Super-Halley method under majorant conditions in Banach spaces
-
Shwet Nisha
shwetnisha1988@gmail.com
-
P. K. Parida
pkparida@cuj.ac.in
Downloads
DOI:
https://doi.org/10.4067/S0719-06462020000100055Abstract
In this paper, we have studied local convergence of Super-Halley method in Banach spaces under the assumption of second order majorant conditions. This approach allows us to obtain generalization of earlier convergence analysis under majorizing sequences. Two important special cases of the convergence analysis based on the premises of Kantorovich and Smale type conditions have also been concluded. To show efficacy of our approach we have given three numerical examples.
Keywords
I. K. Argyros and H. Ren. Ball convergence theorem for Halley‘s method in banach spaces. J. Appl. Math. Comp. 38(2012), pp. 453-465.
D. Chen, I. K. Argyros and Q. Qian. A local Convergence theorem for the Super-Halley method in Banach space. Appl. Math. 7(1994), pp. 49-52.
P. Deuflhard. Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms. Springer, Berlin Heindelberg, 2004.
P. Deuflhard and G. Heindl. Affine invariant convergent theorems for Newtons method and extensions to related methods. SIAM J. Numer. Anal. 16(1979), pp. 1-10.
J. A. Ezquerro and M. A. Hernández. On a convex acceleration of Newton‘s method, J. Optim. Theory Appl. 100 (1999), pp. 311–326.
O.P. Ferreira. Local convergence of Newton‘s method in Banach space from the viewpoint of the majorant principle. IMA J. Numer. Anal. 29(2009), pp. 746-759.
O.P. Ferreira and B.F. Svaiter. Kantorovich‘s majorants principle for Newton‘s method. Comput. Optim. Appl. 42(2009), pp. 213-229.
W.B. Gragg and R.A. Tapia. Optimal error bounds for the Newton-Kantorovich theorem. SIAM J. Numer. Anal. 11(1974), pp. 10-13.
J. M. Gutiérrez and M. A. Hernández. Recurrence relations for the Super-Halley method, Comput. Math. Appl. 36(1998), pp. 1-8.
J. M. Gutiérrez and M. A. Hernández. Newton‘s method under weak Kantorovich conditions. IMA J. Numer. Anal. 20(2000), pp. 521-532.
J. M. Gutiérrez and M. A. Hernández. An acceleration of Newton‘s method: super-Halley method. Appl. Math. Comput. 117(2001), pp. 223-239.
D. Han, X. Wang. The error estimates of Halley‘s method. Numer. Math. JCU Engl. Ser. 6(1997), pp. 231-240.
M. A. Hernández and N. Romero. On the characterization of some Newton like methods of R-order at least three. J. Comput. Appl. Math. 183(2005), pp. 53-66.
M. A. Hernández and N. Romero. Towards a unified theory for third R-order iterative methods for operators with unbounded second derivative, Appl. Math. Comput. 215(2009), pp. 2248-2261.
L. O. Jay. A note on Q-order of convergence, BIT Numer. Math. 41(2001), pp. 422-429.
L. V. Kantorovich and G. P. Akilov. Functional Analysis. Pergamon Press, Oxford, 1982.
Y. Ling and X. Xu. On the semilocal convergence behaviour of Halley‘s method, Comput. Optim. Appl. 58(2014), pp. 597-61.
F. A. Potra. On Q-order and R-order of convergence, J. Optim. Theory Appl. 63(1989), pp. 415-431.
M. Prashanth and D. K. Gupta. Recurrence relation for Super-Halley‘s method with hölder continuous second derivative in Banach spaces, Kodai Math. J. 36(2013), pp. 119-136.
M. Prashanth, D. K. Gupta and S. Singh. Semilocal convergence for the Super-Halley method. Numer. Anal. Appl., 7(2014), pp. 70-84.
S. Smale. Newton‘s method estimates from data at one point. In: Ewing, R., Gross, K., Martin, C.(eds.) The Merging of Disciplines: New Directions in Pure, Applied and computational Mathematics, 185-196. Springer, New York, 1986.
X. Wang. Convergence of Newton‘s method and inverse functions theorem in Banach space. Math. Comput. 68(1999), pp. 169-186.
X. Wang. Convergence of Newton‘s method and uniqueness of the solution of equations in Banach space, IMA J.Numer. Anal. 20(2000), pp. 123-134.
X. Wang and D. Han. On the dominating sequence method in the point estimates and smale‘s, theorem. Scientia Sinica Ser. A. 33(1990), pp. 135-144.
X. Wang and D. Han. Criterion α and Newton‘s method in the weak conditions (in Chinese), Math. Numer. Sinica 19(1997), pp. 103-112.
X. Xu and C. Li. Convergence of Newton‘s method for systems of equations with constant rank derivatives. J. Comput. Math. 25(2007), pp. 705-718.
X. Xu and C. Li. Convergence criterion of Newton‘s method for singular systems of equations with constant rank derivatives. J. Math. Anal. Appl. 245(2008), pp. 689-701.
T. Yamamoto. On the method of tangent hyperbolas in Banach spaces, J. Comput. Appl. Math. 21(1988), pp. 75-86.
T.J. Ypma. Affine invariant convergence results for Newton‘s method. BIT Numer. Math. 22(1982), pp. 108-118.
Most read articles by the same author(s)
- Sapan Kumar Nayak, P. K. Parida, Global convergence analysis of Caputo fractional Whittaker method with real world applications , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- Chandresh Prasad, P. K. Parida, Steffensen-like method in Riemannian manifolds , CUBO, A Mathematical Journal: Vol. 26 No. 3 (2024)
Similar Articles
- Sapan Kumar Nayak, P. K. Parida, Global convergence analysis of Caputo fractional Whittaker method with real world applications , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- M. H. Saleh, S. M. Amer, M. H. Ahmed, The method of Kantorovich majorants to nonlinear singular integral equations with Hilbert Kernel , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Ioannis K. Argyros, Saïd Hilout, Convergence conditions for the secant method , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Ioannis K. Argyros, Santhosh George, Extended domain for fifth convergence order schemes , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- Ioannis K. Argyros, An improved convergence and complexity analysis for the interpolatory Newton method , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Bo Zhang, Boundedness and Global Attractivity of Solutions for a System of Nonlinear Integral Equations , CUBO, A Mathematical Journal: Vol. 11 No. 3 (2009): CUBO, A Mathematical Journal
- Razvan A. Mezei, Applications and Lipschitz results of approximation by smooth Picard and Gauss-Weierstrass type singular integrals , CUBO, A Mathematical Journal: Vol. 13 No. 3 (2011): CUBO, A Mathematical Journal
- Ioannis K. Argyros, Saïd Hilout, On the solution of generalized equations and variational inequalities , CUBO, A Mathematical Journal: Vol. 13 No. 1 (2011): CUBO, A Mathematical Journal
- Bashir Ahmad, Amjad F. Albideewi, Sotiris K. Ntouyas, Ahmed Alsaedi, Existence results for a multipoint boundary value problem of nonlinear sequential Hadamard fractional differential equations , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
- Ioannis K. Argyros, Saïd Hilout, On the semilocal convergence of Newton–type methods, when the derivative is not continuously invertible , CUBO, A Mathematical Journal: Vol. 13 No. 3 (2011): CUBO, A Mathematical Journal
1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.