Extremal functions and best approximate formulas for the Hankel-type Fock space

Downloads

DOI:

https://doi.org/10.56754/0719-0646.2602.303

Abstract

In this paper we recall some properties for the Hankel-type Fock space \(\mathscr{F}_{\alpha,\ast}(\mathbb{C}^d)\). This space was introduced by Cholewinsky in 1984 and plays a background to our contribution. Especially, we examine the extremal functions for the difference operator \(D\), and we deduce best approximate inversion formulas for the operator \(D\) on the the Hankel-type Fock space \(\mathscr{F}_{\alpha,\ast}(\mathbb{C}^d)\).

Keywords

Analytic functions , Hankel-type Fock space , extremal functions

Mathematics Subject Classification:

30H20 , 32A15
  • Fethi Soltani Faculté des Sciences de Tunis, Laboratoire d’Analyse Mathématique et Applications LR11ES11, Université de Tunis El Manar, Tunis 2092, Tunisia – Ecole Nationale d’Ingénieurs de Carthage, Université de Carthage, Tunis 2035, Tunisia. https://orcid.org/0000-0001-7519-0994
  • Pages: 303–315
  • Date Published: 2024-07-30
  • Vol. 26 No. 2 (2024)

V. A. Abilov and M. K. Kerimov, “Estimates for the Fourier-Bessel transforms of multivariate functions,” Zh. Vychisl. Mat. Mat. Fiz, vol. 52, no. 6, pp. 980–989, 2012, doi: 10.1134/S0965542512060024.

B. Amri, “The Wigner transformation associated with the Hankel multidimensional operator,” Georgian Math. J., vol. 30, no. 4, pp. 477–492, 2023, doi: 10.1515/gmj-2023-2018.

V. Bargmann, “On a Hilbert space of analytic functions and an associated integral transform,” Comm. Pure Appl. Math., vol. 14, pp. 187–214, 1961, doi: 10.1002/cpa.3160140303.

V. Bargmann, “On a Hilbert space of analytic functions and an associated integral transform. Part II. A family of related function spaces. Application to distribution theory,” Comm. Pure Appl. Math., vol. 20, pp. 1–101, 1967, doi: 10.1002/cpa.3160200102.

C. A. Berger and L. A. Coburn, “Toeplitz operators on the Segal-Bargmann space,” Trans. Amer. Math. Soc., vol. 301, no. 2, pp. 813–829, 1987, doi: 10.2307/2000671.

Y. Chen and K. Zhu, “Uncertainty principles for the Fock space,” Sci. Sin., Math., vol. 45, no. 11, pp. 1847–1854, 2015, doi: 10.1360/N012015-00057.

F. M. Cholewinski, “Generalized Fock spaces and associated operators,” SIAM J. Math. Anal., vol. 15, no. 1, pp. 177–202, 1984, doi: 10.1137/0515015.

A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher transcendental functions. Vols. I, II. McGraw-Hill Book Co., Inc., New York-Toronto-London, 1953.

Z. Li and F. Song, “A generalized Radon transform on the plane,” Constr. Approx., vol. 33, no. 1, pp. 93–123, 2011, doi: 10.1007/s00365-010-9099-2.

M. A. Mourou and K. Trimèche, “Calderón’s formula associated with a differential operator on (0,∞) and inversion of the generalized Abel transform,” J. Fourier Anal. Appl., vol. 4, no. 2, pp. 229–245, 1998, doi: 10.1007/BF02475991.

R. S. Pathak and G. Pandey, “Calderón’s reproducing formula for Hankel convolution,” Int. J. Math. Math. Sci., 2006, Art. ID 24217, doi: 10.1155/IJMMS/2006/24217.

S. Saitoh, “Best approximation, Tikhonov regularization and reproducing kernels,” Kodai Math. J., vol. 28, no. 2, pp. 359–367, 2005, doi: 10.2996/kmj/1123767016.

