Inertial viscosity Mann-type subgradient extragradient algorithms for solving variational inequality and fixed point problems in real Hilbert spaces
-
Zahoor Ahmad Rather
zahoor.rather@iust.ac.in
-
Rais Ahmad
rahmad.mm@amu.ac.in
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2801.149Abstract
This paper presents two inertial viscosity Mann-type extrapolated algorithms for finding a common solution to the variational inequality problem involving a monotone and Lipschitz continuous operator and the fixed-point problem for a demicontractive mapping in real Hilbert spaces. The proposed algorithms feature an adaptive step size strategy, computed iteratively, which circumvents the need for prior knowledge of the operator’s Lipschitz constant. Under appropriate assumptions, we establish two strong convergence theorems guaranteeing the robustness of the methods. Furthermore, we provide a comparative performance analysis of the proposed algorithms against some existing strongly convergent schemes, supported by numerical experiments with MATLAB-based graphical illustrations.
Keywords
Mathematics Subject Classification:
I. Ahmad, Z. A. Rather, R. Ahmad, and C.-F. Wen, “Stability and convergence analysis for set-valued extended generalized nonlinear mixed variational inequality problems and generalized resolvent dynamical systems,” J. Math., 2021, Art. ID 5573833, doi: 10.1155/2021/5573833.
F. Alvarez and H. Attouch, “An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping,” Set-Valued Anal., vol. 9, no. 1-2, pp. 3–11, 2001, doi: 10.1023/A:1011253113155.
N. T. An, N. M. Nam, and X. Qin, “Solving k-center problems involving sets based on optimization techniques,” J. Global Optim., vol. 76, no. 1, pp. 189–209, 2020, doi: 10.1007/s10898-019-00834-6.
Q. H. Ansari, M. Islam, and J.-C. Yao, “Non smooth variational inequalities on Hadamard manifolds,” Appl. Anal., vol. 99, no. 2, pp. 340–358, 2020, doi: 10.1080/00036811.2018.1495329.
H. H. Bauschke and P. L. Combettes, Convex analysis and monotone operator theory in Hilbert spaces, 2nd ed., ser. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, Cham, 2017, doi: 10.1007/978-3-319-48311-5.
L. C. Ceng, A. Petruşel, X. Qin, and J. C. Yao, “A modified inertial subgradient extragradient method for solving pseudomonotone variational inequalities and common fixed point problems,” Fixed Point Theory, vol. 21, no. 1, pp. 93–108, 2020, doi: 10.24193/fpt-ro.
L. C. Ceng, A. Petruşel, X. Qin, and J. C. Yao, “Two inertial subgradient extragradient algorithms for variational inequalities with fixed-point constraints,” Optimization, vol. 70, no. 5-6, pp. 1337–1358, 2021, doi: 10.1080/02331934.2020.1858832.
Y. Censor, A. Gibali, and S. Reich, “The subgradient extragradient method for solving variational inequalities in Hilbert space,” J. Optim. Theory Appl., vol. 148, no. 2, pp. 318–335, 2011, doi: 10.1007/s10957-010-9757-3.
Y. Censor, A. Gibali, and S. Reich, “Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space,” Optim. Methods Softw., vol. 26, no. 4-5, pp. 827–845, 2011, doi: 10.1080/10556788.2010.551536.
S. Y. Cho, “A convergence theorem for generalized mixed equilibrium problems and multivalued asymptotically nonexpansive mappings,” J. Nonlinear Convex Anal., vol. 21, no. 5, pp. 1017–1026, 2020.
S. Y. Cho, “A monotone Bregan projection algorithm for fixed point and equilibrium problems in a reflexive Banach space,” Filomat, vol. 34, no. 5, pp. 1487–1497, 2020.
T. H. Cuong, J.-C. Yao, and N. D. Yen, “Qualitative properties of the minimum sum-of-squares clustering problem,” Optimization, vol. 69, no. 9, pp. 2131–2154, 2020, doi: 10.1080/02331934.2020.1778685.
D. V. Hieu, P. K. Anh, and L. D. Muu, “Modified hybrid projection methods for finding common solutions to variational inequality problems,” Comput. Optim. Appl., vol. 66, no. 1, pp. 75–96, 2017, doi: 10.1007/s10589-016-9857-6.
