Extremal functions and best approximate formulas for the Hankel-type Fock space
- Fethi Soltani fethi.soltani@fst.utm.tn
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2602.303Abstract
In this paper we recall some properties for the Hankel-type Fock space \(\mathscr{F}_{\alpha,\ast}(\mathbb{C}^d)\). This space was introduced by Cholewinsky in 1984 and plays a background to our contribution. Especially, we examine the extremal functions for the difference operator \(D\), and we deduce best approximate inversion formulas for the operator \(D\) on the the Hankel-type Fock space \(\mathscr{F}_{\alpha,\ast}(\mathbb{C}^d)\).
Keywords
Mathematics Subject Classification:
V. A. Abilov and M. K. Kerimov, “Estimates for the Fourier-Bessel transforms of multivariate functions,” Zh. Vychisl. Mat. Mat. Fiz, vol. 52, no. 6, pp. 980–989, 2012, doi: 10.1134/S0965542512060024.
B. Amri, “The Wigner transformation associated with the Hankel multidimensional operator,” Georgian Math. J., vol. 30, no. 4, pp. 477–492, 2023, doi: 10.1515/gmj-2023-2018.
V. Bargmann, “On a Hilbert space of analytic functions and an associated integral transform,” Comm. Pure Appl. Math., vol. 14, pp. 187–214, 1961, doi: 10.1002/cpa.3160140303.
V. Bargmann, “On a Hilbert space of analytic functions and an associated integral transform. Part II. A family of related function spaces. Application to distribution theory,” Comm. Pure Appl. Math., vol. 20, pp. 1–101, 1967, doi: 10.1002/cpa.3160200102.
C. A. Berger and L. A. Coburn, “Toeplitz operators on the Segal-Bargmann space,” Trans. Amer. Math. Soc., vol. 301, no. 2, pp. 813–829, 1987, doi: 10.2307/2000671.
Y. Chen and K. Zhu, “Uncertainty principles for the Fock space,” Sci. Sin., Math., vol. 45, no. 11, pp. 1847–1854, 2015, doi: 10.1360/N012015-00057.
F. M. Cholewinski, “Generalized Fock spaces and associated operators,” SIAM J. Math. Anal., vol. 15, no. 1, pp. 177–202, 1984, doi: 10.1137/0515015.
A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher transcendental functions. Vols. I, II. McGraw-Hill Book Co., Inc., New York-Toronto-London, 1953.
Z. Li and F. Song, “A generalized Radon transform on the plane,” Constr. Approx., vol. 33, no. 1, pp. 93–123, 2011, doi: 10.1007/s00365-010-9099-2.
M. A. Mourou and K. Trimèche, “Calderón’s formula associated with a differential operator on (0,∞) and inversion of the generalized Abel transform,” J. Fourier Anal. Appl., vol. 4, no. 2, pp. 229–245, 1998, doi: 10.1007/BF02475991.
R. S. Pathak and G. Pandey, “Calderón’s reproducing formula for Hankel convolution,” Int. J. Math. Math. Sci., 2006, Art. ID 24217, doi: 10.1155/IJMMS/2006/24217.
S. Saitoh, “Best approximation, Tikhonov regularization and reproducing kernels,” Kodai Math. J., vol. 28, no. 2, pp. 359–367, 2005, doi: 10.2996/kmj/1123767016.
S. Saitoh, “Theory of reproducing kernels: applications to approximate solutions of bounded linear operator equations on Hilbert spaces,” in Selected papers on analysis and differential equations, ser. Amer. Math. Soc. Transl. Ser. 2. Amer. Math. Soc., Providence, RI, 2010, vol. 230, pp. 107–134, doi: 10.1090/trans2/230/06.
S. Saitoh and Y. Sawano, Theory of reproducing kernels and applications, ser. Developments in Mathematics. Springer, Singapore, 2016, vol. 44, doi: 10.1007/978-981-10-0530-5.
B. Selmi and M. A. Allagui, “Some integral operators and their relation to multidimensional Fourier-Bessel transform on L2α(Rn+) and applications,” Integral Transforms Spec. Funct., vol. 33, no. 3, pp. 176–190, 2022, doi: 10.1080/10652469.2021.1925666.
B. Selmi and R. Chbeb, “Calderón’s reproducing formulas for the poly-axially Lα2-multiplier operators,” Integral Transforms Spec. Funct., vol. 34, no. 10, pp. 770–787, 2023, doi: 10.1080/10652469.2023.2190971.
B. Selmi and C. Khelifi, “Estimate of the Fourier-Bessel multipliers for the poly-axially operator,” Acta Math. Sin. (Engl. Ser.), vol. 36, no. 7, pp. 797–811, 2020, doi: 10.1007/s10114- 020-9120-z.
B. Selmi and C. Khelifi, “Linear and nonlinear Bessel potentials associated with the poly-axially operator,” Integral Transforms Spec. Funct., vol. 32, no. 2, pp. 90–104, 2021, doi: 10.1080/10652469.2020.1802262.
