Perturbed weighted trapezoid inequalities for convex functions with applications
-
Sever Silvestru Dragomir
sever.dragomir@vu.edu.au
-
Eder Kikianty
eder.kikianty@up.ac.za
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2603.507Abstract
We consider trapezoid type inequalities for twice differentiable convex functions, perturbed by a non-negative weight. Applications on a normed space \( (X, \lVert \,\cdot\, \rVert) \) are considered, by establishing bounds for the term
\[ \begin{multline*} \frac{1}{2} \left[\lVert \frac{x+y}{2} \rVert^p + \frac{\lVert x \rVert^p + \lVert y \rVert^p}{2} \right] - \int_{0}^{1} \lVert (1-t)x + ty \rVert^p \, dt, \\ x, y \in X \end{multline*} \]
which can be seen as a combination of both the midpoint and the trapezoid \(p\)-norm (with \(2\leq p<\infty\)) inequalities.
Keywords
Mathematics Subject Classification:
P. Cerone and S. S. Dragomir, “A refinement of the Grüss inequality and applications,” Tamkang J. Math., vol. 38, no. 1, pp. 37–49, 2007.
P. Chebyshev, “Sur les expressions approximatives des intégrales définies par les autres prises entre les mêmes limites,” Proc. Math. Soc. Charkov, vol. 2, pp. 93–98, 1882.
X.-L. Cheng and J. Sun, “A note on the perturbed trapezoid inequality,” JIPAM. J. Inequal. Pure Appl. Math., vol. 3, no. 2, 2002, Art. ID 29.
I. Cioranescu, Geometry of Banach spaces, duality mappings and nonlinear problems, ser. Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht, 1990, vol. 62, doi: 10.1007/978-94-009-2121-4.
S. S. Dragomir, “An inequality improving the first Hermite-Hadamard inequality for con- vex functions defined on linear spaces and applications for semi-inner products,” JIPAM. J. Inequal. Pure Appl. Math., vol. 3, no. 2, 2002, Art. ID 31.
S. S. Dragomir, “An inequality improving the second Hermite-Hadamard inequality for con- vex functions defined on linear spaces and applications for semi-inner products,” JIPAM. J. Inequal. Pure Appl. Math., vol. 3, no. 3, 2002, Art. ID 35.
S. S. Dragomir, “Smooth normed spaces of (BD)-type,” J. Fac. Sci. Univ. Tokyo Sect. IA Math., vol. 39, no. 1, pp. 1–15, 1992.
S. S. Dragomir, Semi-inner products and applications. Nova Science Publishers, Inc., Haup-pauge, NY, 2004.
S. S. Dragomir, “Ostrowski type inequalities for Lebesgue integral: a survey of recent results,” Aust. J. Math. Anal. Appl., vol. 14, no. 1, 2017, Art. ID 1.
L. Fejér, “Über die Fouriersche Reihe, II,” Mat. Természett. Értes., vol. 24, pp. 369–390, 1906.
J. R. Giles, “Classes of semi-inner-product spaces,” Trans. Amer. Math. Soc., vol. 129, pp. 436–446, 1967, doi: 10.2307/1994599.
G. Grüss, “Über das Maximum des absoluten Betrages von {(frac{1}{{b - a}}intlimits_a^b {fleft( x right)} gleft( x right)dx - frac{1}{{left( {b - a} right)^2 }}intlimits_a^b {fleft( x right)dx} intlimits_a^b g left( x right)dx)}}” Math. Z., vol. 39, no. 1, pp. 1935, doi: 10.1007/BF01201355.
E. Kikianty, S. S. Dragomir, and P. Cerone, “Sharp inequalities of Ostrowski type for convex functions defined on linear spaces and application,” Comput. Math. Appl., vol. 56, no. 9, pp. 2235–2246, 2008, doi: 10.1016/j.camwa.2008.03.059.
E. Kikianty, S. S. Dragomir, and P. Cerone, “Ostrowski type inequality for absolutely continuous functions on segments in linear spaces,” Bull. Korean Math. Soc., vol. 45, no. 4, pp. 763–780, 2008, doi: 10.4134/BKMS.2008.45.4.763.
G. Lumer, “Semi-inner-product spaces,” Trans. Amer. Math. Soc., vol. 100, pp. 29–43, 1961, doi: 10.2307/1993352.
A. M. Ostrowski, “On an integral inequality,” Aequationes Math., vol. 4, pp. 358–373, 1970, doi: 10.1007/BF01844168.
Similar Articles
- S. S. Dragomir, Some integral inequalities related to Wirtinger's result for \(p\)-norms , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
- S.S. Dragomir, Refinements of the generalized trapezoid inequality in terms of the cumulative variation and applications , CUBO, A Mathematical Journal: Vol. 17 No. 2 (2015): CUBO, A Mathematical Journal
- Amar Kumar Banerjee, Pratap Kumar Saha, Semi Open sets in bispaces , CUBO, A Mathematical Journal: Vol. 17 No. 1 (2015): CUBO, A Mathematical Journal
- Shamsur Rahman, Some results on the geometry of warped product CR-submanifolds in quasi-Sasakian manifold , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
- Buddhadev Pal, Santosh Kumar, Pankaj Kumar, Einstein warped product spaces on Lie groups , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- M. W. Wong, Erhling's Inequality and Pseudo-Differential Operators on ð¿áµ–(IRá´º) , CUBO, A Mathematical Journal: Vol. 8 No. 1 (2006): CUBO, A Mathematical Journal
- George A. Anastassiou, Univariate right fractional Ostrowski inequalities , CUBO, A Mathematical Journal: Vol. 14 No. 1 (2012): CUBO, A Mathematical Journal
- Baharak Moosavi, Mohsen Shah Hosseini, Some norm inequalities for accretive Hilbert space operators , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
- V. Seenivasan, G. Balasubramanian, G. Thangaraj, Somewhat Fuzzy Semi ð›¼-Irresolute Functions , CUBO, A Mathematical Journal: Vol. 10 No. 1 (2008): CUBO, A Mathematical Journal
- Paolo D‘alessandro, Closure of pointed cones and maximum principle in Hilbert spaces , CUBO, A Mathematical Journal: Vol. 13 No. 2 (2011): CUBO, A Mathematical Journal
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 S. S. Dragomir et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.











