2 (2015): CUBO, A Mathematical Journal
- Fabrizio Cuccu, Petar Popivanov, Giovanni Porru, Estimates for solutions to nonlinear degenerate elliptic equations , CUBO, A Mathematical Journal: Vol. 11 No. 4 (2009): CUBO, A Mathematical Journal
- Juhani Riihentaus, On an inequality related to the radial growth of subharmonic functions , CUBO, A Mathematical Journal: Vol. 11 No. 4 (2009): CUBO, A Mathematical Journal
- Arianna Dal Forno, Ugo Merlone, Optimal Effort in Heterogeneous Agents Population with Global and Local Interactions , CUBO, A Mathematical Journal: Vol. 11 No. 2 (2009): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 F. Soltani et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.