S. Saitoh, “Theory of reproducing kernels: applications to approximate solutions of bounded linear operator equations on Hilbert spaces,” in Selected papers on analysis and differential equations, ser. Amer. Math. Soc. Transl. Ser. 2. Amer. Math. Soc., Providence, RI, 2010, vol. 230, pp. 107–134, doi: 10.1090/trans2/230/06.

S. Saitoh and Y. Sawano, Theory of reproducing kernels and applications, ser. Developments in Mathematics. Springer, Singapore, 2016, vol. 44, doi: 10.1007/978-981-10-0530-5.

B. Selmi and M. A. Allagui, “Some integral operators and their relation to multidimensional Fourier-Bessel transform on L2α(Rn+) and applications,” Integral Transforms Spec. Funct., vol. 33, no. 3, pp. 176–190, 2022, doi: 10.1080/10652469.2021.1925666.

B. Selmi and R. Chbeb, “Calderón’s reproducing formulas for the poly-axially Lα2-multiplier operators,” Integral Transforms Spec. Funct., vol. 34, no. 10, pp. 770–787, 2023, doi: 10.1080/10652469.2023.2190971.

B. Selmi and C. Khelifi, “Estimate of the Fourier-Bessel multipliers for the poly-axially operator,” Acta Math. Sin. (Engl. Ser.), vol. 36, no. 7, pp. 797–811, 2020, doi: 10.1007/s10114- 020-9120-z.

B. Selmi and C. Khelifi, “Linear and nonlinear Bessel potentials associated with the poly-axially operator,” Integral Transforms Spec. Funct., vol. 32, no. 2, pp. 90–104, 2021, doi: 10.1080/10652469.2020.1802262.

F. Soltani, “Best approximation formulas for the Dunkl L2-multiplier operators on Rd,” Rocky Mountain J. Math., vol. 42, no. 1, pp. 305–328, 2012, doi: 10.1216/RMJ-2012-42-1-305.

F. Soltani, “Operators and Tikhonov regularization on the Fock space,” Integral Transforms Spec. Funct., vol. 25, no. 4, pp. 283–294, 2014, doi: 10.1080/10652469.2013.839666.

F. Soltani, “Some examples of extremal functions on the Fock space F(C),” Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., vol. 42, no. 2, pp. 265–272, 2016.

F. Soltani, “Uncertainty principles for the Segal-Bargmann transform,” J. Math. Res. Appl., vol. 37, no. 5, pp. 563–576, 2017, doi: 10.3770/j.issn:2095-2651.2017.05.007.

F. Soltani, “Fock-type spaces associated to higher-order Bessel operator,” Integral Transforms Spec. Funct., vol. 29, no. 7, pp. 514–526, 2018, doi: 10.1080/10652469.2018.1462806.

F. Soltani, “Hankel-type Segal-Bargmann transform and its applications to UP and PDEs,” Bol. Soc. Mat. Mex. (3), vol. 29, no. 3, 2023, Art. ID 83, doi: 10.1007/s40590-023-00564-6.

F. Soltani, “Reproducing kernel Hilbert spaces (RKHS) for the higher order Bessel operator,” Bol. Soc. Mat. Mex. (3), vol. 29, no. 1, 2023, Art. ID 20, doi: 10.1007/s40590-023-00492-5.

G. N. Watson, A treatise on the theory of Bessel functions, ser. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1966.

H. Yildirim, M. Z. Sarikaya, and S. Öztürk, “The solutions of the n-dimensional Bessel diamond operator and the Fourier-Bessel transform of their convolution,” Proc. Indian Acad. Sci. Math. Sci., vol. 114, no. 4, pp. 375–387, 2004, doi: 10.1007/BF02829442.

K. Zhu, Analysis on Fock spaces, ser. Graduate Texts in Mathematics. Springer, New York, 2012, vol. 263, doi: 10.1007/978-1-4419-8801-0.

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.

Downloads

Download data is not yet available.

Published

2024-07-30

How to Cite

[1]
F. Soltani, “Extremal functions and best approximate formulas for the Hankel-type Fock space”, CUBO, vol. 26, no. 2, pp. 303–315, Jul. 2024.

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.