F. Soltani, “Best approximation formulas for the Dunkl L2-multiplier operators on Rd,” Rocky Mountain J. Math., vol. 42, no. 1, pp. 305–328, 2012, doi: 10.1216/RMJ-2012-42-1-305.
F. Soltani, “Operators and Tikhonov regularization on the Fock space,” Integral Transforms Spec. Funct., vol. 25, no. 4, pp. 283–294, 2014, doi: 10.1080/10652469.2013.839666.
F. Soltani, “Some examples of extremal functions on the Fock space F(C),” Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., vol. 42, no. 2, pp. 265–272, 2016.
F. Soltani, “Uncertainty principles for the Segal-Bargmann transform,” J. Math. Res. Appl., vol. 37, no. 5, pp. 563–576, 2017, doi: 10.3770/j.issn:2095-2651.2017.05.007.
F. Soltani, “Fock-type spaces associated to higher-order Bessel operator,” Integral Transforms Spec. Funct., vol. 29, no. 7, pp. 514–526, 2018, doi: 10.1080/10652469.2018.1462806.
F. Soltani, “Hankel-type Segal-Bargmann transform and its applications to UP and PDEs,” Bol. Soc. Mat. Mex. (3), vol. 29, no. 3, 2023, Art. ID 83, doi: 10.1007/s40590-023-00564-6.
F. Soltani, “Reproducing kernel Hilbert spaces (RKHS) for the higher order Bessel operator,” Bol. Soc. Mat. Mex. (3), vol. 29, no. 1, 2023, Art. ID 20, doi: 10.1007/s40590-023-00492-5.
G. N. Watson, A treatise on the theory of Bessel functions, ser. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1966.
H. Yildirim, M. Z. Sarikaya, and S. Öztürk, “The solutions of the n-dimensional Bessel diamond operator and the Fourier-Bessel transform of their convolution,” Proc. Indian Acad. Sci. Math. Sci., vol. 114, no. 4, pp. 375–387, 2004, doi: 10.1007/BF02829442.
K. Zhu, Analysis on Fock spaces, ser. Graduate Texts in Mathematics. Springer, New York, 2012, vol. 263, doi: 10.1007/978-1-4419-8801-0.
Most read articles by the same author(s)
- Fethi Soltani, Reproducing inversion formulas for the Dunkl-Wigner transforms , CUBO, A Mathematical Journal: Vol. 17 No. 2 (2015): CUBO, A Mathematical Journal
- Fethi Soltani, \(L^p\) local uncertainty inequality for the Sturm-Liouville transform , CUBO, A Mathematical Journal: Vol. 16 No. 1 (2014): CUBO, A Mathematical Journal
- Fethi Soltani, Slim Ben Rejeb, Laeng-Morpurgo-type uncertainty inequalities for the Weinstein transform , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
Similar Articles
- Alessandro Perotti, Regular quaternionic functions and conformal mappings , CUBO, A Mathematical Journal: Vol. 11 No. 1 (2009): CUBO, A Mathematical Journal
- George A. Anastassiou, Multiple general sigmoids based Banach space valued neural network multivariate approximation , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
- Elke Wolf, Isometric weighted composition operators on weighted Banach spaces of holomorphic functions defined on the unit ball of a complex Banach space , CUBO, A Mathematical Journal: Vol. 15 No. 2 (2013): CUBO, A Mathematical Journal
- A. El-Sayed Ahmed, A. Kamal, T.I. Yassen, Characterizations for certain analytic functions by series expansions with Hadamard gaps , CUBO, A Mathematical Journal: Vol. 16 No. 1 (2014): CUBO, A Mathematical Journal
- G. Palanichetty, G. Balasubramanian, On Some What Fuzzy Faintly Semicontinuous Functions , CUBO, A Mathematical Journal: Vol. 10 No. 1 (2008): CUBO, A Mathematical Journal
- M. E. Luna, M. Shapiro, D. C. Struppa, A. Vajiac, Bicomplex Numbers and their Elementary Functions , CUBO, A Mathematical Journal: Vol. 14 No. 2 (2012): CUBO, A Mathematical Journal
- Gabriel M. Antón Marval, René E. Castillo, Julio C. Ramos-Fernández, Maximal functions and properties of the weighted composition operators acting on the Korenblum, α-Bloch and α-Zygmund spaces , CUBO, A Mathematical Journal: Vol. 19 No. 1 (2017): CUBO, A Mathematical Journal
- Hugo Leiva, Jesús Matute, Nelson Merentes, José Sánchez, On a type of Volterra integral equation in the space of continuous functions with bounded variation valued in Banach spaces , CUBO, A Mathematical Journal: Vol. 17 No. 2 (2015): CUBO, A Mathematical Journal
- Elke Wolf, Differences of weighted composition operators between weighted Banach spaces of holomorphic functions and weighted Bloch type spaces , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Zead Mustafa, Hamed Obiedat, A fixed point theorem of Reich in \(G\)-Metric spaces , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 F. Soltani
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.