An improved convergence and complexity analysis for the interpolatory Newton method

Downloads

DOI:

https://doi.org/10.4067/S0719-06462010000100013

Abstract

We provide an improved compared to [5]–[7] local convergence analysis and complexity for the interpolatory Newton method for solving equations in a Banach space setting. The results are obtained using more precise error bounds than before [5]–[7] and the same hypotheses/computational cost.

Keywords

Newton‘s method , local convergence , Banach space , interpolatory Newton method , complexity , radius of convergence
  • Ioannis K. Argyros Cameron University, Department of Mathematical Sciences, Lawton, OK 73505, USA.
  • Pages: 149–159
  • Date Published: 2010-03-01
  • Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.

Downloads

Download data is not yet available.

Published

2010-03-01

How to Cite

[1]
I. K. Argyros, “An improved convergence and complexity analysis for the interpolatory Newton method”, CUBO, vol. 12, no. 1, pp. 149–159, Mar. 2010.

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.