S. Kesornprom, K. Kankam, P. Inkrong, N. Pholasa, and P. Cholamjiak, “A variant of the proximal gradient method for constrained convex minimization problems,” Journal of Non-linear Functional Analysis, 2024, Art. ID 14, doi: 10.23952/jnfa.2024.14.
G. M. Korpelevič, “An extragradient method for finding saddle points and for other problems,” Èkonom. i Mat. Metody, vol. 12, no. 4, pp. 747–756, 1976.
R. Kraikaew and S. Saejung, “Strong convergence of the Halpern subgradient extragradient method for solving variational inequalities in Hilbert spaces,” J. Optim. Theory Appl., vol. 163, no. 2, pp. 399–412, 2014, doi: 10.1007/s10957-013-0494-2.
P.-E. Maingé, “A hybrid extragradient-viscosity method for monotone operators and fixed point problems,” SIAM J. Control Optim., vol. 47, no. 3, pp. 1499–1515, 2008, doi: 10.1137/060675319.
O. T. Mewomo, O. J. Ogunsola, and T. O. Alakoya, “Generalized viscosity inertial Tseng’s method with adaptive step sizes for solving pseudomonotone variational inequalities with fixed point constraints,” Applied Set-Valued Analysis and Optimization, vol. 6, no. 2, pp. 193–215,
, doi: 10.23952/asvao.6.2024.2.05.
B. T. Poljak, “Some methods of speeding up the convergence of iterative methods,” Ž. Vyčisl. Mat i Mat. Fiz., vol. 4, pp. 791–803, 1964.
X. Qin and N. T. An, “Smoothing algorithms for computing the projection onto a Minkowski sum of convex sets,” Comput. Optim. Appl., vol. 74, no. 3, pp. 821–850, 2019, doi: 10.1007/s10589-019-00124-7.
Z. A. Rather, R. Ahmad, and T. Namgyal, “New inertial implicit projection method for solving quasi-variational inequalities in real Hilbert spaces,” International Journal of Applied Non-Linear Science and Engineering Research, vol. 7, no. 2, pp. 63–69, 2023, doi: 10.59287/ijanser.351.
S. Saejung and P. Yotkaew, “Approximation of zeros of inverse strongly monotone operators in Banach spaces,” Nonlinear Anal., vol. 75, no. 2, pp. 742–750, 2012, doi: 10.1016/j.na.2011.09.005.
D. R. Sahu, J. C. Yao, M. Verma, and K. K. Shukla, “Convergence rate analysis of proximal gradient methods with applications to composite minimization problems,” Optimization, vol. 70, no. 1, pp. 75–100, 2021, doi: 10.1080/02331934.2019.1702040.
Y. Shehu, O. S. Iyiola, X.-H. Li, and Q.-L. Dong, “Convergence analysis of projection method for variational inequalities,” Comput. Appl. Math., vol. 38, no. 4, 2019, Art. ID 161, doi: 10.1007/s40314-019-0955-9.
Y. Shehu, X.-H. Li, and Q.-L. Dong, “An efficient projection-type method for monotone variational inequalities in Hilbert spaces,” Numer. Algorithms, vol. 84, no. 1, pp. 365–388, 2020.
W. Takahashi and M. Toyoda, “Weak convergence theorems for nonexpansive mappings and monotone mappings,” J. Optim. Theory Appl., vol. 118, no. 2, pp. 417–428, 2003, doi: 10.1023/A:1025407607560.
W. Takahashi, Introduction to nonlinear and convex analysis. Yokohama Publishers, Yokohama, 2009.
B. Tan and S. Y. Cho, “Inertial extragradient methods for solving pseudomonotone variational inequalities with non-Lipschitz mappings and their optimization applications,” Applied Set-Valued Analysis and Optimization, vol. 3, pp. 165–192, 2021, doi: 10.23952/asvao.3.2021.2.03.
B. Tan and S. Y. Cho, “Self-adaptive inertial shrinking projection algorithms for solving pseudomonotone variational inequalities,” J. Nonlinear Convex Anal., vol. 22, no. 3, pp. 613–627, 2021.
B. Tan, J. Fan, and S. Li, “Self-adaptive inertial extragradient algorithms for solving variational inequality problems,” Comput. Appl. Math., vol. 40, no. 1, 2021, Art. ID 19, doi: 10.1007/s40314-020-01393-3.
B. Tan and S. Li, “Strong convergence of inertial Mann algorithms for solving hierarchical fixed point problems,” Journal of Nonlinear and Variational Analysis, vol. 4, pp. 337–355, 2020, doi: 10.23952/jnva.4.2020.3.02.
B. Tan, X. Qin, and J.-C. Yao, “Strong convergence of self-adaptive inertial algorithms for solving split variational inclusion problems with applications,” J. Sci. Comput., vol. 87, no. 1, 2021, Art. ID 20, doi: 10.1007/s10915-021-01428-9.
B. Tan, Z. Zhou, and S. Li, “Viscosity-type inertial extragradient algorithms for solving variational inequality problems and fixed point problems,” J. Appl. Math. Comput., vol. 68, no. 2, pp. 1387–1411, 2022, doi: 10.1007/s12190-021-01576-z.
D. V. Thong and D. V. Hieu, “Modified subgradient extragradient algorithms for variational inequality problems and fixed point problems,” Optimization, vol. 67, no. 1, pp. 83–102, 2018, doi: 10.1080/02331934.2017.1377199.
D. V. Thong and D. V. Hieu, “Some extragradient-viscosity algorithms for solving variational inequality problems and fixed point problems,” Numer. Algorithms, vol.82, no.3, pp.761–789, 2019, doi: 10.1007/s11075-018-0626-8.
X. Zhao and Y. Yao, “Modified extragradient algorithms for solving monotone variational inequalities and fixed point problems,” Optimization, vol. 69, no. 9, pp. 1987–2002, 2020, doi: 10.1080/02331934.2019.1711087.
H. Zhou and X. Qin, Fixed points of nonlinear operators, ser. De Gruyter STEM. Berlin; National Defense Industry Press, Beijing, 2020, doi: 10.1515/9783110667097. De Gruyter,
Z. Zhou, B. Tan, and S. Li, “A new accelerated self-adaptive stepsize algorithm with excellent stability for split common fixed point problems,” Comput. Appl. Math., vol. 39, no. 3, 2020, Art. ID 220.
Z. Zhou, B. Tan, and S. Li, “An accelerated hybrid projection method with a self-adaptive step-size sequence for solving split common fixed point problems,” Math. Methods Appl. Sci., vol. 44, no. 8, pp. 7294–7303, 2021, doi: 10.1002/mma.7261.
Similar Articles
- Sapan Kumar Nayak, P. K. Parida, Global convergence analysis of Caputo fractional Whittaker method with real world applications , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- Chao-Ping Chen, Ai-Qi Liu, Feng Qi, Proofs for the Limit of Ratios of Consecutive Terms in Fibonacci Sequence , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
- Koji Aoyama, Yasunori Kimura, Viscosity approximation methods with a sequence of contractions , CUBO, A Mathematical Journal: Vol. 16 No. 1 (2014): CUBO, A Mathematical Journal
- Ioannis K. Argyros, Santhosh George, Ball comparison between Jarratt‘s and other fourth order method for solving equations , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
- Jyotirmoy Mouley, M. M. Panja, B. N. Mandal, Approximate solution of Abel integral equation in Daubechies wavelet basis , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
- M.I. Belishev, Dynamical Inverse Problem for the Equation ð’°áµ¼áµ¼ − Δ𒰠− ∇ln𜌠· ∇𒰠= 0 (the BC Method) , CUBO, A Mathematical Journal: Vol. 10 No. 2 (2008): CUBO, A Mathematical Journal
- Ioannis K. Argyros, An improved convergence and complexity analysis for the interpolatory Newton method , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Masaru Ikehata, Inverse Crack Problem and Probe Method , CUBO, A Mathematical Journal: Vol. 8 No. 1 (2006): CUBO, A Mathematical Journal
- Chandresh Prasad, P. K. Parida, Steffensen-like method in Riemannian manifolds , CUBO, A Mathematical Journal: Vol. 26 No. 3 (2024)
- Ioannis K. Argyros, Saïd Hilout, Convergence conditions for the secant method , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Z. A. Rather et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.










